GCE

Mathematics

Advanced Subsidiary GCE

Mark Scheme for June 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1. Annotations

Annotation in scoris	Meaning
\checkmark and \mathbf{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0,1
SC	Special case
\wedge	Omission sign
MR	Misread
Highlighting	

Other abbreviations in mark scheme	Meaning
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working

2. Subject-specific Marking Instructions

Annotations should be used whenever appropriate during your marking.
The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

The following types of marks are available.

M

A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B

Mark for a correct result or statement independent of Method marks.

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.

The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
$\mathrm{f} \quad$ Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (eg 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.

Rules for replaced work
If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.
h
For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

| Question | | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :--- | :--- |

Question		Answer	Marks	Guidance	
1	(ii)	$\begin{aligned} & (3+2 x)^{5}+(3-2 x)^{5} \\ & \quad=486+2160 x^{2}+480 x^{4} \end{aligned}$	M1	Attempt to change signs of relevant terms	Must change the sign on all of the relevant terms from their expansion, and no others. Expansion in part (i) must have at least 5 terms. Allow M1 even if no attempt to then combine expansions, or if difference rather than sum found. If expanding $(3-2 x)^{5}$, then it must be a reasonable attempt, involving the product of correct binomial coeffs, powers of 2 and powers of $-3 x$, and each term must be of the correct sign.
			A1 FT [2]	Obtain $486+2160 x^{2}+480 x^{4}$, from their (i)	Must have been a 6 term quintic in (i) to get FT mark. A0 if subsequent division by a common factor, so not isw.

Question		Answer	Marks	Guidance	
3	(i)	$72^{\circ}=72 \times \pi / 180=2 \pi / 5$ radians	B1 [1]	State $\frac{2 \pi}{5}, \frac{2}{5} \pi$ or 0.4π	Must be simplified. B0 for decimal equiv (1.26), but isw if exact simplified value seen but then given in decimals.
3	(ii)	$1 / 2 \times r^{2} \times 2 \pi / 5=45 \pi$ $r=15 \mathrm{~cm}$	M1 A1 [2]	Equate attempt at area using $(1 / 2) r^{2} \theta$ to 45π and attempt to solve for r Obtain $r=15$	Condone omission of $1 / 2$, but no other error. Must be equated to 45π (so M0 for $=45$) except for $(1 / 2) r^{2} \mathrm{x}^{2 / 5}=45$ (assuming π has been cancelled). Allow M1 for using 0.4 or 1.26π. Allow if using incorrect angle from part (i), as long as clearly intended to be in radians. Allow equivalent method using fractions of the circle. Valid method using degrees can get M1 (and A1 if exact). Must get as far as attempt at r. Allow M1 for T\&I, as long as comparing to 45π. Must be exact working only - any use of decimals is A0 (but allow 15.0 if giving previously exact answer to 3 sf). Any evidence of 15 having come from rounding an inaccurate answer is A0.
3	(iii)	$\begin{aligned} & \text { area triangle }= \\ & \quad 1 / 2 \times 15^{2} \times \sin (2 \pi / 5)=106.99 \end{aligned}$	M1*	Attempt area of triangle using $(1 / 2) r^{2} \sin \theta$	Condone omission of $1 / 2$, but no other error. Must be using their r and angle linked to their θ. Could be using degrees or radians. Allow even if evaluated in incorrect mode (deg mode gives 2.47 , rad mode gives 28.66). If using a right-angled triangle, it must be $1 / 2 b h$, any valid use of trig to find b and h.
		area segment $=45 \pi-106.99$	M1d*	Attempt 45π - area of triangle	Must be using 45π (not 45), decimal equiv of 141.4 or $1 / 2 \times 15^{2} \times 1.26$ (or better), so M0 for any other value. M0 if area of triangle is greater than 45π. Using $1 / 2 \times 15^{2} \times(\theta-\sin \theta)$ with incorrect θ is M1M0.
		$=34.4 \mathrm{~cm}^{2}$	$\begin{aligned} & \text { A1 } \\ & \text { [3] } \end{aligned}$	Obtain $34.4 \mathrm{~cm}^{2}$	If >3 sf then allow any values rounding to 34.4.

