$A Q A$

General Certificate of Secondary Education June 2012

Mathematics (Linear) B
4365
Paper 2
Higher Tier

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the school/college.

Set and published by the Assessment and Qualifications Alliance.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M Method marks are awarded for a correct method which could lead to a correct answer.

M dep A method mark which is dependent on a previous method mark being awarded.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
B dep A mark that can only be awarded if a previous independent mark has been awarded.

Q This mark is for quality of written communication. Further details of how to apply it will be in the mark scheme.
ft Follow through marks. Marks awarded following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.

Q	Answer	Mark	Comments	
1	(7.2) + 6 or 13.2	M1	$4 x-6=7.2$	
	(their 13.2) $\div 4$	M1dep	$4 x=7.2+6$ or $x-\frac{6}{4}=\frac{7.2}{4}$	
	3.3	A1	$\begin{aligned} & \text { SC2 } 52.8 \text { or } 0.3 \text { or } 8.7 \\ & \text { SC1 } 4.8 \end{aligned}$	
2	$169 \div 65$	M1	65×2.5 or $65 \times$ their 2.5 or $169 \div 2.5$	
	2.6 or 2 hours 36 (minutes)	A1	162.5 or 6.5 miles to go or 67.6 (mph)	
	2 h 30 or 2.5 h or 150 (minutes) or 9.06 or 9.1 (not 9.10) or 6.24 or 6.4	B1	2.5 h	
	No	A1		
3(a)	147	B1	May be seen on diagram	
	Corresponding	Q1	oe eg (y is) alternate and x is opposite Check part (b) Strand (i)	
3(b)	147	B1ft	May be seen on diagram ft their (a)	
	Alternate or (vertically) opposite	Q1	oe eg x is corresponding and y is opposite Strand (i)	
4	10×78 or 780 or 10×36 or 360 or $78 \div 3(\times 2)$ or 26 or 52	M1		$\begin{aligned} & 78 \div 3(x 2) \text { or } 26 \\ & \text { or } 52 \end{aligned}$
	$10 \times 78 \div 3(\times 2)$ or 260 or 520	M1		$600 \div 10$ or 60
	$\begin{aligned} & 0.15 \times 600 \text { or } 90 \text { or } 15 \times 600(\div 100) \\ & 0.18 \times 600 \text { or } 18 \times 600(\div 100) \end{aligned}$	M1	oe	$\begin{aligned} & 0.15 \times \text { their } 60 \\ & \text { or } 9 \end{aligned}$
	450 or 108	A1		45
	their 450×1.2 or 540	M1	$\begin{aligned} & 10 \times 36 \times 1.2 \\ & \text { or } 360 \times 1.2 \text { or } 432 \\ & \text { or } 0.15 \times 1.2 \text { or } 0.18 \\ & \text { or } 15 \times 1.2 \text { or } 18 \end{aligned}$	their 45×1.2
	520 and 540 and Hire Deal	A1		52 and 54 and Hire Deal

Q	Answer	Mark	Comments
5	$\begin{aligned} & 15(\times)(3 \times 13+8) \text { or } \\ & 15 \times 47 \end{aligned}$	M1	$\begin{aligned} & 15 \times 3 \times 13+15 \times 8 \\ & \text { or } \\ & 45 \times 15 \times 39+15 \times 8 \\ & \text { oe } \end{aligned}$
	(£) 705	A1	
6(a)	$\begin{aligned} & x+x+16+118+134=360 \\ & \text { or } \\ & 2 x+268=360 \end{aligned}$	M1	oe $360-252(=108)$ and their $108-16(=92)$
	$\begin{aligned} & x+x=360-118-134-16 \\ & \text { or } 2 x=92 \end{aligned}$	M1dep	their $92 \div 2$
	$(x=) 46$	A1	Answer may be on diagram
6(b)	Yes and $46+134=180$ or $118+62=180$	B1ft	ft reason from their x oe
7	$\frac{1}{2} \times 9.5 \times 7.3$ or $\frac{1}{2} \times 69.35$	M1	oe
	34.67(5)	A1	
	34.7	B1ft	ft their answer if 2 or more dp seen SC2 for 34.7 coming from premature rounding or approximation seen
8	$12 x-28(=20)$	M1	$3 x-7=20 \div 4$
	$12 x=20+28$	M1	$\begin{aligned} & 3 x=5+7 \\ & 3 x=\frac{20}{4}+7 \end{aligned}$ This mark is for separating terms in their equation
	4	A1ft	ft if M1M0 or M0M1
9	Lists at least 3 correct combinations $\frac{1}{3}$ or $\frac{1}{2}$ seen	M1	(1)A3, (1)A4, (1)B3, (1)B4, (1)C3, (1)C4
	Lists or chooses all 6 correct combinations or 3×2 or 6 seen or $\frac{1}{3} \times \frac{1}{2}$	M1	Seen or implied eg 6 lines drawn from letters to numbers on diagram $A \rightarrow 3, A \rightarrow 4, B \rightarrow 3$ etc
	$\frac{1}{6}$	A1	

