

Mark Scheme (Final) Summer 2007

GCE

GCE Mathematics (6691/01)

edexcel

June 2007 6691 Statistics S3 Mark Scheme

Question number	Scheme	Marks
1. (a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1A1
	$\sum d^2 = 32$	M1A1
	$r_{S} = 1 - \frac{6 \times 32}{8 \times (8^{2} - 1)}$	M1
	$=\frac{13}{21}$ or AWRT 0.619	A1 (6)
(b)	$H_0: \rho = 0 \qquad H_1: \rho > 0 \qquad (\rho_s \text{ is OK}) \qquad \text{both}$ $r_s \text{ 1 tail 5\% critical value is 0.6429} \qquad (Independent of their H_1)$ $0.619 < 0.6429 \qquad \text{or not significant}$ So insufficient evidence of a positive correlation between judges	B1 B1 (<u>+</u> is OK) M1
	<u>Or</u> competitor <u>is</u> justified	A1f.t. (4) 10
(a)	1 st M1 for attempting to rank both <i>P</i> and <i>Q</i> . 1 st A1 for both correct (could be reversed) 2 nd M1 for attempting d^2 2 nd A1 for $\sum d^2 = 32$. 3 rd M1 for correct use of formula for r_s	
(b)	M1 for a correct comparison or statement about significance (o.e.) Follow through their r_s provided 0< r_s <1	
	Alf.t. for a conclusion in context. Must mention judges or marks or competitor.	
	If they use correlation they must say it is positive.	
	Follow through their positive r_s with their positive c.v. and ignore hypothe	eses.
	So $r_s = 0.667$ they could say competitor's claim is not justified etc.	• 4 \ •
S.C.	<u>No ranking</u> Typical answer (-3.82) can get mark for use of r_s formula and hypothe	ses 1n (b) only
	(a) M0A0M0A0M1A0 (b) B1B1M0A0	

Question number	Scheme	Marks
2. (a)	H_0 : Maths grades are independent of English grades or No association	
	H_1 : Maths and English grades are dependent <u>or</u> There is an association	B1
	Expected Frequencies e.g. $\frac{60 \times 40}{120} = 20$ 20 27.5 12.5 20 27.5 12.5	M1 A1
	$\sum \frac{(O-E)^2}{E} = 2 \times \left(\frac{5^2}{20} + \frac{2.5^2}{27.5} + \frac{2.5^2}{12.5}\right), = 3.9545$ AWRT <u>3.95</u> or <u>3.955</u>	M1, A1
	$v = (3-1)(2-1) = 2;$ $\chi_2^2(10\%) \text{ c.v.} = 4.605$	B1; B1
	3.95< 4.605 or not significant or do not reject H_0 (allow reject H_1)	M1
	Insufficient evidence of an association between English and maths gradesorthere is support for the Director's belieforStudent's grades in maths and English are independent	A1 (9)
(b)	May have some expected frequencies <5 (and hence need to pool rows/cols)	B1 (1) 10
(a)	1 st B1 for both hypotheses in terms of independence or association and in context	
	Must mention Maths and English in at least one of the hypotheses.	
	"relationship" or "correlation" or "connection" or "link" is B0	
	1 st M1 for some correct calculation seen	
	1 st A1 for all expected frequencies correct. Accept answers without formula seen	
	2 nd M1 for some evidence seen of attempt to calculate test statistic.	
	At least one correct term seen. Follow through their expected frequencies.	
	2 nd A1 for AWRT 3.95. Answers only please escalate!	
	3 rd M1 for correct comparison or statement – may be implied by correct conclusio	n.
	3 rd A1 for conclusion in context using "association" or "independence" in connect	tion with grades.
	Don't insist on seeing English or maths mentioned here.	
	Use ISW for comments if a false statement and correct statement are seen.	
(b)	B1 If they just say expected frequencies are "small" they must go onto mentio	n need to pool.

Question number	Scheme	Marks
3.	$H_0: \mu = 18, \qquad H_1: \mu < 18$	B1, B1
	$z = \frac{16.5 - 18}{\sqrt[3]{\sqrt{15}}} =, -1.9364$ AWRT - 1.94	M1, A1
	5% one tail c.v. is $z = (-) 1.6449$ or probability (AWRT 0.026) (<u>+</u>) 1.6449	B1
	- $1.94 < -1.6449$ or significant or reject H_0 or in critical region	M1
	There is evidence that the (mean) time to complete the puzzles has reduced	
	<u>Or</u> Robert is getting faster (at doing the puzzles)	Alf.t.
	$1^{\text{st}} \& 2^{\text{nd}} B1$ must see μ and 18	7
	1 st & 2 nd B1 must see μ and 18 1 st M1 for attempting test statistic, allow \pm . Or attempt at critical value for $\overline{X} : \mu - z \times \frac{3}{\sqrt{15}}$ 1 st A1 for AWRT – 1.94. Allow use of $ z = +1.94$ to score M1A1. Or critical value = AWF 3 rd B1 for AWRT 0.026 (i.e. correct probability only) or \pm 1.6449. (May be seen in cv form 2 nd M1 for correct comparison or statement relating their test statistic and 1.6449 or their pro- and 0.05. Ignore their hypotheses if any or assume they were correct. 2 nd A1f.t. for conclusion in context which refers to "speed" or "time". Depends only on pre-	