	Question	Answer	Marks	Guidance	
4		$4\left(1-\sin ^{2} x\right)+7 \sin x-7=0$	M1	Use $\cos ^{2} x=1-\sin ^{2} x$	Must be used and not just stated Must be used correctly, so M0 for $1-4 \sin ^{2} x$.
		$4 \sin ^{2} x-7 \sin x+3=0$	A1	Obtain correct quadratic	aef, as long as three term quadratic with all the terms on one side of the equation. Condone $4 \sin ^{2} x-7 \sin x+3$ ie no $=0$.
		$(\sin x-1)(4 \sin x-3)=0$	M1	Attempt to solve quadratic in $\sin x$	Not dependent on previous M1, so could get M0M1 if $\cos ^{2} x=\sin ^{2} x-1$ used. This M mark is just for solving a 3 term quadratic (see guidance sheet for acceptable methods). Condone any substitution used, inc $x=\sin x$.
		$\sin x=1, \quad \sin x=3 / 4$	M1	Attempt to find x from roots of quadratic	Attempt $\sin ^{-1}$ of at least one of their roots. Allow for just stating $\sin ^{-1}$ (their root) inc if $\|\sin x\|>1$. Not dependent on previous marks so M0M0M1 poss. If going straight from $\sin x=k$ to $x=\ldots$, then award M1 only if their angle is consistent with their k.
		$x=90^{\circ} \quad x=48.6^{\circ}, 131^{\circ}$	A1	Obtain two correct solutions	Allow 3sf or better. Must come from a correct solution of the correct quadratic - if the second bracket was correct but the first was $(\sin x$ +1) then A 0 even though 2 solutions will be as required. Allow radian equivs $-\pi / 2$ or $1.57 / 0.848 / 2.29$.
			A1	Obtain all 3 correct solutions, and no others	Must now all be in degrees. Allow 3sf or better. A0 if other incorrect solutions in range $0^{\circ}-360^{\circ}$ (but ignore any outside this range).
			[6]		SR If no working shown then allow $\mathbf{B 1}$ for each correct solution (max of $\mathbf{B} 2$ if in radians, or if extra solns in range).

Question			Answer	Marks	Guidance	
5	(a)	(i)	$\begin{aligned} & u_{2}=1 / 2 \\ & u_{3}=4 \end{aligned}$	B1 B1 FT [2]	State $1 / 2$ State 4, following their u_{2}	Allow 0.5 or $2 / 4$. Follow through on their u_{2} (simplifying if possible). B0 for $2 / 0.5,2 / 1 / 2$ etc.
5	(a)	(ii)	periodic / alternating / repeating / oscillating / cyclic	B1	Any correct description	Allow associated words eg 'repetitive'. Must be a mathematical term rather than a description such as 'it changes between 4 and $1 / 2$ ' or 'odd terms are 4 , even terms are $1 / 2$. Mark independently of any values given in part (i). Ignore irrelevant terms (eg 'recursive'), but B0 if additional incorrect terms (eg 'geometric').
5	(b)		$a+8 d=18$	B1	State $a+8 d=18$	Allow any equivalent, including unsimplified. Must be correct when seen - can't be implied by eg being stated but with incorrect a substituted.
			$9 / 2(2 a+8 d)=72$	B1	State $9 / 2(2 a+8 d)=72$	Allow any equivalent, including unsimplified. Must be correct when seen - as above.
			$a+8 d=18$ and $2 a+8 d=16$	M1	Attempt to solve simultaneously	M1 is awarded for eliminating a variable from two linear equations in a and d, from attempt at $u_{9}=18$ and attempt at $S_{9}=72$ (formulas must be recognisable, and for APs, but not necessarily correct). Don't need to actually solve. If balancing equations, then there must be intention to subtract (but allow $a=2$). If substituting then allow sign errors (eg $a=8 d-18$), but not operational errors (eg $a=18 / 8 d$).
			$a=-2, d=5 / 2$	A1	Obtain either $a=-2$ or $d=5 / 2$	A1 is given for the first correct value, from 2 correct eqns. Allow $d=21 / 2$ or 2.5 , but not unsimplified fractions.
				A1 [5]	Obtain both $a=-2, d=5 / 2$	A1 is given for obtaining second correct value. Allow $d=21 / 2$ or 2.5 , but not unsimplified fractions.

