

General Certificate of Secondary Education June 2012

Mathematics (Linear) B4365Paper 2Higher Tier

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the school/college.

Set and published by the Assessment and Qualifications Alliance.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

- M Method marks are awarded for a correct method which could lead to a correct answer.
- **M dep** A method mark which is dependent on a previous method mark being awarded.
- A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
- **B** Marks awarded independent of method.
- **B dep** A mark that can only be awarded if a previous independent mark has been awarded.
- **Q** This mark is for quality of written communication. Further details of how to apply it will be in the mark scheme.
- ft Follow through marks. Marks awarded following a mistake in an earlier step.
- **SC** Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
- **oe** Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well as $\frac{1}{2}$
- [a, b] Accept values between a and b inclusive.

Q	Answer	Mark	Com	ments
	(7.2) + 6 or 13.2	M1	4x - 6 = 7.2	
1	(their 13.2) ÷ 4	M1dep	$4x = 7.2 + 6 \text{ or } x - \frac{6}{4} =$	$=\frac{7.2}{4}$
	3.3	A1	SC2 52.8 or 0.3 or 8.7 SC1 4.8	
	169 ÷ 65	M1	65×2.5 or $65 \times$ their 2	2.5 or 169 ÷ 2.5
	2.6 or 2 hours 36 (minutes)	A1	162.5 or 6.5 miles to	go or 67.6 (mph)
2	2h 30 or 2.5 h or 150 (minutes) or 9.06 or 9.1 (not 9.10) or 6.24 or 6.4	B1	2.5 h	
	No	A1		
	147	B1	May be seen on diagr	am
3(a)	Corresponding	Q1		e and x is opposite
2(b)	147	B1ft	May be seen on diagr ft their (a)	am
3(b)	Alternate or (vertically) opposite	Q1	oe eg <i>x</i> is correspor Strand (i)	nding and y is opposite
	10 × 78 or 780 or 10 × 36 or 360 or 78 ÷ 3 (x 2) or 26 or 52	M1		78 ÷ 3 (x 2) or 26 or 52
	10 × 78 ÷ 3 (× 2) or 260 or 520	M1		600 ÷ 10 or 60
4	0.15 × 600 or 90 or 15 × 600 (÷ 100) 0.18 × 600 or 18 x 600 (÷ 100)	M1	ое	0.15 × their 60 or 9
4	450 or 108	A1		45
	their 450 × 1.2 or 540	M1	$\begin{array}{c} 10 \times 36 \times 1.2 \\ \text{or } 360 \times 1.2 \text{ or } 432 \\ \text{or } 0.15 \times 1.2 \text{ or } 0.18 \\ \text{or } 15 \times 1.2 \text{ or } 18 \end{array}$	their 45 × 1.2
	520 and 540 and Hire Deal	A1		52 and 54 and Hire Deal

Q	Answer	Mark	Comments
5	15 (×) (3 × 13 + 8) or 15 × 47	M1	$15 \times 3 \times 13 + 15 \times 8$ or $15 \times 39 + 15 \times 8$ $45 \times 13 + 15 \times 8$ or $585 + 120$ oe
	(£) 705	A1	

	x + x + 16 + 118 + 134 = 360 or 2x + 268 = 360	M1	oe 360 – 252 (=108) and their 108 – 16 (=92)
6(a)	x + x = 360 - 118 - 134 - 16 or $2x = 92$	M1dep	their 92 ÷ 2
	(<i>x</i> =) 46	A1	Answer may be on diagram

6(b)	Yes and 46 + 134 = 180 or 118 + 62 = 180	B1ft	ft reason from their x oe	
------	--	------	------------------------------	--

	$\frac{1}{2} \times 9.5 \times 7.3 \text{ or } \frac{1}{2} \times 69.35$	M1	oe
7	34.67(5)	A1	
	34.7		ft their answer if 2 or more dp seen SC2 for 34.7 coming from premature rounding or approximation seen

