

Mark Scheme (Results)

Summer 2018

Pearson Edexcel GCE Mathematics Statistics S4 Paper 6686_01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018 Publications Code 6686_01_1806_MS All the material in this publication is copyright © Pearson Education Ltd 2018

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme			
1	To test $H_0: \mu = 200$, $H_1: \mu > 200$	B1		
	Test statistic $t = \frac{202 - 200}{\sqrt{\frac{3.6}{10}}} = \frac{10}{3}$ or 3.3333	M1A1		
	Critical value(s): $t_9 = (\pm)2.821$	B1		
	In critical region, therefore significant evidence to reject \mathbf{H}_0 and accept \mathbf{H}_1			
	Significant evidence that the mean weight of the packets of almonds is more than 200 g	A1ft (5)		
		Total 5		
	Notes			
	1 st B1 Both hypotheses with μ . 1 st M1 Allow $\pm \frac{202 - 200}{\frac{s}{\sqrt{10}}}$			
	2^{nd} B1 allow <i>p</i> value of awrt 0.00438 in place of critical value. CV must follow from H ₁ , sign must match <i>t</i> -value or be \pm 2^{nd} A1ft ft <i>t</i> -value if awarded B marks. Need correct conclusion in context containing the words mean weight , almonds or packets and 200g			

Question Number	Scheme	Marks
2(a)	$\overline{x} = \frac{468}{9} = 52$ $s^2 = \frac{9}{8} \left(\frac{24560}{9} - 52^2\right) = 28$	M1A1
	i) $t_8 = 2.306$	B1
	95% CI = $52 \pm 2.306 \times \frac{\sqrt{28''}}{\sqrt{9}}$	M1
	= (47.93, 56.06)	A1
	ii) 95% CI is given by	
	8×28 2 8×28	M1
	$\frac{1}{17.535} < \sigma^2 < \frac{1}{2.180}$	B1
	$12.77 < \sigma^2 < 102.75$	
	$3.57 < \sigma < 10.14$	M1d A1
		(9)
(b)	$38 \times 1.2 = 45.6$ or 26% or 1.26	B1
	45.6 is below the CI for <i>Fruity</i> therefore there is evidence that the mean for	M1
	Zesty is more than 20% higher than his Fruity	N / 1
	5.5 Is in the CI therefore there is no evidence that the standard deviation is less than 5.5	M11
	He should not change to Zesty	Alcso
		(4)
	Notes	Total 13
(a)	M1 attempting s or s^2	
	A1 28 only	
(i)	B1 CV awrt 2.306	
	$\sqrt{\text{their Var}}$	
	M1 $\overline{x} \pm t$ -value $\times \frac{\sqrt{410}}{\sqrt{6}}$	
	$\sqrt{7}$ A 1 awrt 47 9 and awrt 56 1	
(ii)	$\frac{8}{(\text{their s})^2}$	
(11)	1st M1 for $\frac{8 \text{ (HeII S)}}{2}$	
	χ^2	
	B1 awrt 1/.535 & awrt 2.18 M1d Dant on provious M morely Deservoir a loading to interval for π must square	
	root	
	A1 awrt 3.57 and 10.1	
(b)	B1 45.6 seen or awrt 26% or awrt 1.26	
	M1 correct reason for mean ft their CI	
	M1 correct reason for sd ft their CI	
	A1cso correct conclusion. Not ft on incorrect intervals	