Question		Answer	Marks	Guidance	
6	(iii)	$\begin{aligned} \int_{1}^{9} 4 x^{\frac{1}{2}} \mathrm{~d} x & =\left[\frac{8}{3} x^{\frac{3}{2}}\right]_{1}^{9} \\ & =72-\frac{8}{3} \\ & =69^{1} / 3 \end{aligned}$	M1	Obtain $k x^{\frac{3}{2}}$	Any numerical k, including 4. Any exact equiv for the index.
			A1	$\text { Obtain } \frac{8}{3} x^{\frac{3}{2}}$	Allow unsimplified coefficient, inc $\frac{4}{1.5}$ or $\frac{2}{3} \times 4$. Allow non exact decimal ie 2.7, 2.67 etc. Allow $+c$.
			M1	Attempt correct use of limits	Must be $\mathrm{F}(9)-\mathrm{F}(1)$ ie subtraction with limits in the correct order. Allow use in any function other than the original, including from differentiation. Allow processing errors eg $\left(\frac{8}{3} \times 9\right)^{1.5}$.
			A1 [4]	Obtain $69^{1 / 3}$, or any exact equiv	Allow improper fraction, or recurring decimal. A0 for 69.333.... A0 for $69^{1 / 3}+c$. Answer only is $0 / 4$.

Question			Answer	Marks	Guidance	
7	(a)	(i)	$\cos \alpha=5 / \sqrt{29}$	M1 A1 [2]	Attempt $\cos \alpha$ $\text { Obtain } 5 / \sqrt{29}$	Could draw triangle and use Pythagoras to find the hypotenuse, or use trig identities. Must get as far as attempting $\cos \alpha$. Must be working in exact values for M1. Must be using correct ratios for $\tan \alpha$ and $\cos \alpha$. Allow any exact equiv, including rationalised surd or $\sqrt{ }\left({ }^{25} / 29\right)$ isw if decimal equiv subsequently given. Answer only gets full credit. SR B1 for exact answer following decimal working.
7	(a)	(ii)	$\cos \beta=-\sqrt{40} / 7$	M1 A1 A1 FT [3]	Attempt $\cos \beta$ Obtain $\sqrt{ } \sqrt{40} / 7$ Obtain ${ }^{-\sqrt{ } 40} / 7$, or -ve of their exact numerical value for $\cos \beta$	Could draw triangle and use Pythagoras to find the adjacent, or use trig identities. Must get as far as attempting $\cos \beta$. Must be working in exact values for M1. Must be using correct ratios for $\sin \alpha$ and $\cos \alpha$. Allow any exact equiv, including $\sqrt{ }\left({ }^{40} / 49\right)$. Allow $\pm{ }^{\sqrt{40}} / 7$ (from using $\cos ^{2} x=1-\sin ^{2} x$). isw if decimal equiv subsequently given. Answer only gets M1A1. A1 FT can only be awarded following M1. isw if decimal equiv subsequently given. Answer only gets full credit. SR B1 for $\sqrt{\sqrt{40} / 7}$, or equiv, following decimal working SR B2 for ${ }^{-\sqrt{40} / 7}$, or equiv, following decimal working SR B1 for decimal answer in range [-0.904, -0.903]