	12 <i>x</i> – 28 (= 20)	M1	$3x - 7 = 20 \div 4$
8	12x = 20 + 28	M1	3x = 5 + 7 $3x = \frac{20}{4} + 7$ This mark is for separating terms in their equation
	4	A1ft	ft if M1M0 or M0M1

	Lists at least 3 correct combinations $\frac{1}{3}$ or $\frac{1}{2}$ seen	M1	(1)A3, (1)A4, (1)B3, (1)B4, (1)C3, (1)C4
S	Lists or chooses all 6 correct combinations or 3×2 or 6 seen or $\frac{1}{3} \times \frac{1}{2}$	M1	Seen or implied eg 6 lines drawn from letters to numbers on diagram $A \rightarrow 3$, $A \rightarrow 4$, $B \rightarrow 3$ etc
	$\frac{1}{6}$	A1	

Q	Answer	Mark	Comments
	1		· · · · · · · · · · · · · · · · · · ·
			eg $4^3 - 3 \times 4 = 52$ (too big)
	Correct trial such that root < trial ≤ 5	M1	Obtains $3 < x \leq 5$ or better (need not be stated)
			3 < trial < 1 st trial
	Improved correct trial	M1	or 3 < trial < root
			eg $3.5^3 - 3 \times 3.5 = 32.(3)$ or 32.4 (too small)
10	Obtains $3.8 \leq x \leq 3.9$ or better	A1	3.6 → 35.(8) or 35.9
			3.7 → 39.(5) or 39.6
			3.8 → 43.(4) or 43.5
			3.9 → 47.(6)
	Tasta 2.95 (ar 2.94) and concludes 2.9		3.85 → 45.5(16625)
		Q1	3.84 → 45.1(03104)
	Tests 3.85 (or 3.84) and concludes 3.8		Using 2 dp to ensure 1 dp
			Strand (ii)

	(AC ² =) 23 ² + 31 ² (=1490)	M1	A = tan $^{-1}(\frac{23}{31})$ or C = tan $^{-1}(\frac{31}{23})$
11	$\sqrt{23^2 + 31^2}$ or $\sqrt{\text{their 1490}}$	M1 dep	eg $\frac{23}{\sin 36.57}$ or $\frac{31}{\cos 36.57}$ or $\frac{23}{\cos 53.43}$ or $\frac{31}{\sin 53.43}$
	38.6() or 39	A1	

	Suitable question with time frame	B1	
12	Suitable response section	B1	No gaps, no overlap and final category open- ended

	$3x \ge 16 + 5 \text{ or } 3x \ge 21$	M1	$ oe \ x \geqslant \frac{21}{3} $
13(a)	or $x \ge 7$	A1	oe
13(b)	$-2 \leqslant 2y \leqslant 6$	B1	

Q	Answer	Mark	Comments
	Correct heights plotted or shown	B1	
14	Fully correct frequency polygon	B1	Midpoints used and straight lines intended to join them Allow midpoints to be at [24.5, 26] [34.5, 36] etc SC1 for one height plotted incorrectly but midpoints used in an otherwise correct frequency polygon

	Equates two sides $5w = 3w + 3$	M1	3w + 3 = w + 6	5w = w + 6
	Collects like terms $5w - 3w = 3$	M1dep	3w - w = 6 - 3	5w - w = 6
15	(<i>w</i> =) 1.5	A1		
	Works out that all sides are 7.5 or solves another pair to get ($w =$) 1.5	A1	Must have 3 rd side = their equation = 7.5 a	7.5 and one side using as a minimum

16	Correct cubing of any integer [25, 30]	M1	Note: $25^3 = 15\ 625$ $26^3 = 17\ 576$ $27^3 = 19\ 683$ $28^3 = 21\ 952$ $29^3 = 24\ 389$ $30^3 = 27\ 000$
	26 or 27	A1	SC1 for 18 or 18 ³ (= 5832)