Quest	tion ber	Scheme					Marks				
3.	(a)	Need assumption that the underlying distribution of the difference in reaction					B1				
	(u)	times is norm	ally dis	tributed	l						(1)
		Student	Α	В	С	D	Ε	F	G	Н	
	(b)	Difference Start - end	0.8	1.1	-0.1	1.1	0.7	2.8	1.3	0.8	M1
		Start Cha									
				Ċ	$\overline{l} = \frac{8.5}{8} =$	= (±)1.00	525				M1
				$s^2 = \frac{8}{7} \left(\frac{1}{2} \right)^2$	$\frac{13.73}{8}$ - 1	.0625 ²	= 0.671	25			M1
		or		. (, `					
			s^2	$=\frac{1}{7}\left(13.\right)$	$73 - \frac{8.5}{8}$	$\left(- \right) = 0.6'$	7125				
		Test stat									
		$t = \frac{"1.0625" - m}{\sqrt{\frac{"0.67125"}{9}}}$						M1			
		Critical value,	$t_7(2.5)$	$5\%) = \pm 2$	2.365	$t_7(0.00)$	05%)=±	-3.499			B1
		$\frac{1.0625 - m}{\sqrt{\frac{0.67125}{8}}} = \pm 2.365 \qquad \frac{1.0625 - m}{\sqrt{\frac{0.67125}{8}}} = \pm 3.499$							M1d A1ft		
		0.049 < m < 0.377 and $1.748 < m < 2.076$							A1 A1 (9)		
					N	otes					Total 10
	(a) (b)	B1 for a comm M1 attempting	ent that r differen	nentions ces	"differen	ces" and	"normal"	" distribu	ition		
		M1 attempt to find $\overline{d} = \frac{\sum \text{"their } d \text{"}}{8}$									
		M1 attempting s or $s^2 \frac{1}{7} \left(\sum \text{"their } d^2 \text{"} - \frac{\left(\sum \text{"their } d^{"}\right)^2}{8} \right) s = 0.8192$									
		M1 for attempting the correct test statistic $\frac{\overline{d} - m}{\sqrt[s]{\sqrt{8}}}$, allow any letter									
		B1 Both critical values correct (ignore sign)									
		M1d dependent on previous M being awarded. Having a pair of equations with the									
		same sign and one of each CV. Ft their test statistic and CV									
		A1ft ft their CV four equations, may be implied by both ranges correct									
		A1 awrt $0.049 < m < awrt 0.377$ allow $\leq instead$ of $<$									
		A1 awrt $1.75 < m < awrt 2.08$ allow $\leq instead of <$									
		NB if test stat the wrong way round remove one of the A marks awarded at the end									

Question Number	Scheme			
4(a)	$H_0: \sigma_c^2 = \sigma_r^2$ against $H_1: \sigma_c^2 > \sigma_r^2$	B1		
	Test stat, $F_{4,5} = \frac{0.66^2}{0.31^2} = 4.53 \left(\frac{1}{F_{4,5}} = \frac{0.31^2}{0.66^2} = 0.221\right)$	M1A1		
	Critical value, $F_{4,5} = 5.19(0.1927)$	B1		
	Not in critical region, therefore no evidence to reject H_0			
	No evidence of difference in standard deviation (allow variance)	Alcso		
(b)	$s_p^2 = \frac{5 \times 0.31^2 + 4 \times 0.66^2}{5 + 4}$	(5) M1		
	$s_p^2 = 0.24698$ or $s_p = 0.49697$ awrt 0.247 or 0.497	A1		
	$H_0: \mu_G = \mu_T + 4$ $H_1: \mu_G > \mu_T + 4$	B1		
	critical value CR: $t_9(0.05) > \pm 1.833$	B1		
	$t = \pm \frac{10.12 - 5.27 - 4}{\sqrt{0.24698(\frac{1}{5} + \frac{1}{6})}} = \pm 2.8245 \text{ or } p = \text{awrt } 0.0099549 \text{ awrt } 2.82, 2.825$	M1 A1		
	There is evidence to reject H_0	A1		
	μ_G is greater than μ_T + 4. The suppliers claim is supported.	(7)		
(c)	$\frac{\bar{X}_G - \bar{X}_T - 4}{\sqrt{0.24698\left(\frac{1}{5} + \frac{1}{6}\right)}} > 1.833$	M1		
	$\overline{X}_G - \overline{X}_T > 1.833 \times \sqrt{0.24698 \left(\frac{1}{5} + \frac{1}{6}\right)} + 4$			
	$\overline{X}_G - \overline{X}_T > 4.55$	A1		
	No shares to standard deviation	(2)		
(u)	$\overline{X}_{c} - \overline{X}_{r} = 4.35$	ы М1		
	Previously they would have changed to <i>Goglue</i> , now they will remain with <i>Tackfast</i>	A1		
	or they will no longer change, or they would have changed but now they will not oe			
	Notes	(3) Total 17		
(a)	B1 both hypotheses. allow $H_0: \sigma_T = \sigma_C$ against $H_1: \sigma_C > \sigma_T$. Must use	1000117		
	σ or σ^2 and make clear which is H ₀ and which is H ₁ . Do not allow in words M1 allow 0.31 and 0.66 rather than 0.31 ² and 0.66 ² if they write the formula down B1 correct CV for their <i>F</i> or a correct comparison if use <i>p</i>			
(b)	Final A1: – All previous marks must be awarded. Variances are the same or var are no $M1$ Allow use of 0.31 and 0.66. May be seen in part(a)	t different		
(0)	B1 both hypotheses using μ . Do not allow \geq sign instead of $>$. May use different letter	rs eg A		
	and B but they must be defined.			
	B1 correct CV but must match <i>t</i> -value or a correct comparison if use p M1 use of correct formula with their s_p = condone missing 4			
	M1 use of correct formula with their s_p (which must have been attempted)			
	A1 A correct statement or longhand of suppliers claim with the word force and mean			
(c)	and is more than 4 greater oe Do not allow contradicting statements. M1 correct LHS with 1.833(or their CV used in (b)) NB subst in 4.55 for is M0			