Question		Answer	Marks	Guidance	
8	(i)	$\begin{aligned} & \mathrm{f}(2)=8+2 a-6+2 b=0 \\ & \mathrm{~g}(2)=24+4+10 a+4 b=0 \end{aligned}$	M1	Attempt at least one of $f(2), g(2)$	Allow for substituting $x=2$ into either equation - no need to simplify at this stage. Division - complete attempt to divide by $(x-2)$. Coeff matching - attempt all 3 coeffs of quadratic factor.
			M1	Equate at least one of $f(2)$ and $g(2)$ to 0	Just need to equate their substitution attempt to 0 (but just writing eg $f(2)=0$ is not enough). It could be implied by later working, even after attempt to solve equations. Division - equating their remainder to 0 . Coeff matching - equate constant terms.
		$2 a+2 b=-2,5 a+2 b=-14$	A1	Obtain two correct equations in a and b	Could be unsimplified equations. Could be $8 a+2 b=-26($ from $f(2)=\mathrm{g}(2))$.
		hence $3 a=-12$	M1	Attempt to find a (or b) from two simultaneous eqns	Equations must come from attempts at two of $f(2)=0$, $g(2)=0, f(2)=g(2)$. M1 is awarded for eliminating a or b from 2 sim eqns allow sign slips only. Most will attempt a first, but they can also gain M1 for finding b from their simultaneous equations.
		so $a=-4 \quad$ AG	A1	Obtain $a=-4$, with necessary working shown	If finding b first, then must show at least one line of working to find a (unless earlier shown explicitly $\operatorname{eg} a=-1-b)$.
		$b=3$	A1	Obtain $b=3$	Correct working only
			[6]		SR Assuming $a=-4$ Either use this scheme, or the original, but don't mix elements from both M1 Attempt either $f(2)$ or $g(2)$ M1 Equate $f(2)$ or $g(2)$ to 0 (also allow $f(2)=g(2)$) A1 Obtain $b=3$ A1 Use second equation to confirm $a=-4, b=3$

Question			Answer		Guidance	
9	(a)	(i)	$\begin{aligned} & u_{4}=\log _{2} 27+3 \log _{2} x \\ &=\log _{2} 27+\log _{2} x^{3} \\ & \\ &=\log _{2}\left(27 x^{3}\right) \mathbf{A G}\end{aligned}$	M1	Use $u_{4}=a+3 d$	Allow missing / incorrect / inconsistent log bases. Starting with $\log _{2} 27+\log _{2} x^{3}$ is M0M0. Starting with $\log _{2} 27 \times 3 \log _{2} x$ is M0 (but can get M1 below). Starting with $\log _{2} 27+\log _{2} x+\log _{2} x+\log _{2} x$ can get full credit.
				M1	Use $b \log a=\log a^{b}$ on $3 \log _{2} x$	u_{4} must still be shown as two terms. Could get M1 if using $a+4 d$. Could get M1 for $\log _{2} 27 \times 3 \log _{2} x=\log _{2} 27 \mathrm{x} \log _{2} x^{3}$ or for $\log _{2} 27 \times 3 \log _{2} x=\log _{2} 27+\log _{2} x^{3}$. Allow missing / incorrect / inconsistent log bases.
				A1	Show $\log _{2}\left(27 x^{3}\right)$ convincingly	Can go straight from $\log _{2} 27+\log _{2} x^{3}$ to final answer. CWO, including using base 2 throughout.
						SR - finding consecutive terms (each step must be explicit) B1 for $u_{2}=\log _{2} 27+\log _{2} x=\log _{2} 27 x$ B1 for $u_{3}=\log _{2} 27 x+\log _{2} x=\log _{2} 27 x^{2}$ B1 for $u_{4}=\log _{2} 27 x^{2}+\log _{2} x=\log _{2} 27 x^{3}$
9	(a)	(ii)	$27 x^{3}=2^{6}$	B1*	State correct equation no longer involving $\log _{2} x$	Equation could still involve constant terms such as $\log _{2} 27$ or $\log _{2} 3$. Allow truncated or rounded decimals.
			$x=4 / 3$	B1d*	Obtain ${ }^{4} / 3$	Must be ${ }^{4} / 3,1 \frac{1}{3}$ or an exact recurring decimal only (not 1.333....). A0 if cube root still present. Working must be exact, so sight of decimals in method used is B0, even if final answer is exact. Answer only gets full credit.
				[2]		

