PMT

Question Number	Scheme	Marks	
1. (<i>a</i>)	$b = 2.75, a = \frac{1}{2.91} = 0.344$ 2.75, reciprocal, 0.344	B1, M1, A1	
		(3 marks)	
2.	<i>d</i> : 5, 13, -8, 2, -3, 4, 11, -1 at least 2 correct	M1	
	$(\Sigma d = 23, \Sigma d^2 = 409)$ $\overline{d} = 2.875, sd = 6.9987 (\approx 7.00)$	A1, A1	
	$H_0: \mu_d = 0, H_1: \mu_d > 0$	B1	
	both		
	$t = \frac{2.875\sqrt{8}}{6.9987} = 1.1618 (\approx 1.16)$ formula and substitution, 1.16	M1, A1	
	Critical value $t_7(10\%) = 1.415$ (1 tail)	B1	
	Not significant. Insufficient evidence to support the chemist's claim.	A1 ft	
		(8 marks)	
3. (<i>a</i>)	$E(A_1) = E(X_1) E(X_2) = \mu^2$	B1	
	$A_2 = \overline{X}^2, \ \overline{X} \sim N\left(\mu, \frac{\sigma^2}{2}\right) \therefore E(\overline{X}^2) = E(A_2) = , \ \mu^2 + \frac{\sigma^2}{2}$	M1, M1, A1 (4)	
(b)	A_1 is unbiased, bias for A_2 is $\frac{\sigma^2}{2}$	B1, B1 (2)	
(c)	Used A_1 since it is unbiased	B1 (1)	
(<i>d</i>	$E(\overline{X}^2) = \mu^2 + \frac{\sigma^2}{2}; \text{ as } n \to \infty, E(\overline{X}^2) \to \mu^2$	M1	
	$\operatorname{Var}(\overline{X}^2) = \frac{2\sigma^4}{n^2} + \frac{4\sigma^2\mu^2}{n}; \text{ as } n \to \infty, \operatorname{Var}(\overline{X}^2) \to 0$	M1	
	\overline{X}^2 is a consistent estimator of μ^2	A1 (3)	
		(10 marks)	

EDEXCEL STATISTICS S4 (6686) - JUNE 2002

PROVISIONAL MARK SCHEME

Question Number		Scheme	Marks	
4.	(<i>a</i>)	H ₀ : $\mu = 150.9$ [accept ≥ 150.9], H ₁ : $\mu < 150.9$ both	B1	
		$s^{2} = \frac{1}{29} \left(646904.1 - \frac{(4400.7)^{2}}{30} \right) = \frac{1365.727}{29} = 47.1$	M1	
		test statistic $t = \frac{30}{s / \sqrt{30}} = -3.36$	M1 A1	
		critical value $t_{29}(5\%) = (-)1.669$	B1	
	(b)	significant, evidence to confirm doctor's statement	A1 ft	(6)
		H ₀ : $\sigma^2 = 36$, H ₁ : $\sigma^2 \neq 36$ both	B1	
		test statistic $\frac{(n-1)s^2}{\sigma^2}$ =, $\frac{1365.727}{36}$ = 37.9	M1, A1	
		critical values χ^2_{29} (5%) upper tail=45.722 χ^2_{29} (5%) lower tail=16.047 not significant	B1, B1	
		Insufficient evidence that variance of the heights of female Indians is	A1 ft	(6)
		different from that of females in the UK	(12 ma	arks)
5.	(a)	H ₀ : $\sigma_c^2 = \sigma_n^2$, H ₁ : $\sigma_c^2 \neq \sigma_n^2$,	B1	
		$s_B^2 = \frac{1}{6}(56130 - 7 \times 88.9^2) = \frac{807.53}{6} = 134.6$	M1 A1	
		$s_G^2 = \frac{1}{7} (55746 - 8 \times 83.1^2) = \frac{501.12}{7} = 71.58$	A1	
		$\frac{s_B^2}{s_G^2} = 1.880$	M1	
		critical value $F_{6,7} = 3.87$	B1	
		not significant, variances are the same	A1 ft	(7)
	<i>(b)</i>	$H_0: \mu_B = \mu_G , H_1: \mu_B > \mu_G$	B1	
		pooled estimate of variance $s^2 = \frac{6 \times 134.6 + 7 \times 71.58}{13} = 100.6653$	M1	
		test statistic $t = \frac{88.9 - 83.1}{s\sqrt{\frac{1}{7} + \frac{1}{8}}}$	M1 A1	
		critical value $t_{13}(5\%) = 1.771$	B1	
		Insufficient evidence to support parent's claim	A1 ft	(6)
			(13 ma	arks)

ft = follow through mark

Question Number		Scheme	Mark	s
6.	(<i>a</i>)	95% confidence interval for μ is 2.064	B1	
		$1.68 \pm t_{24}(2.5\%)\sqrt{\frac{1.79}{25}} = 1.68 \pm 2.064\sqrt{\frac{1.79}{25}} = (1.13, 2.23)$	M1 A1 A	1 (4)
	(<i>b</i>)	95% confidence interval for σ^2 is		
		$12.401, < \frac{24 \times 1.79}{\sigma^2} <, 39.364$	B1, M1, B1	
		$\sigma^2 > 1.09, \ \sigma^2 > 3.46$	A1, A1	(5)
	(<i>c</i>)	Require P(X > 2.5) = P $\left(Z > \frac{2.5 - \mu}{\sigma}\right)$ to be as small as possible OR		
		$\frac{25-\mu}{\sigma}$ to be as large as possible; both imply lowest σ and μ .	M1 M1	
		$\frac{25 - 1.13}{\sqrt{1.09}} = 1.31$	M1	
		P(Z > 1.31) = 1 - 0.9049 = 0.0951	A1	(4)
			(13 m	arks)
7.	(<i>a</i>)	X is the number of defectives, $X \sim B(5, p)$		
		size = P(reject H ₀ $p = 0.1$) = P($X > 2$ $p = 0.1$)	M1	
		= 1 - 0.9914 = 0.0086	A1	(2)
	(h)	r = P(X > 2 n = 0.2) 1 - 0.9421 = 0.0579	M1, M1, A1	
	(0)	r = 1 (n > 2 + p = 0.2), 1 = 0.00721, = 0.00775		(3)
	(<i>c</i>)	<i>Y</i> is the number of defectives, $Y \sim B(10, p)$		
		P(Type I error) = P(Y > 4 $p = 0.1$) = 1 - 0.9984 = 0.0016	M1 A1	(2)
	(<i>d</i>)	s = P(Y > 4 p = 0.4) = 1 - 0.6331 = 0.3669	B1	(1)
	(<i>e</i>)	Graph	G4	(4)
	(f)	(i) Intersection $0.32 - 0.33$	B1	
		(ii) $p > 0.32$; Assistant's test is more powerful (sensible comment)	B1	(2)
	(<i>g</i>)	Consider costs – smaller sample so test is cheaper	B1	
		More powerful for $p < 0.32$ and $p > 0.32$ is unlikely	B1	(2)
			(16 m	arks)