Mark Scheme (Final) Summer 2007

GCE

GCE Mathematics (6678/01)

June 2007
6678 Mechanics M2
Mark Scheme

General:

For M marks, correct number of terms, dimensionally correct, all terms that need resolving are resolved.
Omission of g from a resolution is an accuracy error, not a method error.
Omission of mass from a resolution is a method error.
Omission of a length from a moments equation is a method error.
Where there is only one method mark for a question or part of a question, this is for a complete method.
Omission of units is not (usually) counted as an error.
When resolving, condone sin/cos confusion for M1, but M0 for tan or dividing by sin/cos.

Question Number	Scheme	Marks
1	$\begin{aligned} & \text { Force exerted }=444 / 6(=74 \mathrm{~N}) \\ & \qquad \begin{array}{r} R+90 g \sin \alpha=44 \\ \Rightarrow R=3 \end{array} \end{aligned}$	B1 M1 A1 A1 (4)
	B1 444/6 seen or implied M1 Resolve parallel to the slope for a 3 term equation - condone sign errors and sin/cos confusion A1 All three terms correct - expression as on scheme or exact equivalent A1 32(N) only	
$2 \text {.(a) }$ (b)	$\mathbf{a}=\mathrm{d} \mathbf{v} / \mathrm{d} t=6 t \mathbf{i}-4 \mathbf{j}$ Using $\mathbf{F}=1 / 2 \mathbf{2}$, sub $t=2$, finding modulus e.g. at $t=2, \mathbf{a}=12 \mathbf{i}-4 \mathbf{j}$ $\begin{array}{r} \mathbf{F}=6 \mathbf{i} \\ \|\mathbf{F}\|=\sqrt{ }\left(6^{2}+2^{2}\right) \approx \underline{6.3} \end{array}$	M1 A1 M1, M1, M1 A1(CSO)
	M1 Clear attempt to differentiate. Condone \mathbf{i} or \mathbf{j} missing. A1 both terms correct (column vectors are OK) The 3 method marks can be tackled in any order, but for consistency on epen grid please enter as: M1 $\mathbf{F}=$ ma (their \mathbf{a}, (correct \mathbf{a} or following from (a)), not $\mathbf{v} . \quad \mathbf{F}=\frac{1}{2} \mathbf{a}$). Condone a not a vector for this mark. M1 subst $t=2$ into candidate's vector \mathbf{F} or a (a correct or following from (a), not \mathbf{v}) M1 Modulus of candidate's \mathbf{F} or \mathbf{a} (not \mathbf{v}) A1 CSO All correct (beware fortuitous answers e.g. from 6ti+4j)) Accept 6.3, awrt	

6.32, any exact equivalent e.g. $2 \square 10, \square \square 40, \frac{\sqrt{160}}{2}$

4. (a) (b)	PE lost $=2 m g h-m g h \sin \alpha(=7 m g h / 5)$ Normal reaction $R=m g \cos \alpha(=4 m g / 5)$ Work-energy: $\quad \frac{1}{2} m v^{2}+\frac{1}{2} \cdot 2 m v^{2}=\frac{7 m g h}{5}-\frac{5}{8} \cdot \frac{4 m g}{5} \cdot h$ $\Rightarrow \frac{3}{2} m v^{2}=\frac{9 m g h}{10} \Rightarrow v^{2}=\frac{3}{5} g h$	M1 A1 (2) B1 M1 A2, 1,0 A1 (5)
	M1 Two term expression for PE lost. Condone sign errors and sin/cos confusion, but must be vertical distance moved for A A1 Both terms correct, $\sin \square$ correct, but need not be simplified. Allow 13.72 mh . Unambiguous statement. B1 Normal reaction between A and the plane. Allow when seen in (b) provided it is clearly the normal reaction. Must use $\cos \square \square$ but need not be substituted. M1 (NB QUESTION SPECIFIES WORK \& ENERGY) substitute into equation of the form PE lost $=$ Work done against friction plus KE gained. Condone sign errors. They must include KE of both particles. A1A1 All three elements correct (including signs) A1A0 Two elements correct, but follow their GPE and $\square \mathrm{x}$ their $\mathrm{R} \times h$. $\mathrm{A} 1 \mathrm{~V}^{2}$ correct (NB $k g h$ specified in the Q)	