Question number	Scheme	Marks
4. (a)	$\frac{0 \times 17 + 1 \times 31 + \dots}{17 + 31 + \dots} = \left(\frac{200}{100} = 2\right), \qquad \hat{p} = \frac{2}{20} = \underbrace{0.1}_{\text{(Accept } 20)} \text{(Accept } \frac{2}{20} \text{ or } 2 \text{ per } 20)$	M1, A1 (2)
(b)	e.g. $r = 100 \times {\binom{20}{2}} (0.1)^2 (0.9)^{18}$	M1
	r = 28.5, s = AWRT 9	A1, A1 (3)
(c)	x0123 ≥ 4	
	O 17 31 19 14 19	M1
	O_i II II II II II Pooling E_i 12.2 27.0 28.5 19.0 13.3 Pooling	M1
	$\frac{(O-E)^2}{(O-E)^2} 1.89 0.59 3.17 1.32 2.44$	
	E $(O-E)^2$	M1A1c.a.o.
	$v = 5 - 2 = 3$, $\chi_3^2(5\%) = 7.815$	B1ft, B1ft
	H_0 : Binomial distribution is a good/suitable model/fit [Condone: B(20, 0.1) is]	
	H ₁ : Binomial distribution is not a suitable model both	B1
	(Significant result) Binomial distribution is not a suitable model	A1cao (7)
(d)	defective items do <u>not occur independently</u> or <u>not with constant probability</u>	B1ft (1)
		13
(a)	M1 for attempt to find mean or \hat{p} (as printed or better). The 0.1 must be seen if M1 for correct expression for r or excise the binomial distribution. Follow the	-
(b) (c)	M1 for correct expression for <i>r</i> or <i>s</i> using the binomial distribution. Follow the 1 st M1 for some pooling (accept $x \ge 5$, obs.freq14, 9, 10 and exp.freq. 19.0, <i>s</i> ,	
	2^{nd} M1 for calculation of test statistic (N.B. $x \ge 5$ gives 14.5). One correct term see	
	1 st B1ft for number of classes -2 (N.B. $x \ge 5$ will have $6 - 2 = 4$)	
	2^{nd} B1ft for the appropriate tables value, ft their degrees of freedom. (NB χ	$q_4^2(5\%) = 9.488$)
	3^{rd} B1 (for hypotheses) allow just " <i>X</i> ~ B(20, 0.1)" for null etc.	
	2 nd A1 for correctly rejecting Binomial model. No ft and depends on 2 nd M	<i>I</i> 1.
(d)	B1ft for independence or constant probability – must mention defective items of	r defectives
	Follow through their conclusion in (c). So if they do not reject they may say	-
	occur with probability 0.1". Stating the value implies constant probability.	

Question number	Scheme	Marks	
5. (a)	$\hat{\mu} = \overline{x} = \frac{361.6}{80}, = \underline{4.52}$ $\hat{\sigma}^2 = s^2 = \frac{1753.95 - 80 \times \overline{x}^2}{79} = (1.51288)$	M1, A1	
	$\hat{\sigma}^2 = s^2 = \frac{1753.95 - 80 \times \overline{x}^2}{79} = (1.51288)$	M1A1ft	
	AWRT <u>1.51</u>	A1	(5)
(b)	$\mathbf{H}_0: \boldsymbol{\mu}_A = \boldsymbol{\mu}_B \qquad \mathbf{H}_1: \boldsymbol{\mu}_A > \boldsymbol{\mu}_B$	B1 B1	
	Denominator	M1	
	$z = \frac{4.52 - 4.06}{\sqrt{\frac{1.51}{80} + \frac{2.50}{60}}} = \left(\frac{0.46}{\sqrt{0.0605}}\right)$	dM1	
	$= (\pm) 1.8689$ AWRT $(\pm) 1.87$	A1	
	One tail c.v. is $z = 1.6449$ (AWRT 1.645 or probability AWRT 0.0307 or 0.0308)	B1	
	(significant) there is evidence that diet A is better than diet $B \underline{\text{or}}$		
	evidence that (mean) weight lost in first week using diet A is more than with B	A1ft	(7)
(c)	CLT enables you to assume that \overline{A} and \overline{B} are normally distributed	B1	(1)
(d)	Assumed $\sigma_A^2 = s_A^2$ and $\sigma_B^2 = s_B^2$ (either)	B1	(1)
		14	
(a)	2 nd M1 for a correct attempt at <i>s</i> or s^2 , A1ft for correct expression for s^2 , ft their s N.B. $\sigma^2_n = 1.49$ so $\frac{80}{79} \times 1.49$ is M1A1ft	mean.	
(b)	1 st B1 can be given for $\mu_1 = \mu_2$, but 2 nd B1 must specify which is <i>A</i> or <i>B</i> . 1 st M1 for the denominator, follow through their 1.51.		
	Must have square root can condone 2.50 ² but $\sqrt{\frac{1.51^2}{80} + \frac{2.50^2}{60}}$ is M0.		
	Allow $\sqrt{\frac{1.51}{79} + \frac{2.50}{59}}$ leading to AWRT 1.85 to score M1M1A0 in (b) and c	can score in (d)).
	2 nd dM1 for attempting the correct test statistic, dependent on denominator n	nark	
	1^{st} A1for AWRT \pm 1.87, may be implied by a correct probability. 2^{nd} A1ftft their test statistic vs their cv only if H ₁ is correct and both Ms are	e scored	
(c) (d)	B1 for stating <u>either</u> \overline{A} or \overline{B} (but not A or B) are normally distributed B1 for either, can be stated in words in terms of variances or standard deviatio	ns.	

