PROVISIONAL MARK SCHEME

Question number	Scheme		Marks
1. (a)	$\mathbf{H}_0: \sigma_A^2 = \sigma_B^2, \ \mathbf{H}_1: \sigma_A^2 \neq \sigma_B^2$	both	B1
	critical values $F_{24,25} = 1.96$ and $\frac{1}{F_{24,25}} = 0.510$	both	B1
	$\frac{s_B^2}{s_A^2} = 2.10$ or $\frac{s_A^2}{s_B^2} = 0.476$	both	M1A1
	Since 2.10 or 0.476 are in the critical region we reject H_0 and		
	conclude there is evidence that the two variances are different.		A1∫
(b)	The populations of pebble lengths are normal.		$ \begin{array}{c} (5)\\ B1\\ (1) \end{array} $
			6
2.			
	$H_0: \mu = 5.1, H_1: \mu < 5.1$	both	B1
	$\nu = 9$	9	B1
	Critical Region $t < -2.262$ $\overline{x} = 4.91$	4 91	B1 B1
	$s^{2} = \frac{241.89 - 10 \times (4.91)^{2}}{9} = 0.0899$		M1
	s = 0.300	0.0899 or 0.300	A1
	$t = \frac{4.91 - 5.1}{0.3} = -2.00$		M1A1
	$\overline{\sqrt{10}}$		
	There is no evidence to suggest that the mean height		.10
	is less than those grown previously	context	A1J (9)
			9

PROVISIONAL MARK SCHEME

Question number	Scheme		Marks	
3 (a)	1-0.8891=0.1109		B1	(1)
(b)	$1-(P(0)+P(1)+P(2)) = 1-((1-n)^{12}+12n(1-n)^{11}+66n^2(1-n)^{10})$		M1 M1A1	(1)
	$= 1 - ((1 - p)^{10} + 12p(1 - p)^{10} + 66p^{2})$ $= 1 - (1 - p)^{10} ((1 - p)^{2} + 12p(1 - p) + 66p^{2})$			
(c) (i)	$=1-(1-p)^{10}(1+10p+55p^2)**given**$	CSO	A1	(4)
(ii)	1-0.00281=0.997		MIAI A1	(3)
(11)	The test is more discriminating for the larger value of p		B1	(1)
4 (a)	$s^{2} = \frac{2962 - 15 \times \left(\frac{208}{15}\right)^{2}}{14} = 5.55 \text{ or } (n-1)s^{2} = 2962 - \frac{208^{2}}{15} = 77.3$ $\frac{14 \times 5.55}{23.685} < \sigma^{2} < \frac{14 \times 5.55}{6.571}$	either 23.685,6.571	M1A1 M1B1,B1	
	$3.28 < \sigma^2 < 11.83$ Since 9 lies in the interval, yes		A1A1 B1,B1(dej	(7) p)
(D)			9	

_

PROVISIONAL MARK SCHEME

Question number	Scheme	Marks	
5 (a)(i)	Type I - H_0 rejected when it is true	B1	
(11)	Type II - H_0 is accepted when it is false	B1	
(b)			(2)
	$\mathbf{H}_0: \lambda = 5, \ \mathbf{H}_1: \lambda > 5 $ both	B1	
	$P(X \ge 7 \lambda = 5) = 1 - 0.7622 = 0.2378 > 0.05$	M1A1	
	$($ OR $P(X \ge 9) = 0.0681, P(X \ge 10) = 0.0318, CV=10, 7 not in CR. probabs, 10$	M1A1)	
	No evidence of an increase in the number of chicks reared per year. context A1		(4)
(c)	$P(X \ge c \mid \lambda = 5) < 0.05$	M1	(4)
	$P(X \ge 9) = 0.0681, P(X \ge 10) = 0.0318, c=10$ may be seen in (b)	M1	
	P(Type I Error)=0.0318	A1	
(d)	$\lambda - 8$		(3)
	$P(X \le 9 \lambda = 8) = 0.7166$	M1A1	
	(OR if $c=9$ in (d), $P(X \le 8 \lambda = 8) = 0.5925$	M1A1)	
			(2)
6 (9)	$(2 \ 1 \ 5 \) \ 2 \ 1 \ 5$		
0 (a)	$E\left(\frac{1}{3}X_{1} - \frac{1}{2}X_{2} + \frac{1}{6}X_{3}\right) = \frac{1}{3}\mu - \frac{1}{2}\mu + \frac{1}{6}\mu = \mu$	M1A1	
	$E(Y) = \mu \implies unbiased$	B1	
			(3)
(b)	$E(aX_1 + bX_2) = a\mu + b\mu = \mu$	M1	
	$a+b=1$ $Vor(a\mathbf{Y} + b\mathbf{Y}) = a^2 - b^2 - b^2$	Al M1A1	
	$\sqrt{ar}(aX_1 + bX_2) = a \delta + b \delta$ $a^2 - a^2 + (1 - a)^2 - a^2$	MIAI M1	
	$= a \delta^{2} + (1-a) \delta^{2}$		
	=(2a - 2a + 1)o	AI	(6)
(c)	Min value when $(4a-2)\sigma^2 = 0$ $\frac{d}{d}(Var) = 0$ all correct M1A1		(0)
	with value when $(4a - 2)b^2 = 0$ $\frac{1}{da}(val) = 0$, an conject with $value = 0$		
	$\Rightarrow 4a - 2 = 0$	A1	
	$a = \frac{1}{2}, b = \frac{1}{2}.$	A1A1∫	
		14	(5)

PROVISIONAL MARK SCHEME

Question number	Scheme	Ma	rks	
7				
(a)	$s_p^2 = \frac{7 \times 7.84 + 7 \times 4}{7 + 7} = 5.92$		M1	
	$s_p = 2.433105$	awrt 2.43	A1	
	$\mathbf{H}_{0}:\boldsymbol{\mu}_{\mathrm{A}}=\boldsymbol{\mu}_{\mathrm{B}},\ \mathbf{H}_{1}:\boldsymbol{\mu}_{\mathrm{A}}\neq\boldsymbol{\mu}_{\mathrm{B}}$	both	B1	
	$t = \frac{26.125 - 25}{2.43\sqrt{\frac{1}{1} + \frac{1}{1}}} = 0.92474$ av	wrt 0.925	M1A1	
	$t_{14}(2.5\%) = 2.145$	2.145	B1	
	Insufficient evidence to reject H_0 that there is no difference in the means.		A1∫	
(b)	d=M1-M2		M1	(7)
	$\overline{d} = \frac{9}{-1.125} = 1.125$	1.125	B1	
	$s_d^2 = \frac{69 - 8 \times 1.125^2}{7} = 8.410714$	awrt 8.41	M1A1	
	$H_0: \delta = 0, H_1: \delta \neq 0$	both	B1	
	$t = \frac{1.125}{\sqrt{8.41}} = 1.0972$	awrt 1.10	M1A1	
	$\sqrt{8}$			
	$t_7(2.5\%) = 2.365$	2.365	B1	
	There is no significant evidence of a difference between method A and method B.		A1∫	(9)
(c)	Paired sample as they are two measurements on the same orange		B1	(1)
				-
				7