6678/01 Mechanics M2 - Standardisation Version
June 2007 Advanced Subsidiary/Advanced Level in GCE Mathematics

6. (a) (b) (c)	$\begin{aligned} & 0=(35 \sin \alpha)^{2}-2 g h \\ & h=\underline{40 \mathrm{~m}} \\ & x=168 \Rightarrow 168=35 \cos \square . t \quad(\Rightarrow \mathrm{t}=8 \mathrm{~s}) \\ & \text { At } t=8, \quad y=35 \sin \alpha \times t-\frac{1}{2} g t^{2} \quad\left(=28.8-1 / 2 . g .8^{2}=-89.6 \mathrm{~m}\right) \\ & \text { Hence height of } A=\underline{89.6 \mathrm{~m}} \text { or } 90 \mathrm{~m} \\ & 1 / 2 m v^{2}=1 / 2 . m .35^{2}+m g .89 .6 \\ & \Rightarrow v=\underline{54.6} \text { or } 55 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	M1 A1 A1 (3) M1 A1 M1 A1 DM1 A1 (6) M1 A1 A1 (3)
	M1 Use of $v^{2}=u^{2}+2 a s$, or possibly a 2 stage method using $v=u+a t$ and $s=u t+\frac{1}{2} a t^{2}$ A1 Correct expression. Alternatives need a complete method leading to an equation in h only. A1 $40(\mathrm{~m})$ No more than 2 sf due to use of g. M1 Use of $x=u \cos \square . t$ to find t. A1 $168=35 \times$ their $\cos \alpha \times t$ M1 Use of $s=u t+\frac{1}{2} a t^{2}$ to find vertical distance for their t. (AB or top to B) A1 $y=35 \sin \alpha \times t-\frac{1}{2} g t^{2} \quad(u, t$ consistent) DM1 This mark dependent of the previous 2 M marks. Complete method for AB. Eliminate t and solve for s. A1 cso. (NB some candidates will make heavy weather of this, working from A to max height (40 m) and then down again to B (129.6m)) OR: Using $y=x \tan \alpha-\frac{g x^{2} \sec ^{2} \alpha}{2 u^{2}}$ M1 formula used (condone sign error) A1 x,u substituted correctly M1 $\square \square$ terms substituted correctly. A1 fully correct formula M1, A1 as above M1 Conservation of energy: change in $\mathrm{KE}=$ change in GPE. All terms present. One side correct (follow their h). (will probably work A to B, but could work top to B). A1 Correct expression (follow their h) A1 54.6 or $55(\mathrm{~m} / \mathrm{s})$	

6678/01 Mechanics M2 - Standardisation Version
June 2007 Advanced Subsidiary/Advanced Level in GCE Mathematics

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{x}}=21 \\
& \mathrm{v}_{\mathrm{y}}=28-9.8 \mathrm{x} 8(-50.4)
\end{aligned}
$$

A1 v_{x} and v_{y} expressions correct (as above). Follow their h, t.
A1 54.6 or 55
NB Penalty for inappropriate rounding after use of g only applies once per question.

	B1 speed of B after second collision $(\pm) \frac{1}{4} u$ or $(\pm) \frac{5}{6} w$ M1 Comparing their speed of B after $2^{\text {nd }}$ collision with their speed of C after first collision. A1 CSO. Correct conclusion .	
8. (a)	$\begin{aligned} 0 \leq t \leq 4: & \quad a=8-3 t \\ \quad a & =0 \Rightarrow t=8 / 3 \mathrm{~s} \\ & \rightarrow v=8 \cdot \frac{8}{3}-\frac{3}{2} \cdot\left(\frac{8}{3}\right)^{2}=\frac{32}{3}(\mathrm{~m} / \mathrm{s}) \end{aligned}$ second M1 dependent on the first, and third dependent on the second.	M1 DM1 DM1 A1 (4)
(b)	$s=4 t^{2}-t^{3} / 2$	M1
(c)	$\begin{aligned} & t=4: s=64-64 / 2=\underline{32 \mathrm{~m}} \\ & t>4: \quad v=0 \Rightarrow t=\underline{8 \mathrm{~s}} \end{aligned}$	M1 A1 (3) B1 (1)
(d)	Either $t>4 \quad s=16 t-t^{2}(+C)$	M1
	$t=4, s=32 \rightarrow C=-16 \Rightarrow s=16 t-t^{2}-16$	M1 A1
	$t=10 \rightarrow s=44 \mathrm{~m}$	M1 A1
	But direction changed, so: $t=8, s=48$	M1
	$\text { Hence total dist travelled }=48+4=\underline{52 \mathrm{~m}}$	DM1 A1 (8)
	Or (probably accompanied by a sketch?) $\mathrm{t}=4 \quad \mathrm{v}=8, \mathrm{t}=8 \quad \mathrm{v}=0, \text { so area under line }=\frac{1}{2} \times(8-4) \times 8$	M1A1A1
	$t=8 \quad v=0, t=10 \quad v=-4$, so area above line $=\frac{1}{2} \times(10-8) \times 4$	M1A1A1
	$\square \square$ total distance $=32($ from b) $+16+4=\underline{52 \mathrm{~m}}$.	M1A1 (8)

