

Mark Scheme (Final) Summer 2007

GCE

GCE Mathematics (6684/01)

edexcel

June 2007 6684 Statistics S2 Mark Scheme

Scheme	Marks
<u>Continuous uniform</u> distribution or rectangular distribution. f(x).	B1
$\frac{1}{5}$ 1/5,(0),5	B1
$0 \qquad 5 \qquad x \qquad$	B1 (3)
E(X) = 2.5 ft from their a and b, must be a number	B1ft
	M1 A1
12	(3)
$P(X > 3) = \frac{2}{5} = 0.4$ 2 times their 1/5 from diagram P(X = 3) = 0	B1ft (1) B1 (1)
	(Total 8)
	Continuous uniform distribution or rectangular distribution. $f(x) = \frac{1}{5}$ 0 may be implied by start at y axis 0 may be implied by start at y axis 0 may be implied by start at y axis E(X) = 2.5 ft from their a and b, must be a number Var(X) = $\frac{1}{12}(5-0)^2$ or attempt to use $\int_0^5 f(x)x^2 dx - \mu^2$ use their f(x) = $\frac{25}{12}$ or 2.08 o.e avrt 2.08 P(X > 3) = $\frac{2}{5} = 0.4$ 2 times their 1/5 from diagram

Question Number		Scheme	Marks
Question Number	= 1 - 0.9858 $= 0.0142$ $0.0142 < 0.05$ (Reject H ₀ .) There is signific <u>is polluting the river with bases</u> <u>or</u> The scientists claim is justified <u>Method 2</u> H ₀ : $\lambda = 5$ ($\lambda = 2.5$) H ₁ : $\lambda > 5$ ($\lambda > 2.5$) $X \sim Po$ (2.5) P(X < 7) = 0.9858 $0.9858 > 0.95$	may use λ or may be implied $\begin{bmatrix} P(X \ge 5) = 1 - 0.8912 = 0.1088 \end{bmatrix} \text{ att } P(X \ge 7) \\ P(X \ge 6) = 1 - 0.9580 = 0.0420 \\ CR X \ge 6 \text{ awrt } 0.0142 \\ 7 \ge 6 \text{ or } 7 \text{ is in critical region or } 7 \text{ is significant} \end{bmatrix} P(X \ge 6)$ cant evidence at the 5% significance level that the factory acteria. ied may use λ or μ may be implied $\begin{bmatrix} P(X < 5) = 0.8912 \end{bmatrix} \text{ att } P(X < 7) \\ P(X < 6) = 0.9580 \\ CR X \ge 6 \text{ wrt } 0.986 \\ 7 \ge 6 \text{ or } 7 \text{ is in critical region or } 7 \text{ is significant} \end{bmatrix} P(X < 6)$	Marks B1 B1 M1 M1 A1 M1 B1 (7) Total 7 B1 M1 A1 M1 B1 (7) Total 7 (7) (7) (7) (7) (7) (7) (7) (7) (7) (7

Method 1		Dí
$ H_{o}: \lambda = 5 \ (\lambda = 2.5) \\ H_{1}: \lambda \neq 5 \ (\lambda \neq 2.5) $	may use λ or μ	B1 B0
<i>X</i> ~ Po (2.5)		M 1
$P(X \ge 7) = 1 - P(X \le 6) = 1 - 0.9858$	$\begin{bmatrix} P(X \ge 6) = 1 - 0.9580 = 0.0420 \\ P(X \ge 7) = 1 - 0.9858 = 0.0142 \end{bmatrix} \text{ att } P(X \ge 7) = P(X \ge 7)$	M1
= 0.0142	$CR X \ge 7 \qquad awrt \ 0.0142$	A1
0.0142 < 0.025	$7 \ge 7$ or 7 is in critical region or 7 is significant	M1
	ficant evidence at the 5% significance level that the factory	B1
<u>is polluting the river</u> with <u>or</u> The scientists claim is just		
$\frac{\text{Method } 2}{\text{H}_{\text{o}}: \lambda = 5 \ (\lambda = 2.5)}$ $\text{H}_{1}: \lambda \neq 5 \ (\lambda \neq 2.5)$	may use λ or μ	B1 B0
<i>X</i> ~ Po (2.5)		M1
P(<i>X</i> < 7)	$\begin{bmatrix} P(X < 6) = 0.9580 \end{bmatrix} & \text{att } P(X < 7) \\ P(X < 7) = 0.9858 \end{bmatrix}$	
= 0.9858	$\operatorname{CR} X \ge 7 \qquad \text{awrt } 0.986$	M1A1
0.9858 > 0.975	$7 \ge 7$ or 7 is in critical region or 7 is significant	M1
is polluting the river with	ficant evidence at the 5% significance level that the factory bacteria.	B1
or The scientists claim is just	tified	
		1

