edexcel

Mark Scheme (Results)

Summer 2012

GCE Statistics S4
(6686) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UA033143
All the material in this publication is copyright
(C) Pearson Education Ltd 201

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

June 2012
6686 Statistics S4
Mark Scheme

Question Number	Scheme	Marks
3.	$\begin{aligned} & \mathrm{H}_{0}: \sigma_{A}^{2}=\sigma_{B}^{2} ; \mathrm{H}_{1}: \sigma_{A}^{2} \neq \sigma_{B}^{2} \\ & S_{A}^{2} / S_{B}^{2}=\frac{225}{36}=6.25 \quad\left(\frac{36}{225}=0.16\right) \\ & \text { CR: } \mathrm{F}_{10,8}>3.35\left(\frac{1}{F_{10.8}}=0.299\right) \end{aligned}$ Since 6.25 is in the critical region we can assume that the lengths of paving slabs sold by the builders merchant differ in variability. B1 both correct. Must use σ. May use different notation to A and B M1 $\frac{225}{36}$ or $\frac{36}{225}$ allow $\frac{15}{6}$ or $\frac{6}{15}$ A1 either 6.25 or 0.16 B1 CR must match their method A1 context must include "lengths of slabs"	B1 M1A1 B1 A1ft (5) Total 5 marks

Question Number	Scheme	Marks
(a)	B1 B1 may be implied by correct a correct answer to (i) or (ii)	
(i)	$\text { M1 - "their } 4.9 " \pm t \text { value } \times \sqrt{\frac{\text { their } 0.191 . .}{10}}$	
	$\text { A1ft - "their } 4.9 " \pm 2.262 \times \sqrt{\frac{\text { their } 0.191 . .}{10}}$	
	B1 2.262	
	A1 either correct to 3 sf or better or both correct to 2 sf or better A1 both correct to 3 sf or better	
(ii)	M1 - writing and attempting to use $\frac{(n-1) s^{2}}{\chi_{n-1}^{2}}$ or may be implied by correct formula	
	used with their 0.437	
	B1 19.023	
	B1 2.7 A1ft follow through their 0.437 and two chi squared values A1 either correct to 2 sf or better A1 awrt ($0.09,0.637$)	
(b)	For the second B1. If both 0.7 and 0.49 lie in interval they must state variance $=$ 0.49 or the interval for standard deviation.	
	For the third B1 their must not be two conflicting conclusions unless they give just one overall as well.	

Question Number	Scheme	Marks
6(a)(i)	$\begin{aligned} \mathrm{E}\left(\hat{p}_{1}\right) & =\mathrm{E}\left(\frac{X}{n}\right) \\ & =\frac{1}{n} \mathrm{E}(X) \\ & =\frac{1}{n} \times n p \\ & =p \quad \text { unbiased } \end{aligned}$	M1 A1cso
(ii)	$\begin{aligned} \operatorname{Var}\left(\hat{p}_{1}\right) & =\operatorname{Var}\left(\frac{X}{n}\right) \\ & =\frac{1}{n^{2}} \operatorname{Var}(X) \\ & =\frac{1}{n^{2}} \times n p(1-p) \\ & =\frac{p(1-p)}{n} \end{aligned}$	M1 A1
b (i)	$\begin{aligned} \mathrm{E}\left(\hat{p}_{3}\right) & =3 a \mathrm{E}\left(\hat{p}_{1}\right)+2 a \mathrm{E}\left(\hat{p}_{2}\right) \\ & =3 a p+2 a p \\ & =5 a p \end{aligned}$	M1
	$\begin{aligned} & 5 a p=p \\ & a=\frac{1}{5} \end{aligned}$	M1 A1
(ii)	$\operatorname{Var}\left(\hat{p}_{3}\right)=\frac{9}{25} \operatorname{Var}\left(\hat{p}_{1}\right)+\frac{4}{25} \operatorname{Var}\left(\hat{p}_{2}\right)$	M1
	$\begin{aligned} & =\frac{9 p(1-p)}{25 n}+\frac{4 p(1-p)}{25 m} \\ & =\frac{p(1-p)}{25}\left(\frac{9}{n}+\frac{4}{m}\right) \end{aligned}$	M1d A1
(c)	$\begin{gathered} \frac{p(1-p)}{25}\left(\frac{9}{n}+\frac{4}{m}\right)<\frac{p(1-p)}{n} \\ 9 m+4 n<25 m \\ 4 n<16 m \\ \frac{n}{m}<4 \\ \frac{p(1-p)}{25}\left(\frac{9}{n}+\frac{4}{m}\right)<\frac{p(1-p)}{m} \\ 9 m+4 n<25 n . \end{gathered}$	M1 M1