\mathbf{Q}	Answer	Mark	Comments

10	Correct trial such that root < trial $\leqslant 5$	M1	eg $4^{3}-3 \times 4=52$ (too big) Obtains $3<x \leqslant 5$ or better (need not be stated)
	Improved correct trial	M1	$3<$ trial $<1^{\text {st }}$ trial or $3<$ trial < root eg $3.5^{3}-3 \times 3.5=32$.(3...) or 32.4 (too small)
	Obtains $3.8 \leqslant x \leqslant 3.9$ or better	A1	$\begin{aligned} & 3.6 \rightarrow 35 .(8 \ldots) \text { or } 35.9 \\ & 3.7 \rightarrow 39 .(5 \ldots) \text { or } 39.6 \\ & 3.8 \rightarrow 43 .(4 \ldots) \text { or } 43.5 \\ & 3.9 \rightarrow 47 .(6 \ldots) \end{aligned}$
	Tests 3.85 (or 3.84) and concludes 3.8	Q1	$\begin{aligned} & 3.85 \rightarrow 45.5(16625) \\ & 3.84 \rightarrow 45.1(03104) \end{aligned}$ Using 2 dp to ensure 1 dp Strand (ii)

11	$\left(A C^{2}=\right) 23^{2}+31^{2}(=1490)$	$M 1$	$A=\tan ^{-1}\left(\frac{23}{31}\right) \operatorname{or} C=\tan ^{-1}\left(\frac{31}{23}\right)$
	$\sqrt{23^{2}+31^{2}}$ or $\sqrt{\text { their } 1490}$	M1 dep	eg $\frac{23}{\sin 36.57}$ or $\frac{31}{\cos 36.57}$ or $\frac{23}{\cos 53.43}$ or $\frac{31}{\sin 53.43}$
	$38.6(\ldots)$ or 39	A1	

12	Suitable question with time frame	B1	
	Suitable response section	B1	No gaps, no overlap and final category open- ended

$\mathbf{1 3 (a)}$	$3 x \geqslant 16+5$ or $3 x \geqslant 21$	M1	oe $x \geqslant \frac{21}{3}$
	or $x \geqslant 7$	A1	oe

13(b)	$-2 \leqslant 2 y \leqslant 6$	B1	

Q	Answer	Mark	Comments

19(a) Fully correct box plot B2 B1 for three or four or five correct plots $210,250,310,390,470$ $\mathbf{3} \mathbf{3}$ 19(b) No change Increase B1
Increase

20(a)	$-1,-3,5$	B2	B1 for 1 or 2 correct

20(b)	Axes drawn and labelled	B2	B1 for x-axis from -2 to 2 (minimum) B1 for y-axis from -3 to 5 (minimum) Condone one missing x or y label
	Points plotted	B1ft	ft 5 points
	Smooth curve through their 5 points	B1ft	Must be a U shape

$\mathbf{2 1}$	Possible weight given for one of Amy's fish $[6.75,6.8) ~ o r ~[4.25, ~ 4.3) ~ o r ~[5.15, ~ 5.2) ~$	M1	Any Amy weight could go down (or Kate up) by 0.05
	M1	Any 3 Amy weights could go down (or Kate up) by 0.15	
	M1	$16.3-0.15=16.15$ or 16.1 $+0.15=16.25$	
	Totals showing possible Must have total for Kate > total for Amy	A1	Amy $=[16.15,16.3)$ Kate $=(16.1,16.25]$

22	1.5 or $\frac{2}{3}$ seen or $\frac{1}{2}$ seen as a scale factor		M1	oe 12:8 8: 12 $\tan C=\frac{8}{11}$ or 36° $\frac{12}{E C}=\frac{8}{11}$ or $\frac{E C}{12}=\frac{11}{8}$ or $\frac{11 \times 12}{8}$
	11×1.5 or $11 \times \frac{1}{2}$	$\frac{1}{2} \times 11 \times 8 \times 1.5^{2}$	M1dep	oe $C E=\frac{12}{\tan (\text { their } 36)}$
	16.5 or 5.5	99	A1	16.5(...) or 5.5(...)
	$\begin{aligned} & \frac{1}{2}(8+12) \times \text { their } 5.5 \\ & \text { or } \\ & \frac{1}{2}(8+12) \times \text { their } E D \end{aligned}$	$\begin{aligned} & \text { their } 99-\frac{1}{2} \times \\ & 11 \times 8 \end{aligned}$	M1	$\begin{aligned} & \frac{1}{2} \times \text { their } 16.5 \times 12-\frac{1}{2} \times 11 \times 8 \\ & \text { their } E D \times 8+\frac{1}{2} \times \text { their } E D \times 4 \end{aligned}$