Question	Scheme					
Number 5 (a)	0.05 or 5%					
J.(a)	0.05 01 5 /0	(1)				
(b)	Let the CR be $\overline{X} > k$					
	$P\left(\overline{X} > k \mid \overline{X} \text{ is } N\left(150, \frac{16}{n}\right)\right) = 0.05$					
	$\therefore \frac{\overline{k} - 150}{\frac{4}{\sqrt{n}}} = 1.6449$					
	$\overline{k} = 150 + 1.6449 \times \frac{4}{\sqrt{n}}$					
	$\therefore \frac{\overline{k} - 152}{\frac{4}{\sqrt{n}}} = -1.2816$	M1B1A1				
	$\overline{k} = 152 - 1.2816 \times \frac{4}{\sqrt{n}}$					
	$150 + 1.6449 \times \frac{4}{\sqrt{n}} < 152 - 1.2816 \times \frac{4}{\sqrt{n}} \text{ or } \frac{150 + \frac{6.5796}{\sqrt{n}} - 152}{\frac{4}{\sqrt{n}}} = -1.2816$	M1dd				
	$\left[\sqrt{n}\right] > 5.853$	A1				
	[<i>n</i> >]34.25	M1				
	n = 35	Alcso				
		(10)				
	Notes	Total 11				
(b)	$M1 \therefore \frac{\overline{k} - 150}{4/\sqrt{n}} = z \text{-value}, z > 1.5$ B1 awrt ± 1.6449 A1 correct equation = awrt1.65/1.64 M1 $\therefore \frac{\overline{k} - 152}{4/\sqrt{n}} = z \text{-value}, 1 < z < 1.5$					
	A1 correct equation = $awrt - 1.28$					
	M1dd dependent on both previous M marks being awarded. forming an equation and solving leading to $n =$ or $\sqrt{n} =$ A1 awrt 5.85 M1 for squaring A1cso 35 only					