Question Number	Scheme			Marks
3(a)	<i>X</i> ~ Po (1.5)	need Po and 1.5	B1	(1)
(b)	<u>Faulty</u> components occur at a constant rate. <u>Faulty</u> components occur independently or randomly. <u>Faulty</u> components occur singly.	any two of the 3 only need faulty once	B1 B1	(2)
(c)	$P(X=2) = P(X \le 2) - P(X \le 1)$ or $\frac{e^{-1.5}(1.5)^2}{2}$		M1	
	= 0.8088 - 0.5578	.0.051		
	= 0.251	awrt 0.251	A1	(2)
(d)	<i>X</i> ~ Po(4.5)	4.5 may be implied	B1	
	$P(X \ge 1) = 1 - P(X = 0) = 1 - e^{-4.5}$		M1	
	$= 1 - 0.0111 \\= 0.9889$	awrt 0.989	A1	(3)
				Total 8
L				

Question Number	Scheme		Marks
4	Attempt to write down combinations	at least one seen	M1
	(5,5,5), (5,5,10) any order (10,10,5) any order, (10,10,10)		A1
	(5,10,5), (10,5,5), (10,5,10), (5,10,10),	all 8 cases considered. May be implied by (10,5,10) and 3 * (5,5,10)	A1
	median 5 and 10		B1
	Median = 5 P(M = m) = $\left(\frac{1}{4}\right)^3 + 3\left(\frac{1}{4}\right)^2 \left(\frac{3}{4}\right) = \frac{10}{64} = 0.15625$	add at least two prob using ¼ and ¾. identified by having same median of 5 or 10 Allow no 3 for M	M1 A1
	Median = 10 P(M = m) = $\left(\frac{3}{4}\right)^3 + 3\left(\frac{3}{4}\right)^2 \left(\frac{1}{4}\right) = \frac{54}{64} = 0.84375$		A1 (7) Total 7

Question Number		Scheme		Marks
5(a)	If $X \sim B(n,p)$ and n is large, $n > 50p$ is small, $p < 0.2then X can be approximated by Po(np)$		B1 B1	(2)
(b)	P(2 consecutive calls) = 0.01^2 = 0.0001		M1 A1	(2)
(c)	<i>X</i> ~B(5, 0.01)	may be implied	B1	
	P(X > 1) = 1 - P(X = 1) - P(X = 0) = 1 - 5(0.01)(0.99) ⁴ - (0.99) ⁵ = 1 - 0.0480298 0.95099		M1	
	= 0.00098	awrt 0.00098	A1	(3)
(d)	$X \sim B(1000, 0.01)$ Mean = $np = 10$ Variance = $np(1 - p) = 9.9$	may be implied by correct mean and variance	B1 B1 B1	(3)
(e)	<i>X</i> ~ Po(10)			
	$P(X > 6) = 1 - P (X \le 6)$ = 1 - 0.1301		M1	
	= 0.8699	awrt 0.870	A1	(2)
				Total 12