Question number	Scheme	Marks
6.	$\overline{x} = \frac{1}{2} (123.5 + 154.7) = 139.1$	B1
	2.5758	B1
	"their 2.5758" $\frac{\sigma}{\sqrt{n}} = 154.7 - 139.1 = 15.6$	M1
	AWRT 1.96	B1
	"their 1.96" $\frac{\sigma}{\sqrt{n}} = \frac{15.6 \times 1.96}{2.5758} = (11.87)$	M1
	So 95% C.I. = 139.1 <u>+</u> 11.87= (127.22, 150.97) AWRT (127, 151)	A1
	1 st D1 for moon 120.1 or b	6
	1^{st} B1 for mean = 139.1 only 1^{st} M1 for LU mean or mean LL set equal to z value times standard error or so	ma aquivalant
	1^{st} M1 for UL – mean or mean – LL set equal to z value times standard error or so expression for standard error. Follow through their 2.5758 provided a z value times standard error.	
		iuc.
	May be implied by $\frac{\sigma}{\sqrt{n}} = 6.056$ [N.B. $\frac{15.6}{2.3263} = 6.705$]	
	Condone poor notation for standard error if it is being used correctly to find	d CI.
	2 nd M1 for full method for semi-width (or width) of 95% interval	
	Follow through their z values for both M marks	
	N.B. Use of 2.60 instead of 2.5758 should just lose 2 nd B1 since it leads to AWR'	Г (127, 151)

Question number	Scheme	Marks
7. (a)	Let $X = L - 4S$ then $E(X) = 19.7 - 4 \times 4.9 = 0.1$ $Var(X) = Var(L) + 4^2 Var(S) = 0.5^2 + 16 \times 0.2^2$ = 0.89 P(X > 0) = [P(Z > -0.10599)] = AWRT (0.542 - 0.544)	M1, A1 M1, M1 A1 M1 A1 (7)
(b)	$T = S_1 + S_2 + S_3 + S_4$ (May be implied by 0.16) T - N(19.6, 0.16) $E(T) = 19.6$ $Var(T) = 0.16 or 0.4$	B1
(c)	Let $Y = L - T$ $E(Y) = E(L) - E(T) = [0.1]$ Var(Y) = Var(L) + Var(T) = [0.41] Require $P(-0.1 < Y < 0.1)$ = P(Z < 0) - P(Z < -0.31) or $0.5 - P(Z < -0.31)$ or $P(Z < 0.31) - P(Z < 0)= 0.1217$ (tables) or 0.1226 (calc) $AWRT (0.122 - 0.123)$	M1 M1 M1 M1 A1 (5) 15
(a)	1 st M1 for defining <i>X</i> and attempting $E(X)$ 1 st A1 for 0.1. Answer only will score both marks. 2 nd M1 for $Var(L) + \dots$ 3 rd M1 for $\dots 4^2 Var(S)$. For those who don't attempt $L - 4S$ this will be their on 2 nd A1 for 0.89 4 th M1 for attempting a correct probability, correct expression and attempt to find involve some standardisation: ft their $\sqrt{0.89}$ and their 0.1. If 0.1 is used for $E(X)$ answer should be > 0.5, otherwise M0.	
(c)	1st M1 for a correct method for E(Y), ft their E(T).2nd M1 for a correct method for Var(Y), ft their Var(T). Must have +.3rd M1 for dealing with the modulus and a correct probability statement. Must be May be implied by e.g. $P(Z < \frac{0.2}{\sqrt{\text{their 0.41}}}) - 0.5$, or seeing both 0.378 (or4th M1 for correct expression for the correct probability, as printed or better. E.g.A1for AWRT in range.	0.622) <u>and</u> 0.5