Mark Scheme (Final) Summer 2007

GCE

GCE Mathematics (6680/01)

June 2007
6680 Mechanics M4 Mark Scheme

General:

For M marks, correct number of terms, dimensionally correct, all terms that need resolving are resolved. Omission of g from a resolution is an accuracy error, not a method error.
Omission of mass from a resolution is a method error.
Omission of a length from a moments equation is a method error.
Where there is only one method mark for a question or part of a question, this is for a complete method.
Omission of units is not (usually) counted as an error.

Question	Scheme	Marks
1(a)	$\begin{aligned} & u \cos 60^{\circ}=v \cos 30^{\circ} \\ & u=v \sqrt{3} \end{aligned}$ $\text { KE lost }=\frac{1}{2} m\left(u^{2}-v^{2}\right)$ $\text { Fraction of KE lost }=1-\left(\frac{v}{u}\right)^{2}$ $=1-\frac{1}{3}=\frac{2}{3}$ or at least 3 sf ending in 7 or $\frac{3}{\left(1-e^{2}\right)}$	M1A1 A1 M1 DM1 A1 (6)
(b)	$\begin{aligned} e & =\frac{v \sin 30^{\circ}}{u \sin 60^{\circ}} \\ & =\frac{v}{u} \cdot \frac{1}{\sqrt{3}} \\ & =\frac{1}{3} \end{aligned}$	M1A1 DM1 A1 (4)
a)	M1 Resolve parallel to the wall Alt: reasonable attempt at equation connecting two variables A1 Correct as above or equivalent equation correct A1 u in terms of v or v.v. - not necessarily simplified. or ration of the two variables correct M1 expression for KE lost DM1 expression in one variable for fraction of KE lost - could be u / v as above A1 cao	The first three marks can be awarded in (b) if not seen in (a)
b)	M1 Use NIL perpendicular to the wall and form equation in e A1 Correct unsimplified expression as above or $e u \sin 60^{\circ}=v \sin 30^{\circ}$ or equivalent DM1 Substitute values for trig functions or use relationship from (a) and rearrange to $\mathrm{e}=\ldots$... A1 cao accept decimals to at least 3sf	The first two marks can be awarded in (a)

Question Number	Scheme	Marks
3. (a)		M1A1A1 A1 (4) M1A1
(c)	$\text { B } \quad=0 \Rightarrow \tan \theta=\frac{1}{3}$	M1
	a $\Rightarrow \theta=0.32(1)^{\mathrm{c}}$ or 18.4° accept awrt	A1 (4)
	$\begin{aligned} \frac{d^{2} V}{d \theta^{2}} & =-m g a(-3 \cos \theta-\sin \theta) \\ & =m g a(3 \cos \theta+\sin \theta) \end{aligned}$	M1A1
	Hence, when $\theta=0.32^{\mathrm{c}}, \frac{d^{2} V}{d \theta^{2}}>0$	M1
	i.e. stable	A1 (4)
a)	M1 Expression for the potential energy of the two rods. Condone trig errors. Condone sign errors. BC term in two parts A1 correct expression for $A B$ A1 correct expression for BC A1 Answer as given.	
b)	M1 Attempt to differentiate V. Condone errors in signs and in constants. A1 Derivative correct M1 Set derivative $=0$ and rearrange to a single trig function in θ A1 Solve for θ or M1A1 find the position of the center of mass M1A1 form and solve trig equation for θ	
c)	M1 Differentiate to obtain the second derivative A1 Derivative correct M1 Determine the sign of the second derivative A1 Correct conclusion. cso Or: M1 Find the value of $\frac{d V}{d \theta}$ on both sides of the minimum point A1 signs correct M1 Use the results to determine the nature of the turning point A1 Correct conclusion, cso.	These 4 marks are dependent on the use of derivatives

4 (a)	Fix A $\begin{aligned} v_{\min } & =15 \sin 50^{\circ} \\ & =11.5 \mathrm{~km} \mathrm{~h}^{-1}(3 \text { s.f. }) \end{aligned}$ or: triangle without the right angle identified and $\frac{15}{\sin \theta}=\frac{v_{B}}{\sin 50}$ $\Rightarrow v_{B}=\frac{15 \sin 50}{\sin \theta}$ minimum value $\Rightarrow \theta=90$ for M1 As above for A1A1	M1A1 A1 (3)
(b)	Ambiguous Sine Rule: 2 possible solutions for α	B1B1 (2)
(c)	$\frac{\sin \alpha}{15}=\frac{\sin 50}{13}$	M1A1
	$\alpha=62,1^{\circ}$ (or 118°) (smaller value gives larger relative velocity)	A1
	$\begin{aligned} & \Rightarrow \text { either } \\ & v=13 \cos 62.1+15 \cos 50=15.72 k m h^{-1} \end{aligned}$	M1A1
	$\begin{aligned} & \text { Or } \\ & v^{2}=15^{2}+13^{2}-390 \cos 67.9=247.27 \\ & v=15.7 k m h^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	$\begin{aligned} \text { Time } & =\frac{20}{\text { their15.72..... }} \\ & =1.272 \ldots \ldots \mathrm{hrs} \end{aligned}$	M1 A1
	Earliest time is 13.16 hrs or 13.17 hrs accept $1.16(\mathrm{pm})$ or $1.17(\mathrm{pm})$	A1 (8)

5. (a)

a)	M1 Hooke's law to find extension at equilibrium A1 cao B1 Q specifies reference to a diagram. Correct reasoning leading to given answer.
b)	M1 Use of $\mathrm{F}=\mathrm{ma}$. Weight, tension and acceleration. Condone sign errors. M1 Substitute for tension in terms of x M1 Use given result to substitute for x in terms of y A1 Correct unsimplified equation A1 Rearrange to given form cso.
c)	M1 Correct form for CF A1 GS for y correct B1 Deduce coefficient of $\cos \theta=0$ M1 Differentiate their y and substitue $\mathrm{t}=0, \dot{y}=0$ A1 y in terms of t . Any exact equivalent.
d)	B1 \dot{y} correct M1 set $\dot{y}=0$ M1 solve for general solution for $t: 7 t=2 k \pi \pm 2 t$ $\text { or: } \sin \frac{9 t}{2} \times \sin \frac{5 t}{2}=0 \Rightarrow \sin \frac{9 t}{2}=0 o r \sin \frac{5 t}{2}=0$ A1 Select smallest value