	3000 – 2500 or 500	M1	$\frac{2500}{3000} \times 100(\%)$
17	$\frac{\text{their 500}}{3000} \times 100(\%)$ oe	M1dep	$100 - \frac{2500}{3000} \times 100(\%)$
	16.6(6) or 16.7 or 17	A1	

```
18(a) \pi r + 2r B1
```

	their $(\pi r + 2r) = 11.6$	B1ft	ft their formula from (a) or for an incorrect formula that is given in (a) Allow π = 3.14 or better throughout
18(b)	$r(\pi + 2) = 11.6$ or $(r =) 11.6 \div (\pi + 2)$	M1	
	2.256 or 2.2559	A1	
	2.26 or 2.3	B1ft	Accept 1.8 or 1.85 if $2\pi r$ used 2.7 or 2.72 if $\frac{1}{2}\pi r^2$ used 3.7 or 3.69 if πr used

Q	Answ	ver	Mark	Comments
19(a)	Fully correct box plot		B2	B1 for three or four or five correct plots 210, 250, 310, 390, 470
	No change		B1	
19(b)	Increase		B1	
	Increase		B1	
20(a)	-1, -3, 5		B2	B1 for 1 or 2 correct
20(b)	Axes drawn and label	led	B2	B1 for <i>x</i> -axis from -2 to 2 (minimum) B1 for <i>y</i> -axis from -3 to 5 (minimum) Condone one missing <i>x</i> or <i>y</i> label
20(0)	Points plotted		B1ft	ft 5 points
	Smooth curve through	their 5 points	B1ft	Must be a U shape
	Possible weight given fish [6.75, 6.8) or [4.25, 4.3		M1	Any Amy weight could go down (or Kate up) by 0.05
21	Possible weight given fish (8.2, 8.25] or (3.4, 3.4		M1	Any 3 Amy weights could go down (or Kate up) by 0.15
	5 or 6 of these allowed	d values	M1	16.3 – 0.15 = 16.15 or 16.1 + 0.15 = 16.25
	Totals showing possib Must have total for Ka		A1	Amy = [16.15, 16.3) Kate = (16.1, 16.25]
	1.5 or $\frac{2}{3}$ seen or $\frac{1}{2}$ seen as a scale	factor	M1	oe 12:8 8:12 $\tan C = \frac{8}{11} \text{ or } 36^{\circ}$ $\frac{12}{EC} = \frac{8}{11} \text{ or } \frac{EC}{12} = \frac{11}{8} \text{ or } \frac{11 \times 12}{8}$
22	$11 \times 1.5 \text{ or } 11 \times \frac{1}{2}$	$\frac{1}{2} \times 11 \times 8 \times 1.5^2$	M1dep	$CE = \frac{12}{\tan(\text{their 36})}$
	16.5 or 5.5	99	A1	16.5() or 5.5()
	$\frac{1}{2} (8 + 12) \times \text{their 5.5}$ or $\frac{1}{2} (8 + 12) \times \text{their } ED$	their 99 – $\frac{1}{2}$ × 11 × 8	M1	$\frac{1}{2} \times \text{their } 16.5 \times 12 - \frac{1}{2} \times 11 \times 8$ their <i>ED</i> × 8 + $\frac{1}{2}$ x their <i>ED</i> × 4

