Question number	Scheme	Marks
1.	$\begin{aligned} & \mathrm{P}(X>2.85)=0.05 \\ & \mathrm{P}\left(X<\frac{1}{5.67}\right)=0.01 \\ & \therefore \mathrm{P}\left(\frac{1}{5.67}<X<2.85\right)=1-0.05-0.01 \\ & \quad=0.94 \end{aligned}$	B1 B1 M1 A1 (4 marks)
2.	$\begin{aligned} & \mathrm{H}_{0}: \sigma^{2}=4 ; \mathrm{H}_{1}: \sigma^{2}>4 \\ & v=19, X_{19}^{2}(0.05)=30.144 \\ & \frac{(n-1) S^{2}}{\sigma^{2}}=\frac{19 \times 6.25}{4}=29.6875 \end{aligned}$ both use of $\frac{(n-1) S^{2}}{\sigma^{2}}$ AWRT 29.7 Since $29.6875<30.144$ there is insufficient evidence to reject H_{0}. There is insufficient evidence to suggest that the standard deviation is greater than 2.	B1 B1 M1 A1 A1 ft B1 ft (6 marks)
3. (a) (b) (i) (ii)	$\begin{aligned} & \mathrm{P}\left(X \leq c_{1}\right) \leq 0.05 ; \mathrm{P}(X \leq 3 \mid \lambda=8)=0.0424 \Rightarrow X \leq 3 \\ & \mathrm{P}\left(X \geq c_{2}\right) \leq 0.05 ; \mathrm{P}(X \geq 4 \mid \lambda=8)=0.0342 \Rightarrow X \geq 13 \\ & \mathrm{P}(X \geq 13 \mid \lambda=8)=0.0638 \\ & \therefore \text { critical region is }\{X \leq 3 \cup X \geq 13\} \\ & \mathrm{P}(4 \leq X \leq 12 \mid \lambda=10) \end{aligned}$ Power $=1-0.7813=0.2187$	

Question number	Scheme	Marks
4.	$\begin{align*} & \begin{array}{l} d: \\ \Sigma d=19 ; \Sigma d^{2}=193 \end{array} \quad-3 \\ & \hline \end{align*}$ Since $1.4915 \ldots$ is not in the critical region there is insufficient evidence to reject H_{0} and we conclude that there is in sufficient evidence to support the doctors' belief.	M1 B1; M1 A1 B1 M1 A1 B1 A1 ft (9 marks)
	Alternative: Use of 2 sample t-test \Rightarrow B0 B0 B0 M1 A1 M1 A1 B1 A1 i.e : 6/9 max $\begin{aligned} & S_{p}^{2}=\frac{7 \times 440.125+7 \times 501.357}{8+8-2}=470.74 \\ & t=\frac{216.125-213.75}{\sqrt{470.74\left(\frac{1}{8}+\frac{1}{8}\right)}}=0.0547 \end{aligned}$ critical region: $t>1.761$ Conclusion as above	M1 A1 M1 A1 B1 A1 ft

Question number	Scheme	Marks
6. \quad (a)	$\bar{x}=123.1$	B1
	$s=5.87745 \ldots$	B1
	(NB: $\Sigma x=1231 ; \Sigma x^{2}=151847$)	
	95\% confidence interval is given by	
	$123.1 \pm 2.262 \times \frac{5.87745 \ldots}{\sqrt{10}}$	M1
	2.262	B1
	i.e: (118.8958..., 127.30418...)	A1 ft
	AWRT (119,127$)$	A1 A1
	95% confidence interval is given by	
	$\frac{9 \times 5.87745 . .{ }^{2}}{19.023}<\sigma^{2}<\frac{9 \times 5.87745 \ldots{ }^{2}}{2.700} \quad \text { use of } \frac{(n-1) s^{2}}{\sigma^{2}}$	M1
	19.023	B1
	2.700	B1
	i.e; (16.34336..., 115.14806....)	A1ft
	AWRT (16.3, 115)	A1 A1 (13)
	130 is just outside confidence interval	B1
	16 is just outside confidence interval	B1
	Thus supervisor should be concerned about the speed of the new typist	B1
		(16 marks)