Or \quadM1, A1 for $\mathrm{t}>4 \quad \frac{d v}{d t}=-2,=$ constant $\mathrm{t}=4, \mathrm{v}=8 ; \mathrm{t}=8, \mathrm{v}=0 ; \mathrm{t}=10, \mathrm{v}=-4$ $\mathrm{M} 1, \mathrm{~A} 1 \quad s=\frac{u+v}{2} t=\frac{32}{2} t,=16$ working for $\mathrm{t}=4$ to $\mathrm{t}=8$ $\mathrm{M} 1, \mathrm{~A} 1 \quad s=\frac{u+v}{2} t=\frac{-4}{2} t,=-4$ working for $\mathrm{t}=8$ to $\mathrm{t}=10$ $\mathrm{M} 1, \mathrm{~A} 1$ total $=32+14+4,=52$

M1 Differentiate to obtain acceleration
DM1 set acceleration. $=0$ and solve for t
DM1 use their t to find the value of v
A1 32/3, 10.7oro better
OR using trial an improvement:
M1 Iterative method that goes beyond integer values
M1 Establish maximum occurs for t in an interval no bigger than $2.5<\mathrm{t}<3.5$
M1 Establish maximum occurs for t in an interval no bigger than $2.6<\mathrm{t}<2.8$ A1

Or M1 Find/state the coordinates of both points where the curve cuts the x axis.
DM1 Find the midpoint of these two values.
M1A1 as above.
Or M1 Convincing attempt to complete the square:
DM1 substantially correct $\quad 8 t-\frac{3 t^{2}}{2}=-\frac{3}{2}\left(t-\frac{8}{3}\right)^{2}+\frac{3}{2} \times \frac{64}{9}$
DM1 Max value $=$ constant term
A1 CSO
M1 Integrate the correct expression
DM1 Substitute $\mathrm{t}=4$ to find distance $(\mathrm{s}=0$ when $\mathrm{t}=0$ - condone omission / ignoring of constant of integration)
A1 32(m) only
B1 $\mathrm{t}=8$ (s) only
M1 Integrate 16-2t
M1 Use $t=4, s=$ their value from (b) to find the value of the constant of integration. or $32+$ integral with a lower limit of 4 (in which case you probably see these two marks
occurring with the next two. First A1 will be for 4 correctly substituted.)
A1 $s=16 t-t^{2}-16$ or equivalent
M1 substitute $\mathrm{t}=10$
A1 44
M1 Substitute $\mathrm{t}=8$ (their value from (c))
DM1 Calculate total distance (M mark dependent on the previous M mark.)
A1 52 (m)

OR the candidate who recognizes $\mathrm{v}=16-2 \mathrm{t}$ as a straight line can divide the shape into two triangles:

M1 distance for $\mathrm{t}=4$ to $\mathrm{t}=$ candidates's $8=1 / 2 \mathrm{x}$ change in time x change in speed.

A1 8-4
A1 8-0
M1 distance for $\mathrm{t}=$ their 8 to $\mathrm{t}=10=1 / 2 \mathrm{x}$ change in time x change in speed.
A1 10-8
A1 0-(-4)

	M1 Total distance $=$ their (b) plus the two triangles $(=32+16+4)$. A1 52(m) NB: This order on epen grid (the A's and M's will not match up.)	

