advancing learning, changing lives

Mark Scheme (Results) Summer 2010

GCE

GCE Statistics S4 (6686/ 01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners. For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

Summer 2010
Publications Code UA024771
All the material in this publication is copyright
© Edexcel Ltd 2010

J une 2010
 Statistics S4 6686
 Mark Scheme

Question Number	Scheme	Marks
Q2 (a)	The differences in the mean heart rates are normally distributed. $\mathrm{D}=$ standing up - lying down $\begin{align*} & \mathrm{H}_{0}: \mu_{\mathrm{D}}=5 \quad \mathrm{H}_{1}: \mu_{\mathrm{D}}>5 \tag{b}\\ & d: 9,6,4,2,8,9,3,5,7,7 \\ & \bar{d}=6 ; \quad s_{d}=\sqrt{\frac{414-10 \times 36}{9}}=2.45 \\ & t_{9}=\frac{6-5}{2.45 / \sqrt{10}}=1.29 \\ & t_{9}(5 \%)=1.833 \end{align*}$ insignificant. There is no evidence to suggest that heart rate rises by more than 5 beats when standing up. Notes must have "The differences in (mean heart rate) are normally distributed) B1 both correct allow $\mu_{\mathrm{D}-5}>0\left(\mu_{\mathrm{D}}=-5 \quad \mathrm{H}_{1}: \mu_{\mathrm{D}}<-5\right)$ M1 finding differences M1 finding \bar{d} M1 $\sqrt{\frac{\sum d^{2}-10 \times(\bar{d})^{2}}{9}}$ o.e $\pm\left(\frac{6-5}{s_{d} / \sqrt{10}}\right)_{\text {need to see } f l}$ A1 awrt ± 1.29. B1 ± 1.833 only A1 ft their CV and t . Need context. Heart rate and 5 beats	B1 M1 M1; M1 M1A1 B1 A1 ft (8) [9]

Question Number	Scheme	Marks
(f) (g)	i intersection $0.12-0.13$ "their graphs intersection" ii if $p>0.12$ the deputy's test is more powerful. More powerful for $p<0.12$ and p unlikely to be above 0.12 Allow it would cost more/take longer/more to sample Notes (a) M1 for finding $\mathrm{P}(\mathrm{X}>1)$ A1 awrt 0.0226 (b) M1 for 1-P(0) - P(1) M1 for $1-(1-\mathrm{p})^{5}-5(1-\mathrm{p})^{4} \mathrm{p}$ A1 cso (a) M 1 for finding $\mathrm{P}(\mathrm{Y}>2)$ A1 awrt0.0115 (b) B 10.18 cao (c) B1 graph. ft their value of s (d) B1 ft their intersection. B1 deputy test more powerful o.e. (e) If give first statement they must suggest p unlikely to be above 0.12	B1ft B1 (2) B1 (1) [12]

Question Number	Scheme	Marks
Q4 (a)	$\begin{aligned} & \bar{x}=\frac{291}{15}=19.4 \quad s=\sqrt{\frac{5968-15 \bar{x}^{2}}{14}}=4.800 \\ & \mathbf{i ~ t}_{14}=2.145 \\ & 95 \% \mathrm{CI}=19.4 \pm 2.145 \times \frac{4.800}{\sqrt{15}} \\ & \quad=(16.7,22.1) \end{aligned}$ ii 95% CI is given by $\frac{14 \times 4.800^{2}}{26.119}<\sigma^{2}<\frac{14 \times 4.800^{2}}{5.629}$ (12.4, 57.3) accept 12.3 Require $\mathrm{P}(X>23)=\mathrm{P}\left(Z>\frac{23-\mu}{\sigma}\right)$ to be as large as possible $\mathrm{OR} \frac{23-\mu}{\sigma}$ to be as small as possible; both imply highest σ and $\mu \cdot \frac{23-22.1}{\sqrt{57.3 . .}}=0.124$ $\begin{aligned} \mathrm{P}(\mathrm{Z}>0.124) & =1-0.5478 \\ & =0.4522 \end{aligned}$ Notes (a)(i) M1 $\frac{291}{15}$ $\text { M1 } \sqrt{\frac{5968-15 \bar{x}^{2}}{14}}$ B1 2.145 $\text { M1 }(19.4) \pm \mathrm{t} \times \frac{\text { "their s" }}{\sqrt{15}}$ A1ft $19.4 \pm 2.145 \times \frac{\text { "their s" }}{\sqrt{15}}$ A1 awrt 16.7 A1 awrt 22.1 (ii) M1 $\frac{14 \times s^{2}}{\chi^{2}}$ B1 26.119 B1 5.629 A1 awrt12.4/12.3 A1 awrt 57.3 (b) M1 use of highest mean and sigma M1 standardising using values of mean and sigma from intervals M1 finding $1-\mathrm{P}(\mathrm{z}>$ their value $)$ A1 awrt 0.45	M1M1 B1 M1 Alft A1A1 M1 B1B1 A1A1 (12) M1M1 M1 A1 (4) [16]

