Mark Scheme (Final) Summer 2007

GCE

GCE Mathematics (6690/01)

June 2007 6690 Decision Mathematics Mark Scheme

Question Number	Scheme	Marks
1) (a)	Add 32 to AB+BA (ACB) 47 to AE + EA (ACDE)	BI
	32 to CE + EC ((DE)	BI
	53 to DG+60 (OCE)	B1 (4)
(b)	A C B D E F G A 15+17+38+11+31+30+23 = 165 miles	m, A1 A1 (3)
(c)	eg BC, CD, DE, EF, FG BC DE FG	m _i
a de la companya de l	weight of RSMT = 110 miles	AI
	Lover bound = 110 + 15 + 23 = 148 miles	MI AN (4)
	Section 1985	111

2) (a) \[\begin{array}{c c c c c c c c c c c c c c c c c c c	Question Number	Scheme	
So he'u play 2 with probability $1-p$ If thilary play 1 Denis wins: $2p-3(1-p)=5p-3$ If thilary play 2 Denis wins: $-p+4(1-p)=4-5p$ If thilary play 3 Denis wins: $3p-4(1-p)=7p-4$ The probability $\frac{7}{10}$ Denis should play 1 with probability $\frac{7}{10}$ 2 with probability $\frac{3}{10}$ Biffer		$\begin{bmatrix} 2 & -1 & 3 \\ -3 & 4 & -4 \end{bmatrix} - 1 \leftarrow 2 \neq -1$ $col 2 + 3 \qquad : not stable$	mı 6
If Hilay plays 2 Denis wins: $-p+4(1-p)=4-5p$ If Hilay plays 3 Denis wins: $3p-4(1-p)=7p-4$ The probability $\frac{7}{10}$ Denis should play 1 with probability $\frac{7}{10}$ 2 with probability $\frac{3}{10}$	<i>(b)</i>	Let Denis play 1 with probability p So he'u play 2 with probability 1-p	
Denis should play I with probability $\frac{7}{10}$ 2 with probability $\frac{3}{10}$ Biffe		Th History plays 2 Denis wins: -p+4(1-p) = 4-50	mı A2,
Denis should play 1 with probability 70 2 with probability 30 BUB		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	mı A
		Denis should play 1 with probability 70 2 with probability 30	BIJB

(a) (b) (c) (a) (b) (c) (c) (a) (b) (c) (c) (c) (c) (c) (d) (d) (d	mi Al (2) mi Al/Al/ (3) mi Al/Al/ Al (4) Bl mi Al/ Al (3)
--	---

(a)	A S D seak 1 0 94, 2 0 65 3 0 8 0	B2,10 (2)
(6)	toki supply > total demand	B1 (1)
(c) (d)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 m, A)√
		A1 (4)
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1 (3)
(e)	S(1) = 0 $D(A) = 4.9S(1) = -0.7$ $D(6) = 4.5S(3) = -0.5$ $D(6) = 0$	mı Al
	$T_{1A} = 5 - 0 - 4.9 = 0.1$ $T_{2D} = 0 + 0.7 - 0 = 0.7$ $T_{3A} = 4.6 + 0.5 - 4.9 = 0.2$ $T_{3D} = 0 + 0.5 - 0 = 0.5$	A I
	Optimal Lince call II's >0 Cost £ 902.70	A1 (4) M1A1 (2) J16

5) Alt I Game from R's point of view.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1, B1.
Let R play 1 with probability P, 2 ' Pr 3 ' Pr V = value of the game	BI (1)
maximize P=V	B1 (1)
Subject to $V - P_1 - 9P_2 - 10P_3 \le 0$ $V - 10P_1 - 6P_2 - 5P_3 \le 0$	MIAIS
$V - 2\beta_1 - 3\beta_2 - 8\beta_3 \leq 0$ $\beta_1 + \beta_2 + \beta_3 \leq 1 \text{accept} =$	AI
V, R, R, P3 > 0 A1+2 Add 4 to all entres A1 10 2 1 A2 1 5 6 A3 9 8 3	B1 (1)
Let R play I with probability P. 2 Pr 1et V = value of game.	ВІ
let $x_1 = \frac{P_1}{V}$, $x_2 = \frac{P_2}{V}$ $x_3 = \frac{P_3}{V}$	B1 (2)
max: mie P= X, + X2 + X1	B1 (1)
Subject to $10 \times 1 + 2 \times 1 + 1 \times 1 \le 1$ $\times 1 + 5 \times 2 + 6 \times 1 \le 1$	MI AIS
9 x, + 8 x, +3 x, & 1 12, x,	A. (4)

6		· (a)						
6			Stage	State	Action	Destination	Value	
				ত	JY	У	98 *	
		:	1	k	kу	У	94 4	BI
				Ĺ	LY	7	86#	
				G	らづ	, 2	max (79,98) = 98 *	mı
					GK	k	mak (98, 94) = 98 *	1
	Ì		2	Н	Hk	k	max (95, 94) = 95	A: A!
					HL	L	max (72,86) = 86 *	(4
				I	IL	L	max (56, 86) = 86 *	1 (4
	ļ			C	CG	G.	mex (50, 98) = 98 F	
	- [Ď	V G	G .	Maje (92, 98) = 98.	ml
			3		DH	Н	max (81,86) =86 #	AVAV
				E	EH	И	max (89,86) = 89 *	(3
	1			F	FH	И	max (84,86) = 86 *	
					FI.	Ħ	max (72,86) =86*	
		. [A	At	۷	mex (95,98) = 98	mı
			.		AD	D	mex(86, 86) = 86 x	ŀ
			4		AE	E	max (63,89) = 89	AV
				ß	BE	٦	max (88, 89) = 89	
		Ī			BF	F	max(87,86) = 87 *	
.		Ī	5	х	XA	P ,	maz (55, 86) = 86 x	AVC
1					хβ	В	max (85, 87) = .87	, , , , , ,
+		Ī					-#	
			v 0	กน	, ,	/m:	nimax = 86)	miAl
			ХΠ	D FI	L /	Cin	Millian Las	
								(2)
	(b)	хвг	\ \ I	1>1	Ą	(mi	nimax = 87) Coz	m A)
								114
								1
	İ							
								j
İ								
	-							j
								ì
1								
5	1							