Mark Scheme (Results)

Summer 2018

Pearson Edexcel GCE Mathematics
Statistics S4 Paper 6686_01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code 6686_01_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks
1	To test $\mathrm{H}_{0}: \mu=200, \mathrm{H}_{1}: \mu>200$	B1
	Test statistic $\quad t=\frac{202-200}{\sqrt{\frac{3.6}{10}}}=\frac{10}{3}$ or $3.3333 \ldots$	M1A1
	Critical value(s): $t_{9}=(\pm) 2.821$	B1
	In critical region, therefore significant evidence to reject H_{0} and accept H_{1}	
	Significant evidence that the mean weight of the packets of almonds is more than $\mathbf{2 0 0} \mathbf{g}$	A1ft (5) Total 5
	Notes	
	$1^{\text {st }}$ B1 Both hypotheses with μ. $1^{\text {st }} \text { M1 Allow } \pm \frac{202-200}{\frac{s}{\sqrt{10}}}$ $1^{\text {st }}$ A1 awrt 3.33 $2^{\text {nd }} \mathrm{B} 1$ allow p value of awrt 0.00438 in place of critical value. CV must follow from H_{1}, sign must match t-value or be \pm $2^{\text {nd }}$ A1ft $\mathrm{ft} t$-value if awarded B marks. Need correct conclusion in context containing the words mean weight, almonds or packets and $\mathbf{2 0 0 g}$	

Question Number	Scheme	Marks
4(a)	$\mathrm{H}_{0}: \sigma_{G}{ }^{2}=\sigma_{T}{ }^{2}$ against $\mathrm{H}_{1}: \sigma_{G}{ }^{2}>\sigma_{T}^{2}$	B1
	Test stat, $\quad F_{4,5}=\frac{0.66^{2}}{0.31^{2}}=4.53\left(\frac{1}{F_{4,5}}=\frac{0.31^{2}}{0.66^{2}}=0.221\right)$	M1A1
	Critical value, $\quad F_{4,5}=5.19(0.1927)$	B1
	Not in critical region, therefore no evidence to reject H_{0}	
	No evidence of difference in standard deviation (allow variance)	A1cso
		(5)
(b)	$s_{p}{ }^{2}=\frac{5 \times 0.31^{2}+4 \times 0.66^{2}}{5+4}$	M1
	$s_{p}{ }^{2}=0.24698 \ldots$ or $s_{p}=0.49697 \ldots \quad$ awrt 0.247 or 0.497	A1
	$\mathrm{H}_{0}: \mu_{G}=\mu_{T}+4 \quad \mathrm{H}_{1}: \mu_{G}>\mu_{T}+4$	B1
	critical value CR: $t_{9}(0.05)> \pm 1.833$	B1
	$t= \pm \frac{10.12-5.27-4}{\sqrt{0.24698\left(\frac{1}{5}+\frac{1}{6}\right)}}= \pm 2.8245 \ldots \text { or } p=\text { awrt } 0.0099549 \text { awrt } 2.82,2.825$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \end{array}$
	There is evidence to reject H_{0} μ_{G} is greater than $\mu_{T}+4$. The suppliers claim is supported.	A1
		(7)
(c)	$\frac{\bar{X}_{G}-\bar{X}_{T}-4}{\sqrt{0.24698\left(\frac{1}{5}+\frac{1}{6}\right)}}>1.833$	M1
	$\bar{X}_{G}-\bar{X}_{T}>1.833 \times \sqrt{0.24698\left(\frac{1}{5}+\frac{1}{6}\right)}+4$	
	$\bar{X}_{G}-\bar{X}_{T}>4.55$	A1
		(2)
(d)	No change to standard deviation	B1
	$\bar{X}_{G}-\bar{X}_{T}=4.35$	M1
	Previously they would have changed to Goglue, now they will remain with Tackfast	A1
	or they will no longer change, or they would have changed but now they will not oe	
		(3)
	Notes	Total 17
(a)	B1 both hypotheses. allow $\mathrm{H}_{0}: \sigma_{T}=\sigma_{G}$ against $\mathrm{H}_{1}: \sigma_{G}>\sigma_{T}$. Must use σ or σ^{2} and make clear which is H_{0} and which is H_{1}. Do not allow in words M1 allow 0.31 and 0.66 rather than 0.31^{2} and 0.66^{2} if they write the formula down B1 correct CV for their F or a correct comparison if use p	
(b)	Final A1: - All previous marks must be awarded. Variances are the same or var are no M1 Allow use of 0.31 and 0.66 . May be seen in part(a) B1 both hypotheses using μ. Do not allow $\geq \operatorname{sign}$ instead of $>$. May use different lett and B but they must be defined. B1 correct CV but must match t-value or a correct comparison if use p M1 use of correct formula with their s_{p} - condone missing 4 M1 use of correct formula with their s_{p}. (which must have been attempted) A1 A correct statement or longhand of suppliers claim with the word force and mean and is more than 4 greater oe Do not allow contradicting statements. M1 correct LHS with 1.833 (or their CV used in (b)) NB subst in 4.55 for is M0	different seg A

