RECOGNISING ACHIEVEMENT

GCE

Mathematics

Advanced Subsidiary GCE

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& \hline 8 \text { (i) } \frac{d y}{d x}=6 x+6 x^{-2} \\
\& 6 x+\frac{6}{x^{2}}=0 \\
\& x=-1 \\
\& y=7
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
A1 ft
\end{tabular} \& \& \begin{tabular}{l}
Attempt to differentiate (one non-zero term correct) \\
Completely correct \\
Sets their \(\frac{\mathrm{d} y}{\mathrm{~d} x}=0\) \\
Correct value for \(x\) - www \\
Correct value of \(y\) for their value of \(x\)
\end{tabular} \& \begin{tabular}{l}
NB \(-x=-1\) (and therefore possibly \(y=7\)) can be found from equating the incorrect differential \(\frac{d y}{d x}=6 x+6\) to 0 . This could score M1A0 M1A0A1 ft \\
If more than one value of x found, allow \(\mathbf{A 1} \mathbf{f t}\) for one correct value of \(y\)
\end{tabular} \\
\hline \begin{tabular}{l}
(ii) \(\frac{d^{2} y}{d x^{2}}=6-12 x^{-3}\) \\
When \(x=-1, \frac{d^{2} y}{d x^{2}}>0\) so minimum pt
\end{tabular} \& M1

A1 ft \& 7 \& \begin{tabular}{l}
Correct method e.g. substitutes their x from (i) into their $\frac{d^{2} y}{d x^{2}}$ (must involve x) and considers sign.

ft from their $\frac{d y}{d x}$ differentiated correctly and correct substitution of their value of x and consistent final conclusion

NB If second derivate evaluated, it must be correct (18 for $x=-1$).

If more than one value of x used, \max M1 A0

 \&

Allow comparing signs of their $\frac{d y}{d x}$ either side of their "- 1 ", comparing values of y to their " 7 "

SC $\frac{d^{2} y}{d x^{2}}=$ a constant correctly obtained from their $\frac{d y}{d x}$ and correct conclusion (ft) B1
\end{tabular}

\hline
\end{tabular}

Substitution method 2into $(x-p)^{2}+(y-q)^{2}=$ their r^{2}
Correct method to find d or r or d^{2} or $r^{2} * \mathbf{M} 1$
Substitutes all 3 points to get 3 equations in p, q DM1
At least 2 equations correct A1
Correct method to find one variable M1
One of p, q correct A1
Correct equation $\left[(x-2)^{2}+(y+4)^{2}=50\right] \mathbf{A} 1$
Correct equation in required form
$\left[x^{2}+y^{2}-4 x+8 y-30=0\right] \mathbf{A 1}$

10(i)	B1 B1 B1	3	+ve cubic with 3 distinct roots $(0,3)$ labelled or indicated on y-axis $(-3,0),\left(\frac{1}{2}, 0\right)$ and $(1,0)$ labelled or indicated on $x-$ axis and no other x - intercepts	For first B1, left end of curve must finish below x axis and right end must end above x axis. Allow slight wrong curvature at one end but not both ends. No cusp at either turning point. No straight lines drawn with a ruler. Condone $(0,3)$ as maximum point. To gain second and third \mathbf{B} marks, there must be an attempt at a curve, not just points on axes. Final B1 can be awarded for a negative cubic.
$\text { (ii) } \begin{aligned} & 2 x^{2}+5 x-3, x^{2}+2 x-3,2 x^{2}-3 x+1 \\ & \left(2 x^{2}+5 x-3\right)(x-1) \\ & 2 x^{3}+3 x^{2}-8 x+3 \\ & \frac{d y}{d x}=6 x^{2}+6 x-8 \\ & \text { When } x=1, \text { gradient }=4 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	6	Obtain one quadratic factor (can be unsimplified) Attempt to multiply a quadratic by a linear factor Attempt to differentiate (one non-zero term correct) Fully correct expression www Confirms gradient $=4$ at $x=1$ **AG	Alternative for first 3 marks: Attempt to expand all 3 brackets with an appropriate number of terms (including an x^{3} term) M1 Expansion with at most 1 incorrect term A1 Correct, answer (can be unsimplified) A1 Allow if done in part(i) please check.
$\text { (iii) } \begin{aligned} & \text { Gradient of } l=4 \\ & \text { On curve, when } x=-2, y=15 \\ & y-15=4(x+2) \\ & y=4 x+23 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	4	May be embedded in equation of line Correct y coordinate Correct equation of line using their values Correct answer in correct form	M mark is for any equation of line with any non-zero numerical gradient through (-2 , their evaluated y)
(iv) Attempt to find gradient of curve when $\begin{aligned} & x=-2 \\ & 6(-2)^{2}+6(-2)-8=4 \end{aligned}$ So line is a tangent	M1 A1 A1	$\begin{aligned} & 3 \\ & 16 \end{aligned}$	Substitute $x=-2$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ Obtain gradient of 4 CWO Correct conclusion	Alternatives 1) Equates equation of l to equation of curve and attempts to divide resulting cubic by $(x+2)$ M1 Obtains $(x+2)^{2}(2 x-5)(=0)$ A1 Concludes repeated root implies tangent at $x=-2$ A1 2) Equates their gradient function to 4 and uses correct method to solve the resulting quadratic M1 Obtains $(x+2)(x-1)=0$ oe A1 Correctly concludes gradient $=4$ when $x=-2$ A1