Question			Answer	Marks	Guidance	
9	(b)	(i)	$1 / 2<y<2$	M1 A1 [2]	Identify at least one of $1 / 2$ and 2 as endpoints Obtain $1 / 2<y<2$	Only one end-point required. Ignore if additional incorrect end-point also given. Ignore any signs used. Not two separate inequalities, unless linked by 'and'. A0 for $1 / 2 \leq y \leq 2$.
9	(b)	(ii)	$\begin{aligned} & \frac{\log _{2} 27}{1-\log _{2} y}=3 \\ & \log _{2} 27=3-3 \log _{2} y \\ & \log _{2} 27=3-\log _{2} y^{3} \\ & \log _{2}\left(27 y^{3}\right)=3 \end{aligned}$	B1 M1*	State $\frac{\log _{2} 27}{1-\log _{2} y}=3$ Attempt to rearrange equation to $\log _{2} \mathrm{f}(y)=k$	Allow B1 if no base stated, but B0 if incorrect base. Must be equated to 3 for B 1 . Must be using $\frac{\log _{2} 27}{ \pm 1 \pm \log _{2} y}$ (but allow for no bases). Allow at most 2 manipulation errors (eg $+/-$ or x / \div muddles, or slips when expanding brackets) but M0 if other errors (eg incorrect use of logs).
			$27 y^{3}=8$	M1d*	Use $\mathrm{f}(y)=2^{k}$ as inverse of $\log _{2} \mathrm{f}(y)=k$	Must have first been arranged to $\log _{2} \mathrm{f}(y)=k$. No need to go any further than stating their $\mathrm{f}(y)=2^{k}$.
				$\mathrm{A} 1^{*}$	Obtain correct exact equation no longer involving $\log _{2} y$	Equation could still involve constant terms such as $\log _{2} 27$ or $\log _{2} 3$. Sight of decimals used is A0, even if answer is exact.
			$\begin{aligned} & y^{3}=8 / 27 \\ & y=2 / 3 \end{aligned}$	A1d*	Obtain $2 / 3$	Allow equiv recurring decimal, but not $0.666 \ldots$ A0 if still cube root present.
				[5]		SR answer only is B3 Correct $S_{\infty}=3$, then answer with no further working is B3.

Guidance for marking C2

Accuracy

Allow answers to 3 sf or better, unless an integer is specified or clearly required.
Answers to 2 sf are penalised, unless stated otherwise in the mark scheme.
3 sf is sometimes explicitly specified in a question - this is telling candidates that a decimal is required rather than an exact answer eg in logs, and more than 3 sf should not be penalised unless stated in mark scheme.
If more than 3sf is given, allow the marks for an answer that falls within the guidance given in the mark scheme, with no obvious errors.

Extra solutions

Candidates will usually be penalised if an extra, incorrect, solution is given. However, in trigonometry questions only look at solutions in the given range and ignore any others, correct or incorrect.

Solving equations

With simultaneous equations, the method mark is given for eliminating one variable. Any valid method is allowed ie balancing or substitution for two linear equations, substitution only if at least one is non-linear.

Solving quadratic equations

Factorising - candidates must get as far as factorising into two brackets which, on expansion, would give the correct coefficient of x^{2} and at least one of the other two coefficients. This method is only credited if it is possible to factorise the quadratic - if the roots are surds then candidates are expected to use either the quadratic formula or complete the square.
Completing the square - candidates must get as far as $(x+p)= \pm \sqrt{ }$, with reasonable attempts at p and q.
Using the formula - candidates need to substitute values into the formula, with some attempt at evaluation (eg calculating 4ac). Sign slips are allowed on b and $4 a c$, but all other aspects of the formula must be seen correct, either algebraic or numerical. The division line must extend under the entire numerator (seen or implied by later working). If the algebraic formula is quoted then candidates are allowed to make one slip when substituting their values. Condone not dividing by $2 a$ as long as it has been seen earlier.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