Question Number	Scheme	Marks
5.(a) (b)	0.05 or 5\%	B1
		(1)
	Let the CR be $\bar{X}>k$ $\mathrm{P}\left(\bar{X}>k \mid \bar{X} \text { is } \mathrm{N}\left(150, \frac{16}{n}\right)\right)=0.05$	
	$\therefore \frac{\bar{k}-150}{\frac{4}{\sqrt{n}}}=1.6449$	M1B1A1
	$\bar{k}=150+1.6449 \times \frac{4}{\sqrt{n}}$	
	$\therefore \frac{\bar{k}-152}{\frac{4}{\sqrt{n}}}=-1.2816$	M1B1A1
	$\bar{k}=152-1.2816 \times \frac{4}{\sqrt{n}}$	
	$150+1.6449 \times \frac{4}{\sqrt{n}}<152-1.2816 \times \frac{4}{\sqrt{n}} \text { or } \frac{150+\frac{6.5796}{\sqrt{n}}-152}{\frac{4}{\sqrt{n}}}=-1.2816$	M1dd
	$[\sqrt{n}]>5.853$	A1
	[$n>$] 34.25	M1
	$n=35$	A1cso
		(10)
	Notes	Total 11
(b)	$\text { M1 } \therefore \frac{\bar{k}-150}{4 / \sqrt{n}}=z \text {-value },\|z\|>1.5$ B1 awrt ± 1.6449 A1 correct equation $=a w r t 1.65 / 1.64$ $\text { M1 } \therefore \frac{\bar{k}-152}{4 / \sqrt{n}}=z \text {-value, } 1<\|z\|<1.5$ B1 \pm awrt 1.2816 A1 correct equation $=$ awrt -1.28 M1dd dependent on both previous M marks being awarded. forming an equation and solving leading to $n=\ldots$ or $\sqrt{n}=\ldots$ A1 awrt 5.85 M1 for squaring A1cso 35 only	

Question Number	Scheme	Marks
6.(a)	$\mathrm{E}\left(X^{N}\right)=\int_{0}^{2 \theta} \frac{x^{N+1}}{2 \theta^{2}} \mathrm{~d} x$	M1
	$=\left[\frac{x^{N+2}}{2(N+2) \theta^{2}}\right]_{0}^{2 \theta}$	A1
	$=\frac{(2 \theta)^{N+2}}{2(N+2) \theta^{2}}$	
	$\left.=\frac{2^{N+1}}{N+2} \theta^{N} \quad{ }^{*}\right)$	A1cso
		(3)
(b)	$\mathrm{E}(X)=\frac{4 \theta}{3}$	B1
	$\operatorname{Var}(X)=2 \theta^{2}-\left(\frac{4 \theta^{\prime \prime}}{3}\right)^{2}=\frac{2 \theta^{2}}{9}$	M1A1 (3)
(c)	$q=\frac{3}{4}$	B1
	$\operatorname{Var}\left(S_{1}\right)=\frac{9}{16} \times \frac{2 \theta^{2 "}}{9 n}$	M1
	$=\frac{\theta^{2}}{8 n}$ as $n \rightarrow \infty \operatorname{Var}(S) \rightarrow 0 \therefore$ s[ince it is unbiased] it is a consistent estimator	A1cso
		(3)
(d)	$\mathrm{E}\left(S_{2}\right)=a \times \frac{4 \theta "}{3}+b \times \frac{\theta}{3}$	M1
	$a \times \frac{4 \theta}{3}+b \times \frac{\theta}{3}=\theta$ or $4 a+b=3$	A1
	$\operatorname{Var}\left(S_{2}\right)=a^{2} \times \frac{2 \theta^{2}}{}{ }^{\prime \prime}{ }^{2}+b^{2} \times \frac{\theta^{2}}{27}$	M1
	$\operatorname{Var}\left(S_{2}\right)=a^{2} \times \frac{2 \theta^{2}}{9}+(3-4 a)^{2} \times \frac{\theta^{2}}{27} \quad \text { or } \operatorname{Var}\left(S_{2}\right)=\left(\frac{3-b}{4}\right)^{2} \times \frac{2 \theta^{2}}{9}+b^{2} \times \frac{\theta^{2}}{27}$	M1
	$\frac{\mathrm{d} \operatorname{Var}\left(S_{2}\right)}{\mathrm{d} a}=\frac{4 a \theta^{2}}{9}-\frac{8(3-4 a) \theta^{2}}{27} \quad \text { or } \frac{-(3-b) \theta^{2}}{36}+\frac{2 b \theta^{2}}{27}$	M1
	$\frac{4 a \theta^{2}}{9}-\frac{8(3-4 a) \theta^{2}}{27}=0 \quad$ or $\frac{-(3-b) \theta^{2}}{36}+\frac{2 b \theta^{2}}{27}=0$	M1
	$\frac{44 a}{27}=\frac{24}{27} \quad \text { or } \frac{11}{108} b=\frac{1}{12}$	
	$a=\frac{6}{11}, \quad b=\frac{9}{11}$	A1 (7)