Allocation of method mark for solving a quadratic

e.g. $2 x^{2}-5 x-18=0$

1) If the candidate attempts to solve by factorisation, their attempt when expanded must produce the correct quadratic term and one other correct term (with correct sign):

$$
\begin{array}{lll}
(2 x+2)(x-9)=0 & \text { M1 } & 2 x^{2} \text { and }-18 \text { obtained from expansion } \\
(2 x+3)(x-4)=0 & \text { M1 } & 2 x^{2} \text { and }-5 x \text { obtained from expansion } \\
(2 x-9)(x-2)=0 & \text { M0 } & \text { only } 2 x^{2} \text { term correct }
\end{array}
$$

2) If the candidate attempts to solve by using the formula
a) If the formula is quoted incorrectly then MO.
b) If the formula is quoted correctly then one sign slip is permitted. Substituting the wrong numerical value for a or b or c scores M0

$\frac{-5 \pm \sqrt{(-5)^{2}-4 \times 2 \times-18}}{2 \times 2}$	earns M1 \quad (minus sign incorrect at start of formula)
$\frac{5 \pm \sqrt{(-5)^{2}-4 \times 2 \times 18}}{2 \times 2}$	earns M1 (18 for c instead of -18$)$
$\frac{-5 \pm \sqrt{(-5)^{2}-4 \times 2 \times 18}}{2 \times 2}$	M0 (2 sign errors: initial sign and c incorrect)
$\frac{5 \pm \sqrt{(-5)^{2}-4 \times 2 \times-18}}{2 \times-5}$	MO (2b on the denominator)

Notes - for equations such as $2 x^{2}-5 x-18=0$, then $b^{2}=5^{2}$ would be condoned in the discriminant and would not be counted as a sign error. Repeating the sign error for a in both occurrences in the formula would be two sign errors and score MO.
c) If the formula is not quoted at all, substitution must be completely correct to earn the M1
3) If the candidate attempts to complete the square, they must get to the "square root stage" involving \pm; we are looking for evidence that the candidate knows a quadratic has two solutions!

$$
\begin{aligned}
& 2 x^{2}-5 x-18=0 \\
& 2\left(x^{2}-\frac{5}{2} x\right)-18=0 \\
& 2\left[\left(x-\frac{5}{4}\right)^{2}-\frac{25}{16}\right]-18=0 \\
& \left(x-\frac{5}{4}\right)^{2}=\frac{169}{16} \\
& x-\frac{5}{4}= \pm \sqrt{\frac{169}{16}} \longleftrightarrow \begin{array}{l}
\text { This is where the M1 is awarded }- \\
\text { arithmetical errors may be condoned } \\
\text { provided } x-\frac{5}{4} \text { seen or implied }
\end{array}
\end{aligned}
$$

If a candidate makes repeated attempts (e.g. fails to factorise and then tries the formula), mark only what you consider to be their last full attempt.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