\square

Q	Answer	Mark	Comments

23	Lists outcomes 1,4 4,1 1,5 5,1 1,6 and/or 2,4 6,1 2,5 4,2 2,6 5,2 	M1	Even dice $1-\frac{2}{3}$ or odd dice $1-\frac{1}{3}$ or odd dice $2-\frac{1}{2}$ or even dice $2-\frac{1}{2}$
	One of : A (both even) has 2 outcomes B (both odd) has 1 outcome C (one odd one even) has 3 outcomes	M1 dep	One of: $\begin{aligned} & P(\text { both even })=\frac{1}{2} \times \frac{2}{3}=\frac{1}{3} \text { or } \frac{2}{6} \\ & P(\text { both odd })=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6} \end{aligned}$ P (odd and even any order) $=\frac{1}{2} \times \frac{2}{3}+\frac{1}{2} \times \frac{1}{3}=\frac{1}{2} \text { or } \frac{3}{6}$ or $1-\frac{2}{6}-\frac{1}{6}$
	B, A, C	A1	All three shown and correct and BAC

24	$6 x^{2}-15 x y+2 x y-5 y^{2}$	M1	3 terms correct
	$6 x^{2}-15 x y+2 x y-5 y^{2}$	A1	
	$6 x^{2}-13 x y-5 y^{2}$	A1 ft	ft from four terms

$\mathbf{2 5}$	$(x=) \frac{-2 \pm \sqrt{(2)^{2}-4(6)(-5)}}{2(6)}$	M1	Allow one error
	$(x=) \frac{-2 \pm \sqrt{(2)^{2}-4(6)(-5)}}{2(6)}$	A1	$(x=) \frac{-2 \pm \sqrt{124}}{12}$
	0.76 and -1.09	A1	

$\mathbf{2 6 (a)}$	$10 \times 10 \times 4$ or 400	M1	
	their 400×25 or 10000	M1	
	M1	oe	
	their $10000 \div$ their $\frac{4}{3} \times \pi \times 6^{3}$	M1	Must have come from use of volume of a sphere formula
	$11.0(5 \ldots)$	A1	
	B1 ft	ft any correctly rounded down number	

\mathbf{Q}	Answer	Mark	Comments

$\mathbf{2 6 (b)}$	$500 \div$ their $10 \times 10 \times 4$ or $500 \div$ their 400	M1	ft their $10 \times 10 \times 4$ from (a)
	1.25	A1	oe $\frac{5}{4}$

$\mathbf{2 7}$	$(3 n-1)(n-2)$ or $(3 n+1) n$	M1	or $n(n-2)$ as denominator on LHS
	$(3 n-1)(n-2)-(3 n+1) n$	M1 dep	
	$3 n^{2}-6 n-n+2$ or $-3 n^{2}-n$	M1 dep	dep on first M1 only
	$3 n^{2}-6 n-n+2$ and $-3 n^{2}-n$	A1	Correct common denominators must be used for 4 marks to be awarded

| $\frac{4}{12} \times \frac{x}{11}$ M1 oe
 $\frac{4}{12} \times \frac{4}{11}$ or $\frac{4}{12} \times \frac{8}{11}$ or $\frac{4}{12} \times \frac{3}{11}$
 or $\frac{4}{33}$ or $\frac{8}{33}$ or $\frac{1}{11}$ M1 $0.12(12 \ldots)$ or $0.24(24 \ldots)$ or $0.09(0909 \ldots)$
 $\frac{4}{12} \times \frac{4}{11} \times 6$ or $\frac{4}{12} \times \frac{8}{11} \times 3$
 or
 $1-\left(3 \times \frac{4}{12} \times \frac{3}{11}\right)$ M1 oe
 $\frac{8}{11}$ oe
 or $\frac{24}{33}$ or $\frac{96}{132}$
 or 0.73 or better oe
 If replacement used award SC2 for $\frac{2}{3}$ or $\frac{8}{12}$
 or SC1 for
 $\frac{4}{12} \times \frac{4}{12}$ or $\frac{1}{9}$
 or $\frac{4}{12} \times \frac{8}{12}$ or $\frac{2}{9}$ |
| :---: | :--- | :--- | :--- |

	Choose 1 $^{\text {st }}$ counter in 12 ways	M1	
Choose 2 nd the other two colours)	mays (any of	M1	
Alt	$\frac{12 \times 8}{12 \times 11}$ or $1 \times \frac{8}{11}$	M1	oe
$\frac{8}{11}$	A1	oe $\frac{96}{132}$	

