Question Number	Scheme	Marks
1. (a)	$b=2.75, a=\frac{1}{2.91}=0.344$	B1, M1, A1 (3 marks)
2.	$d: 5,13,-8,2,-3,4,11,-1$ at least 2 correct $\begin{aligned} & \left(\Sigma d=23, \Sigma d^{2}=409\right) \quad \bar{d}=2.875, s d=6.9987(\approx 7.00) \\ & \mathrm{H}_{0}: \mu_{d}=0, \mathrm{H}_{1}: \mu_{d}>0 \end{aligned}$ both $t=\frac{2.875 \sqrt{8}}{6.9987}=1.1618 \ldots(\approx$ formula and substitution, 1.16 Critical value $t_{7}(10 \%)=1.415$ (1 tail) Not significant. Insufficient evidence to support the chemist's claim.	M1 A1, A1 B1 M1, A1 B1 A1 ft (8 marks)
3. (a) (b) (c) (d)	$\begin{aligned} & \mathrm{E}\left(A_{1}\right)=\mathrm{E}\left(X_{1}\right) \mathrm{E}\left(X_{2}\right)=\mu^{2} \\ & A_{2}=\bar{X}^{2}, \bar{X} \sim \mathrm{~N}\left(\mu, \frac{\sigma^{2}}{2}\right) \therefore \mathrm{E}\left(\bar{X}^{2}\right)=\mathrm{E}\left(A_{2}\right)=, \mu^{2}+\frac{\sigma^{2}}{2} \end{aligned}$ A_{1} is unbiased, bias for A_{2} is $\frac{\sigma^{2}}{2}$ Used A_{1} since it is unbiased $\mathrm{E}\left(\bar{X}^{2}\right)=\mu^{2}+\frac{\sigma^{2}}{2} ;$ as $n \rightarrow \infty, \mathrm{E}\left(\bar{X}^{2}\right) \rightarrow \mu^{2}$ $\operatorname{Var}\left(\bar{X}^{2}\right)=\frac{2 \sigma^{4}}{n^{2}}+\frac{4 \sigma^{2} \mu^{2}}{n} ;$ as $n \rightarrow \infty, \operatorname{Var}\left(\bar{X}^{2}\right) \rightarrow 0$ \bar{X}^{2} is a consistent estimator of μ^{2}	

Question Number	Scheme	Marks
4. (a)	$\mathrm{H}_{0}: \mu=150.9$ [accept ≥ 150.9], $\mathrm{H}_{1}: \mu<150.9$ both $s^{2}=\frac{1}{29}\left(646904.1-\frac{(4400.7)^{2}}{30}\right)=\frac{1365.727}{29}=47.1$ test statistic $t=\frac{30}{s / \sqrt{30}}=-3.36$ critical value $t_{29}(5 \%)=(-) 1.669$ significant, evidence to confirm doctor's statement $\mathrm{H}_{0}: \sigma^{2}=36, \quad \mathrm{H}_{1}: \sigma^{2} \neq 36$ both test statistic $\frac{(n-1) s^{2}}{\sigma^{2}}=, \frac{1365.727}{36}=37.9$ $\begin{array}{ll}\text { critical values } & \chi_{29}^{2}(5 \%) \text { upper tail }=45.722 \\ & \chi_{29}^{2}(5 \%) \text { lower tail }=16.047\end{array}$ not significant Insufficient evidence that variance of the heights of female Indians is different from that of females in the UK	B1 M1 M1 A1 B1 A1 ft (6) B1 M1, A1 B1, B1 A1 ft (6) (12 marks)
5. (a)	$\mathrm{H}_{0}: \sigma_{G}^{2}=\sigma_{B}^{2}, \mathrm{H}_{1}: \sigma_{G}^{2} \neq \sigma_{B}^{2}$, $\begin{aligned} & s_{B}^{2}=\frac{1}{6}\left(56130-7 \times 88.9^{2}\right)=\frac{807.53}{6}=134.6 \\ & s_{G}^{2}=\frac{1}{7}\left(55746-8 \times 83.1^{2}\right)=\frac{501.12}{7}=71.58 \end{aligned}$ $\frac{s_{B}^{2}}{s_{G}^{2}}=1.880 \ldots$ critical value $F_{6,7}=3.87$ not significant, variances are the same $\mathrm{H}_{0}: \mu_{B}=\mu_{G}, \mathrm{H}_{1}: \mu_{B}>\mu_{G}$ pooled estimate of variance $s^{2}=\frac{6 \times 134.6+7 \times 71.58}{13}=100.6653 \ldots$ test statistic $t=\frac{88.9-83.1}{s \sqrt{\frac{1}{7}+\frac{1}{8}}}$ critical value $t_{13}(5 \%)=1.771$ Insufficient evidence to support parent's claim	B1 M1 A1 A1 M1 B1 A1 ft B1 M1 M1 A1 B1 A1 ft (6) (13 marks)

$\mathrm{ft}=$ follow through mark

Question Number	Scheme	Marks
6. $\begin{array}{rr}\text { (a) } \\ & (b) \\ & \\ & \\ \text { (c) }\end{array}$	95% confidence interval for μ is $1.68 \pm t_{24}(2.5 \%) \sqrt{\frac{1.79}{25}}=1.68 \pm 2.064 \sqrt{\frac{1.79}{25}}=(1.13,2.23)$ 95% confidence interval for σ^{2} is $\begin{aligned} & 12.401,<\frac{24 \times 1.79}{\sigma^{2}}<, 39.364 \\ & \sigma^{2}>1.09, \sigma^{2}>3.46 \end{aligned}$ Require $\mathrm{P}(X>2.5)=\mathrm{P}\left(Z>\frac{2.5-\mu}{\sigma}\right)$ to be as small as possible OR $\frac{25-\mu}{\sigma}$ to be as large as possible; both imply lowest σ and μ. $\begin{aligned} & \frac{25-1.13}{\sqrt{1.09}}=1.31 \\ & \mathrm{P}(Z>1.31)=1-0.9049=0.0951 \end{aligned}$	B1 M1 A1 A1 (4) B1, M1, B1 A1, A1 (5) M1 M1 M1 A1 (4) (13 marks)
7. $\begin{array}{rc}(a) \\ & \\ & (b) \\ & (c) \\ & \\ & (d) \\ & (e) \\ (f) \\ & \\ & (g)\end{array}$	X is the number of defectives, $X \sim \mathrm{~B}(5, p)$ $\text { size } \begin{aligned} \mathrm{P}\left(\text { reject } \mathrm{H}_{0} \mid p=0.1\right) & =\mathrm{P}(X>2 \mid p=0.1) \\ & =1-0.9914=0.0086 \end{aligned}$ $r=\mathrm{P}(X>2 \mid p=0.2), 1-0.9421,=0.0579$ Y is the number of defectives, $Y \sim \mathrm{~B}(10, p)$ $\begin{aligned} & \mathrm{P}(\text { Type I error })=\mathrm{P}(Y>4 \mid p=0.1)=1-0.9984=0.0016 \\ & s=\mathrm{P}(Y>4 \mid p=0.4)=1-0.6331=0.3669 \end{aligned}$ Graph (i) Intersection $0.32-0.33$ (ii) $p>0.32$; Assistant's test is more powerful (sensible comment) Consider costs - smaller sample so test is cheaper More powerful for $p<0.32$ and $p>0.32$ is unlikely	M1 A1 (2) M1, M1, A1 M1 A1 (3) B1 (1) G4 (4) B1 B1 (2) B1 B1 (2) (16 marks)

