## Mark Scheme (Final)

## Summer 2007

## GCE

## GCE Mathematics (6691/01)

June 2007
6691 Statistics S3
Mark Scheme



| Question number | Scheme Marks |
| :---: | :---: |
| 3. |  |
|  | $1^{\text {st }} \& 2^{\text {nd }} \mathrm{B} 1 \quad$ must see $\mu$ and 18 <br> $1^{\text {st }}$ M1 for attempting test statistic, allow $\pm$. Or attempt at critical value for $\bar{X}: \mu-z \times \frac{3}{\sqrt{15}}$ $1^{\text {st }} \mathrm{A} 1$ for AWRT -1.94 . Allow use of $\|z\|=+1.94$ to score M1A1. Or critical value $=$ AWRT 16.7. $3^{\text {rd }} \mathrm{B} 1$ for AWRT 0.026 (i.e. correct probability only) or $\pm 1.6449$. (May be seen in cv formula) $2^{\text {nd }}$ M1 for correct comparison or statement relating their test statistic and 1.6449 or their probability and 0.05 . Ignore their hypotheses if any or assume they were correct. <br> $2^{\text {nd }}$ Alf.t. for conclusion in context which refers to "speed" or "time". Depends only on previous M |




| Question number | Scheme Marks |
| :---: | :---: |
| 6. |  |
|  | $1^{\text {st }}$ B1 for mean $=139.1$ only <br> $1^{\text {st }}$ M1 for UL - mean or mean - LL set equal to $z$ value times standard error or some equivalent expression for standard error. Follow through their 2.5758 provided a $z$ value. <br> May be implied by $\frac{\sigma}{\sqrt{n}}=6.056 \ldots$ [N.B. $\frac{15.6}{2.3263}=6.705 \ldots$...] <br> Condone poor notation for standard error if it is being used correctly to find CI. <br> $2^{\text {nd }} \mathrm{M} 1$ for full method for semi-width (or width) of $95 \%$ interval <br> Follow through their $z$ values for both M marks <br> N.B. Use of 2.60 instead of 2.5758 should just lose $2^{\text {nd }}$ B1 since it leads to AWRT $(127,151)$ |


| Question number | Scheme Marks |
| :---: | :---: |
| 7. (a) (b) (c) |  |
| (a) (c) | $1^{\text {st }}$ M1 for defining $X$ and attempting $\mathrm{E}(X)$ <br> $1^{\text {st }} \mathrm{A} 1$ for 0.1 . Answer only will score both marks. <br> $2^{\text {nd }} \mathrm{M} 1$ for $\operatorname{Var}(L)+\ldots$. <br> $3^{\text {rd }} \mathrm{M} 1$ for $\ldots .4^{2} \operatorname{Var}(S)$. For those who don't attempt $L-4 S$ this will be their only mark in (a). <br> $2^{\text {nd }} \mathrm{A} 1$ for 0.89 <br> $4^{\text {th }}$ M1 for attempting a correct probability, correct expression and attempt to find, which should involve some standardisation: ft their $\sqrt{0.89}$ and their 0.1. <br> If 0.1 is used for $\mathrm{E}(X)$ answer should be $>0.5$, otherwise M0. <br> $1^{\text {st }} \mathrm{M} 1$ for a correct method for $\mathrm{E}(Y)$, ft their $\mathrm{E}(T)$. <br> $2^{\text {nd }}$ M1 for a correct method for $\operatorname{Var}(Y)$, ft their $\operatorname{Var}(T)$. Must have + . <br> $3^{\text {rd }} \mathrm{M} 1$ for dealing with the modulus and a correct probability statement. Must be modulus free. <br> May be implied by e.g. $\mathrm{P}\left(Z<\frac{0.2}{\sqrt{\text { their } 0.41}}\right)-0.5$, or seeing both $0.378 \ldots$ (or $0.622 \ldots$ ) and 0.5 <br> $4^{\text {th }}$ M1 for correct expression for the correct probability, as printed or better. E.g. $0.5+0.378$.. is M0 A1 for AWRT in range. |