Question Number	Scheme	Marks
Q5 (a) (b)	$\mathrm{H}_{0}: \mu=70$ [accept $\left.\leq 70\right], \mathrm{H}_{1}: \mu>70$ $t=\frac{71.2-70}{3.4 / \sqrt{20}}=1.58$ critical value $t_{19}(5 \%)=1.729$ not significant, insufficient evidence to confirm manufacturer's claim $\mathrm{H}_{0}: \sigma^{2}=16, \quad \mathrm{H}_{1}: \sigma^{2} \neq 16$ test statistic $\frac{(n-1) s^{2}}{\sigma^{2}}=, \frac{219.64}{16}=13.7$.. critical values $\begin{gathered}\chi_{19}^{2}(5 \%) \text { upper tail }=32.852 \\ \chi_{19}^{2}(5 \%) \text { lower tail }=8.907\end{gathered}$ not significant Insufficient evidence to suggest that the variance of the miles per gallon of the panther is different from that of the Tiger. Notes (a) B1 both hypotheses using μ $\text { M1 } \frac{71.2-70}{3.4 / \sqrt{20}}$ A1 awrt 1.73 A1 correct conclusion ft their t value and CV (b) B1 both hypotheses and 16 . accept $\sigma=4$ and $\sigma \neq 4$ $\text { M1 } \frac{(19) \times 3.4^{2}}{16} \text { allow } \frac{(19) \times 3.4^{2}}{4}$ A1 awrt 13.7 B1 32.852 B1 8.907 A1 correct contextual comment NB those who use $\sigma^{2}=4$ throughout can get B0 M1 A0B1 B1 A1	B1 M1A1 B1 Al ft (5) B1 M1 A1 B1 B1 Alft (6) [11]

Question Number	Scheme	Marks
Q6 (a)	$X_{1} \sim \operatorname{Po}(3 \lambda)$	
	$X_{2} \sim \operatorname{Po}(7 \lambda)$	M1
	$X_{3} \sim \operatorname{Po}(10 \lambda)$	
	$\mathrm{E}(\hat{\lambda})=k\left[\mathrm{E}\left(X_{1}\right)+\mathrm{E}\left(X_{2}\right)+\mathrm{E}\left(X_{3}\right)\right]$	M1
	$=20 \lambda k$	
	$\hat{\lambda}$ unbiased therefore $20 \lambda k=\lambda$	M1
	$k=\frac{1}{20}$	A1 (4)
(b)	$\operatorname{Var}(\hat{\lambda})=\frac{1}{20^{2}} \operatorname{Var}\left(X_{1}+X_{2}+X_{3}\right)$	M1
	$=\frac{1}{20^{2}}(3 \lambda+7 \lambda+10 \lambda)$	M1
	$=\frac{\lambda}{20}$	Alft (3)
(c)	$Y \sim \operatorname{Po}(4 \lambda)$	
	$\mathrm{E}\left(\frac{1}{4} \bar{Y}\right)=\frac{1}{4} \times 4 \lambda=\lambda$ therefore unbiased	M1 A1 (2)
(d)	$\operatorname{Var}\left(\frac{1}{4} \bar{Y}\right)=\frac{1}{16} \times \frac{4 \lambda}{n}$	M1 B1
	$=\frac{\lambda}{4 n}$	A1 (3)
(e)	$\frac{\lambda}{4 n}<\frac{\lambda}{20}$	
	$n>5$ therefore $n=6$	A1 (2)
		[14]

Question Number	Scheme	Marks
Q6	Notes (a) M1 all 3 needed. Poisson and mean M1 adding their means M1 putting their $\mathrm{E}(\hat{\lambda})=\lambda$ A1 cao (b) M1 use of $k^{2} \operatorname{Var}\left(X_{1}+X_{2}+X_{3}\right)$ M1 using their means from part(a) as Variances and adding together A1 cao (c) M1 use of 4λ A1 cso plus conclusion. Accept working out bias to $=0$ (d) M1 $\frac{1}{16} \times \operatorname{Var} \bar{Y}$ B1 for $\operatorname{Var} \bar{Y}=\frac{4 \lambda}{n}$ A1 cao (e) M1 for $\operatorname{Var}\left(\frac{1}{4} \bar{Y}\right)<\operatorname{Var}(\hat{\lambda})$ A1 $n=6$	

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA024771 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