Question Number	Scheme	Marks
(d)	$\begin{aligned} & 9 m<21 n \\ & \frac{9}{21}<\frac{n}{m} \text { or } \frac{3}{7}<\frac{n}{m} \\ & \frac{3}{7}<\frac{n}{m}<4 \end{aligned}$	A1 (3)
	$\begin{aligned} & \operatorname{Var}\left(\hat{p}_{1}\right)=0.05 p(1-p) \\ & \operatorname{Var}\left(\hat{p}_{2}\right)=0.0167 p(1-p) \\ & \operatorname{Var}\left(\hat{p}_{3}\right)=0.0207 p(1-p) \end{aligned}$ Or since $\frac{1}{3}$ is not in the range $\frac{9}{21}<\frac{n}{m}<4 \operatorname{Var}\left(\hat{p}_{3}\right)$ is not the smallest variance. $\begin{aligned} & \operatorname{Var}\left(\hat{p}_{1}\right)=0.05 p(1-p) \\ & \operatorname{Var}\left(\hat{p}_{2}\right)=0.0167 p(1-p) \end{aligned}$	M1
	Therefore \hat{p}_{2}; is the best estimator as it has the smallest variance	A1ft; A1ft (3) Total 16 marks
	Notes	
(a) (i)	M1 either $\frac{1}{n} \mathrm{E}(X)$ or $\frac{1}{n} \times n p$ A1 cso	
(ii) (b) (i)	M1 either $\frac{1}{n^{2}} \operatorname{Var}(X)$ or $\frac{1}{n^{2}} \times n p(1-p)$ A1 cso M1 For either $3 a \mathrm{E}\left(\hat{p}_{1}\right)+2 a \mathrm{E}\left(\hat{p}_{2}\right)$ or $3 a p+2 a p$ M1 Putting their $\mathrm{E}\left(\hat{p}_{3}\right)=p$	
(ii)	$\text { M1 for } \frac{9}{25} \operatorname{Var}\left(\hat{p}_{1}\right)+\frac{4}{25} \operatorname{Var}\left(\hat{p}_{2}\right)$ M1d for substituting (aii) for $\operatorname{Var}\left(\hat{p}_{1}\right)$ and (aii) with m instead of n for $\operatorname{Var}\left(\hat{p}_{2}\right)$ A1 cso	
(c)	M1 Putting $\operatorname{Var}\left(\hat{p}_{3}\right)<$ their $\operatorname{Var}\left(\hat{p}_{1}\right)$ leading to an inequality of the form $\frac{n}{m}<a$ or $\frac{n}{m}>a$ where a is a constant.	

(d) $\left.\left\lvert\, \begin{array}{l}\frac{n}{m}<a \text { where a is a constant. } \\ 1 / 3 \text { is not in their range in part(c) } \\ \text { M1 attempt to find all 3 variances or eliminating } \operatorname{Var}\left(\hat{p}_{3}\right) \text { with reason and finding the } \\ \text { other 2 variances. } \\ \text { A1ft correct estimator chosen. } \\ \text { A1ft correct supporting reason from correct working for their var formulae } \\ \text { SC if } 1 / 3 \text { is in their range in part(c) they may get } \\ \text { B1 for stating } \hat{p}_{3} \\ \text { B1dependent on the previous B being awarded- stating smallest variance } \\ \text { award first two marks on epen. }\end{array}\right.\right]$

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA031443 Summer 2012

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Llywodraeth Cynulliad Cymru Welsh Assembly Government

Rewarding Learning

