GCE

Edexcel GCE
Mathematics
Statistics 4 (6686)

J une 2008
advancing learning, changing lives
Mark Scheme (Final)

J une 2008
6686 Statistics S4

Mark Scheme

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline \multirow[t]{3}{*}{1 a} \& \begin{tabular}{l}
\[
\begin{array}{rlr}
\mathrm{E}\left(\theta_{1}\right) \& =\frac{\mathrm{E}\left(X_{3}\right)+\mathrm{E}\left(X_{4}\right)+\mathrm{E}\left(X_{5}\right)}{3} \\
\& =\frac{3 \mu}{3} \\
\& =\mu \quad \text { Bias }=0
\end{array}
\] \\
allow unbiased
\end{tabular} \& B1 \\
\hline \& \[
\begin{array}{rlr}
E\left(\theta_{2}\right) \& =\frac{E\left(X_{10}\right)-E\left(X_{1}\right)}{3} \\
\& =1 / 3(\mu-\mu) \quad \text { Bias }=-\mu \quad \text { allow } \pm \mu \\
\& =0 \quad
\end{array}
\] \& B1,B1 \\
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\mathrm{E}\left(\theta_{3}\right) \& =\frac{3 \mathrm{E}\left(X_{1}\right)+2 \mathrm{E}\left(X_{2}\right)+\mathrm{E}\left(X_{10}\right)}{6} \\
\& =\frac{3 \mu+2 \mu+\mu}{6} \\
\& =\mu \quad \text { Bias }=0
\end{aligned}
\] \\
allow unbiased
\end{tabular} \& \begin{tabular}{l}
B1 \\
(4)
\end{tabular} \\
\hline \multirow[t]{3}{*}{b} \& \[
\begin{aligned}
\operatorname{Var}\left(\theta_{1}\right) \& =\frac{1}{9}\left\{\left(\operatorname{Var} X_{2}\right)+\operatorname{Var}\left(X_{3}\right)+\operatorname{Var}\left(X_{4}\right)\right\} \\
\& =\frac{1}{9}\left\{\sigma^{2}+\sigma^{2}+\sigma^{2}\right\} \\
\& =\frac{1}{3} \sigma^{2}
\end{aligned}
\] \& M1

A1

\hline \& $$
\operatorname{Var}\left(\theta_{2}\right)=\frac{2}{9} \sigma^{2}
$$ \& B1

\hline \& \[
$$
\begin{aligned}
\operatorname{Var}\left(\theta_{3}\right) & =\frac{1}{36}\left\{9 \sigma^{2}+4 \sigma^{2}+\sigma^{2}\right\} \\
& =\frac{7}{18} \sigma^{2}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |

\hline ci) \& θ_{1} is the better estimator. It has a lower var. and no bias \& B1 depB1

\hline ii) \& θ_{2} is the worst estimator. It is biased \& $$
\begin{gathered}
\mathrm{B} 1 \\
\operatorname{dep} B 1 \\
(4)
\end{gathered}
$$

\hline
\end{tabular}

Question Number	Scheme	Marks
2 a	$\mathrm{H}_{1}: \sigma_{\mathrm{A}}^{2}=\sigma_{\mathrm{B}}{ }^{2} \quad \mathrm{H}_{0}: \sigma_{\mathrm{A}}{ }^{2} \neq \sigma_{\mathrm{B}}{ }^{2}$	B1
	$\mathrm{SA}^{2}=22.5 \quad \mathrm{SB}^{2}=21.6 \quad$ awrt	M1 A1A1
	$\frac{s_{1}^{2}}{s_{2}^{2}}=1.04$	M1 A1
	$\mathrm{F}_{(8,6)}=4.15$	B1
	$1.04<4.15$ do not reject H_{0}. The variances are the same.	B1
		(8)
b	Assume the samples are selected at random, (independent)	B1 (1)
c	$s^{2} p=\frac{8(22.5)+6(21.62)}{14}=22.12 \quad \text { awrt } 22.1$	M1 A1
	$\mathrm{H}_{0}: \mu_{\mathrm{A}}=\mu_{\mathrm{B}} \quad \mathrm{H}_{1}: \mu_{\mathrm{A}} \neq \mu_{\mathrm{B}}$	B1
	$t=\frac{40.667-39.57}{\sqrt{22.12} \sqrt{\frac{1}{9}+\frac{1}{7}}}$	M1
	$=0.462 \quad 0.42-0.47$	A1
	Critical value $=t_{14}(2.5 \%)=2.145$	B1
	$0.462<2.145$ No evidence to reject H_{0}. The means are the same	B1 (7)
d	Music has no effect on performance	B1

2 sample test can score
MO MO
B 1 for $\mathrm{H}_{0}: \mu_{\mathrm{A}}=\mu_{\mathrm{B}} \quad \mathrm{H}_{1}: \mu_{\mathrm{A}}<\mu_{\mathrm{B}}$
M1 $\frac{9 \times 24.5+9 \times 17.16}{18}$
MO AO
B1 2.552
B1 ft
ie $4 / 8$

Question Number	Scheme	Marks
4a	$\bar{x}=668.125 \mathrm{~s}=84.428$	M1 M1
	$T_{7}(5 \%)=1.895$	B1
	Confidence limits $=668.125 \pm \frac{1.895 \times 84.428}{\sqrt{8}}$	M1
	$\begin{aligned} & =611.6 \text { and } 724.7 \\ \text { Confidence interval } & =(612,725) \end{aligned}$	A1A1
b	Normal distribution	B1
C	$£ 650$ is within the confidence interval. No need to worry.	B1 $\sqrt{\text { B1 }} \stackrel{(1)}{ }$

Question Number	Scheme	Marks
5 a		
b	$\begin{aligned} \text { Confidence interval } & =\left(\frac{15 \times 0.003}{27.488}, \frac{15 \times 0.003}{6.262}\right) \\ & =(0.00164,0.00719) \end{aligned}$	$\begin{gathered} \mathrm{M} 1 \\ \mathrm{~B} 1 \mathrm{~B} 1 \\ \mathrm{~A} 1 \mathrm{~A} 1 \end{gathered}$ (5)
	$0.07^{2}=0.0049$	M1
	0.0049 is within the 95\% confidence interval.	A1
	There is no evidence to reject the idea that the standard deviation of the volumes is not 0.07 or The machine is working well.	A1
		(3)