AQA GCSE Mathematics Linear (B) 4365/ Paper 2 Higher Tier /June 2012 / Final

55

A1

Q	Answer	Mark	Comments
	Lists outcomes 1, 4 4, 1 1, 5 5, 1 1, 6 and/or 6, 1 2, 4 4, 2 2, 5 5, 2 2, 6 6, 2	M1	Even dice $1 - \frac{2}{3}$ or odd dice $1 - \frac{1}{3}$ or odd dice $2 - \frac{1}{2}$ or even dice $2 - \frac{1}{2}$
23	One of : A (both even) has 2 outcomes B (both odd) has 1 outcome C (one odd one even) has 3 outcomes	M1 dep	One of: P(both even) = $\frac{1}{2} \times \frac{2}{3} = \frac{1}{3}$ or $\frac{2}{6}$ P(both odd) = $\frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ P(odd and even any order) = $\frac{1}{2} \times \frac{2}{3} + \frac{1}{2} \times \frac{1}{3} = \frac{1}{2}$ or $\frac{3}{6}$ or $1 - \frac{2}{6} - \frac{1}{6}$
	B, A, C	A1	All three shown and correct and BAC

	$6x^2 - 15xy + 2xy - 5y^2$	M1	3 terms correct
24	$6x^2 - 15xy + 2xy - 5y^2$	A1	
	$6x^2 - 13xy - 5y^2$	A1 ft	ft from four terms

	$(x =) \frac{-2 \pm \sqrt{(2)^2 - 4(6)(-5)}}{2(6)}$	M1	Allow one error
25	$(x =) \frac{-2 \pm \sqrt{(2)^2 - 4(6)(-5)}}{2(6)}$	A1	$(x =) \ \frac{-2 \pm \sqrt{124}}{12}$
	0.76 and –1.09	A1	

	$10 \times 10 \times 4$ or 400	M1	
	their 400×25 or 10000	M1	
	$\frac{4}{3} \times \pi \times 6^3$ or 904.(7) or 905	M1	oe
26(a)	their 10000 ÷ their $\frac{4}{3} \times \pi \times 6^3$	M1	Must have come from use of volume of a sphere formula
	11.0(5)	A1	
	11	B1 ft	ft any correctly rounded down number

Q	Answer	Mark	Comments
26(b)	500 ÷ their $10 \times 10 \times 4$ or 500 ÷ their 400	M1	ft their 10 x 10 x 4 from (a)
20(D)	1.25	A1	oe $\frac{5}{4}$
	-		
	(3n-1)(n-2) or $(3n+1)n$	M1	or $n(n-2)$ as denominator on LHS
	(3n-1)(n-2) - (3n+1)n	M1 dep	
27	$3n^2 - 6n - n + 2$ or $-3n^2 - n$	M1 dep	dep on first M1 only
	$3n^2 - 6n - n + 2$ and $-3n^2 - n$	A1	Correct common denominators must be used for 4 marks to be awarded

	$\frac{4}{12} \times \frac{x}{11}$	M1	ое
	$\frac{\frac{4}{12} \times \frac{4}{11} \text{ or } \frac{4}{12} \times \frac{8}{11} \text{ or } \frac{4}{12} \times \frac{3}{11}}{\text{ or } \frac{4}{33} \text{ or } \frac{8}{33} \text{ or } \frac{1}{11}}$	M1	0.12(12) or 0.24(24) or 0.09(0909)
28	$\frac{4}{12} \times \frac{4}{11} \times 6 \text{ or } \frac{4}{12} \times \frac{8}{11} \times 3$ or $1 - (3 \times \frac{4}{12} \times \frac{3}{11})$	M1	oe
	$\frac{\frac{8}{11}}{\frac{24}{33}}$ or $\frac{96}{132}$ or 0.73 or better	A1	oe If replacement used award SC2 for $\frac{2}{3}$ or $\frac{8}{12}$ or SC1 for $\frac{4}{12} \times \frac{4}{12}$ or $\frac{1}{9}$ or $\frac{4}{12} \times \frac{8}{12}$ or $\frac{2}{9}$

	Choose 1 st counter in 12 ways	M1	
	Choose 2 nd counter in 8 ways (any of the other two colours)	M1	
28 Alt	$\frac{12 \times 8}{12 \times 11}$ or 1 × $\frac{8}{11}$	M1	oe
	8 11	A1	0e <u>96</u> 132