Question Number		Scheme		Mar	ks
6	$\label{eq:metric} \begin{array}{l} \underline{One \ tail \ test} \\ \underline{Method \ 1} \\ H_o: \ p = 0.2 \\ H_1: \ p > 0.2 \end{array}$			B1 B1	
	$X \sim B(5, 0.2)$	may	be implied	M1	
	$P(X \ge 3) = 1 - P(X \le 2) = 1 - 0.9421$	$[P(X \ge 3) = 1 - 0.9421 = 0.0579]$ $P(X \ge 4) = 1 - 0.9933 = 0.0067$	att P($X \ge 3$) P($X \ge 4$)	M1	
	= 0.0579	$\operatorname{CR} X \ge 4$	awrt 0.0579	A1	
	0.0579 > 0.05	$3 \le 4$ or 3 is not in critical region or	3 is not significant	M1	
-		insufficient evidence at the 5% signif mber of times the taxi/driver is late. fied	icance level that	B1 To	(7) tal 7
	$\label{eq:method_linear} \begin{split} \underline{Method~2}\\ H_{o}: p = 0.2\\ H_{1}: p > 0.2 \end{split}$			B1 B1	
	$X \sim B(5, 0.2)$	may	be implied	M1	
	P(X < 3) =	[P(X < 3) = 0.9421] P(X < 4) = 0.9933	att P($X < 3$) P($X < 4$)		
	0.9421	$\operatorname{CR} X \ge 4$	awrt 0.942	M1A1	
	0.9421 < 0.95	$3 \le 4$ or 3 is not in critical region or	3 is not significant	M1	
		insufficient evidence at the 5% signif mber of times the <u>taxi/driver is late.</u> fied	icance level that	B1	(7)

<u>Two tail test</u> <u>Method 1</u>			B1	
$\overline{H_o: p=0.2}$			B0	
$H_1: p \neq 0.2$			M1	
$X \sim X \sim \mathrm{B}(5,0.2)$		may be implied	M1	
$P(X \ge 3) = 1 - P(X \le 2) = 1 - 0.9421$	$[P(X \ge 3) = 1 - 0.9421 = 0.0579]$ $P(X \ge 4) = 1 - 0.9933 = 0.0067$	att P($X \ge 3$) P($X \ge 4$)		
= 0.0579	$\operatorname{CR} X \ge 4$	awrt 0.0579	A1 M1	
0.0579 > 0.025	$3 \le 4$ or 3 is not in critical region of	3 is not significant	B1	
	is insufficient evidence at the 5% signies number of times the <u>taxi/driver is late</u> . ustified			
Method 2			B1 B0	
$H_0: p = 0.2$ $H_1: p \neq 0.2$			M1	
$X \sim X \sim \mathrm{B}(5,0.2)$		may be implied		
P(X < 3) =	[P(X < 3) = 0.9421] P(X < 4) = 0.9933	att P($X < 3$) P($X < 4$)		
0.9421	$\operatorname{CR} X \ge 4$	awrt 0.942	M1A1	
0.9421 < 0.975	$3 \le 4$ or 3 is not in critical region of	r 3 is not significant	M1	
	s insufficient evidence at the 5% signifi e number of times <u>the taxi/driver is late.</u> ustified		B1	
Special Case				
If they use a probability of	of $\frac{1}{7}$ throughout the question they may	gain B1 B1 M0 M1		
A0 M1 B1.	,			
NB they must attempt to	work out the probabilities using $\frac{1}{7}$			
	7			

Question Number	Scheme	Marks
7(a) i	If $X \sim B(n,p)$ and n is large or $n > 10$ or $np > 5$ or $nq >5p$ is close to 0.5 or $nq >5$ and $np >5then X can be approximated by N(np, np(1-p))$	
ii	mean = np	(2) B1
	variance = $np(1-p)$ must be in terms	of p B1
		(2)
(b)	$X \sim N (60, 58.2)$ or $X \sim N (60, 7.63^2)$ 60, 58.2	B1, B1
	$P(X \ge 40) = P(X > 39.5)$ using 39.5 or 40	0.5 M1
	$= 1 - P\left(z < \pm \left(\frac{39.5 - 60}{\sqrt{58.2}}\right)\right)$ standardising 39.5 or 40 or 40.5 and their µ at = 1 - P(z < -2.68715)	nd σ M1
	= 0.9965 allow answers in range 0.996 – 0.9	both M
(c)	E(X) = 60 may be implied or ft from part	(5) (b) B1ft
	Expected profit = $(2000 - 60) \times 11 - 2000 \times 0.70$ = £19 940.	M1 A1 (3) Total 12

