Mark Scheme (Post-Standardisation)
Summer 2007

GCE

GCE Mathematics (6674/01)

June 2007
 6674 Further Pure Mathematics FP1 Mark Scheme

Question number	Scheme	Marks
1.	$1 \frac{1}{2}$ and 3 are 'critical values', e.g. used in solution, or both seen as asymptotes $(x+1)(x-3)=2 x-3 \Rightarrow \quad x(x-4)=0$ $x=4, x=0 \quad$ M1: attempt to find at least one other critical value $0<x<1 \frac{1}{2}, \quad 3<x<4 \quad$ M1: An inequality using $1 \frac{1}{2}$ or 3	
	First M mark can be implied by the two correct values, but otherwise a method must be seen. (The method may be graphical, but either $(x=) 4$ or $(x=) 0$ needs to be clearly written or used in this case). Ignore 'extra values' which might arise through 'squaring both sides' methods. \leq appearing: maximum one A mark penalty (final mark).	

Question number	Scheme	Marks
2.	$\begin{aligned} & \text { Integrating factor } \mathrm{e}^{\int-\tan x \mathrm{dx}}=\mathrm{e}^{\ln (\cos x)}\left(\text { or } \mathrm{e}^{-\ln (\sec x)}\right), \quad=\cos x\left(\text { or } \frac{1}{\sec x}\right) \\ & \left(\cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y \sin x=2 \sec ^{2} x\right) \\ & y \cos x=\int 2 \sec ^{2} x \mathrm{~d} x \quad \text { (or equiv.) } \quad\left(\text { Or }: \frac{\mathrm{d}}{\mathrm{~d} x}(y \cos x)=2 \sec ^{2} x\right) \\ & y \cos x=2 \tan x \quad(+C) \quad \text { (or equiv.) } \\ & y=3 \text { at } x=0: \quad C=3 \\ & \left.y=\frac{2 \tan x+3}{\cos x} \quad \quad \text { (Or equiv. in the form } y=\mathrm{f}(x)\right) \end{aligned}$	$\left[\begin{array}{ll}\text { M1, A1 } & \\ \text { M1 A1(ft) } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & \text { (7) } \\ & 7\end{array}\right.$
	$1^{\text {st }} \mathrm{M}$: Also scored for $\mathrm{e}^{\int \tan x d x}=\mathrm{e}^{-\ln (\cos x)}\left(\right.$ or $\left.\mathrm{e}^{\ln (\sec x)}\right)$, then A 0 for $\sec x$. $2^{\text {nd }} \mathrm{M}$: Attempt to use their integrating factor (requires one side of the equation 'correct' for their integrating factor). $2^{\text {nd }} \mathrm{A}$: The follow-through is allowed only in the case where the integrating factor used is $\sec x$ or $-\sec x$. $\left(y \sec x=\int 2 \sec ^{4} x \mathrm{~d} x\right)$ $3^{\text {rd }} \mathrm{M}$: Using $y=3$ at $x=0$ to find a value for C (dependent on an integration attempt, however poor, on the RHS). Alternative $1^{\text {st }} \mathrm{M}$: Multiply through the given equation by $\cos x$. $1^{\text {st }}$ A: Achieving $\cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y \sin x=2 \sec ^{2} x$. (Allowing the possibility of integrating by inspection).	

Question number	Scheme	Marks
6.	(a) $\begin{align*} & z^{*}=\sqrt{3}+\mathrm{i} \\ & \frac{z}{z^{*}}=\frac{(\sqrt{3}-\mathrm{i})(\sqrt{3}-\mathrm{i})}{(\sqrt{3}+\mathrm{i})(\sqrt{3}-\mathrm{i})}=\frac{3-2 \sqrt{3} \mathrm{i}-1}{3+1},=\frac{1}{2}-\frac{\sqrt{3}}{2} \mathrm{i} \tag{*} \end{align*}$ (b) $\left\|\frac{z}{z^{*}}\right\|=\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{ \pm \sqrt{3}}{2}\right)^{2}}, \quad=1 \quad\left[\operatorname{Or}:\left\|\frac{z}{z^{*}}\right\|=\frac{\|z\|}{\left\|z^{*}\right\|}=\frac{\sqrt{3+1}}{\sqrt{3+1}}, \quad=1\right]$ (c) $\arg (w)=\arctan \left(\pm \frac{\operatorname{imag}(w)}{\operatorname{real}(w)}\right)$ or $\arg (w)=\arctan \left(\pm \frac{\operatorname{real}(w)}{\operatorname{imag}(w)}\right)$, where w is z or z^{*} or $\frac{z}{z^{*}}$ $\arg \left(\frac{z}{z^{*}}\right)=\arctan \left(\frac{-\sqrt{3} / 2}{1 / 2}\right) \quad=-\frac{\pi}{3}$ $\arctan \left(\frac{-1}{\sqrt{3}}\right)=-\frac{\pi}{6}$ and $\arctan \left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6}$ (Ignore interchanged z and z^{*}) $\arg z-\arg z^{*}=-\frac{\pi}{6}-\frac{\pi}{6}=-\frac{\pi}{3}=\arg \left(\frac{z}{z^{*}}\right)$ (d) (e) $(x-(\sqrt{3}-i))(x-(\sqrt{3}+i))$ Or: Use sum of roots $\left(=\frac{-b}{a}\right)$ and product of roots $\left(=\frac{c}{a}\right)$. $x^{2}-2 \sqrt{3} x+4$ (a) M: Multiplying both numerator and denominator by $\sqrt{3}-\mathrm{i}$, and multiplying out brackets with some use of $\mathrm{i}^{2}=-1$. (b) Answer 1 with no working scores both marks. (c) Allow work in degrees: $-60^{\circ},-30^{\circ}$ and 30° Allow arg between 0 and $2 \pi: \frac{5 \pi}{3}, \frac{11 \pi}{6}$ and $\frac{\pi}{6}$ (or $300^{\circ}, 330^{\circ}$ and 30°). Decimals: Allow marks for awrt -1.05 (A1), -0.524 and 0.524 (A1), but then A0 for final mark. (Similarly for 5.24 (A1), 5.76 and 0.524 (A1)). (d) Condone wrong labelling (or lack of labelling), if the intention is clear.	B1 M1, A1cso (3) M1, A1 (2) M1 A1 A1 A1 (4) B1 B1 M1 (2) 13