Question Number	Scheme					
6.(a)	$\mathbf{E}(X^{N}) = \int_{0}^{2\theta} \frac{x^{N+1}}{2\theta^{2}} \mathrm{d}x$					
	$= \left[\frac{x^{N+2}}{2(N+2)\theta^2}\right]_0^{2\theta}$					
	$=\frac{\left(2\theta\right)^{N+2}}{2\left(N+2\right)\theta^2}$					
	$=\frac{2^{N+1}}{N+2}\theta^N (*)$	A1cso				
(b)	$\mathrm{E}(X) = \frac{4\theta}{3}$	(3) B1				
	$\operatorname{Var}(X) = 2\theta^2 - \left(\frac{4\theta}{3}\right)^2 = \frac{2\theta^2}{9}$	M1A1 (3)				
(c)	$q = \frac{3}{4}$	B1				
	$\operatorname{Var}(S_1) = \frac{9}{16} \times \frac{2\theta^2}{9n}$	M1				
	$= \frac{\theta^2}{8n}$ as $n \to \infty$ Var(S) $\to 0$: s[ince it is unbiased] it is a consistent estimator	A1cso				
(d)	" 4 0"	(3)				
(u)	$\mathbf{E}(S_2) = a \times \frac{4\theta}{3} + b \times \frac{\theta}{3}$	M1				
	$a \times \frac{4\theta}{3} + b \times \frac{\theta}{3} = \theta$ or $4a + b = 3$	A1				
	$\operatorname{Var}(S_2) = a^2 \times \frac{2\theta^2}{9} + b^2 \times \frac{\theta^2}{27}$	M1				
	$\operatorname{Var}(S_{2}) = a^{2} \times \frac{2\theta^{2}}{9} + (3 - 4a)^{2} \times \frac{\theta^{2}}{27} \operatorname{or} \operatorname{Var}(S_{2}) = \left(\frac{3 - b}{4}\right)^{2} \times \frac{2\theta^{2}}{9} + b^{2} \times \frac{\theta^{2}}{27}$	M1				
	$\frac{d\operatorname{Var}(S_2)}{da} = \frac{4a\theta^2}{9} - \frac{8(3-4a)\theta^2}{27} \qquad \text{or } \frac{-(3-b)\theta^2}{36} + \frac{2b\theta^2}{27}$	M1				
	$\frac{4a\theta^2}{9} - \frac{8(3-4a)\theta^2}{27} = 0 \qquad \text{or } \frac{-(3-b)\theta^2}{36} + \frac{2b\theta^2}{27} = 0$	M1				
	$\frac{44a}{27} = \frac{24}{27} \qquad \text{or } \frac{11}{108}b = \frac{1}{12}$					
	$a = \frac{6}{11}, \ b = \frac{9}{11}$	A1 (7)				

Question Number	Scheme	Marks					
(e)	$\operatorname{Var}(S_2) = \left(\left(\left(\frac{6}{11}\right)\right)^2 \times \frac{2\theta^2}{9} + \left(\left(\left(\frac{9}{11}\right)^2 \times \frac{\theta^2}{27}\right)\right)^2 \times \frac{\theta^2}{27}\right)$						
	$\operatorname{Var}(S_2) = \frac{\theta^2}{11}$	(1)					
(f)	S_1 is the better estimator when $\frac{\theta^2}{8n} < \frac{\theta^2}{11} \implies n > \frac{11}{8}$	M1					
	S_2 is the better estimator when $n < \frac{11}{8}$						
	Therefore S_1 is the better estimator since $n \ge 2$	A1cso (2)					
	Notes	(2) Total 19					
(a)	x^{N+1} N+1 N+2						
	M1 attempting to integrate $\frac{1}{2\theta^2}$, $x^{1+1} \rightarrow x^{1+2}$ condone missing limits						
	A1 correct integration						
(b)	A1 fully correct solution – must see substitution of 2θ B1 must have $E(X) =$						
(U)	M1 allow their $E(X)$ if one has been given otherwise must be correct in here						
	A1 must be using part(a), do not allow if integrated from scratch.						
(c)	M1 for $\frac{9}{16} \times \frac{\text{their Var}(X)}{n}$						
	A1 cso and for as $n \to \infty$ Var(S) $\to 0$. since it is unbiased it is a consistent estimate of the second sec	mator					
(d)	M1 for $a \times \text{their } E(X) + b \times \frac{\theta}{3}$						
	A1a correct equation with no θ						
	M1 a^2 × their Var(X) + $b^2 \times \frac{\theta^2}{27}$						
	M1 subst in for <i>a</i> or <i>b</i> M1 differentiating with respect to <i>a</i> or <i>b</i>						
	M1 putting $dVar/da = 0$ and solving leading to $a = \dots$ or $b = \dots$						
(e)	A1 allow awrt 0.545 and awrt 0.818 M1 subst a and b in to find Var(S ₂)						
(f)	M1 for reason $\frac{\theta^2}{8n} < \frac{\theta^2}{11} \Rightarrow n > \frac{11}{8}$ or $\operatorname{Var}(S_1) \le \frac{\theta^2}{16} < \frac{\theta^2}{11}$						
	A1cso correct selection						

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom