GCSE
 MATHEMATICS
 8300/3H

Higher Tier Paper 3 Calculator
Mark scheme
November 2019

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a,b] Accept values between a and b inclusive.
$[\mathrm{a}, \mathrm{b}) \quad$ Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
$3.14 \ldots \quad$ Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments

$\mathbf{1}$	0.26	B1	

$\mathbf{2}$	$\frac{3}{2}$	B1	

$\mathbf{3}$	$-2 x$	B1	

$\mathbf{4}$	$6.365 \leqslant x<6.375$	B1	

Question	Answer	Mark	Comments

5	Alternative method 1			
	$7 x-3 x=36-16$	M1	oe elimination of one variable implied by $4 x=n$, where $n<36$ and $n \neq 16$	
	$4 x=20$ or $x=5$	A1	oe	
	$y=0.5$	A1	oe	
	Alternative method 2			
	$7 \times 2 y-3 \times 2 y=7 \times 16-3 \times 36$ or $14 y-6 y=112-108$	M1	oe elimination of one variable implied by $21 x+14 y=112$ and $21 x+6 y=108$ followed by $8 y=n$, where $n<112$ and $n \neq 36$, 16 or 20	
	$8 y=4$ or $y=0.5$	A1	oe	
	$x=5$	A1		
	Alternative method 3			
	$\begin{aligned} & 36-7 x=16-3 x \\ & \text { or } \frac{36-2 y}{7}=\frac{16-2 y}{3} \end{aligned}$	M1	oe elimination of one variable	
	$4 x=20 \text { or } x=5$ or $8 y=4$ or $y=0.5$	A1	oe collects terms oe	
	$x=5$ and $y=0.5$	A1	oe	
	Additional Guidance			
	$x=5$ and $y=0.5$			M1A1A1
	One correct value with one incorrect value (or no second value) and no working eg $x=5$ and $y=2$ or eg $x=5$			M1A1A0
	Embedded, correct values in both equations eg $7 \times 5+2 \times 0.5=36$ and $3 \times 5+2 \times 0.5=16$			M1A1A0
	Embedded, correct values in one equation only eg $7 \times 5+2 \times 0.5=36$			M1A0A0

Question	Answer	Mark	Comments

6(a)	$3 \times 18 \text { or } 54$ or $2 \times 18+14 \text { or } 50$ or $18+3 \times 14 \text { or } 60$ or $4 \times 14 \text { or } 56$ or $1-0.25$ or 0.75 seen	M1	oe	
	$\begin{aligned} & 3 \times 18 \times(1-0.25) \\ & \text { or } 3 \times 18 \times 0.75 \text { or } 40.5 \\ & \text { or } \\ & 18 \times(1-0.25) \\ & \text { or } 18 \times 0.75 \text { or } 13.5(0) \end{aligned}$	M1dep	oe	
	40.50	A1	condone £40.50p	
	Additional Guidance			
	40.5 on answer line			M1M1A0

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

| | Side of length [7.8, 8.2] cm drawn | B1 | Correct construction with
 intersecting arcs, same radius as
 their base ± 2 mm to identify the
 third vertex |
| :--- | :--- | :--- | :--- | | or
 correct construction with
 intersecting arcs, equal radii ± 2
 mertex correctly positioned
 verra |
| :--- |
| 7 |
| or
 correct construction with
 intersecting arcs, equal radii ± 2
 mm and construction arc drawn to
 correctly identify the third vertex |

Question	Answer	Mark	Comments	
8(a)	$\frac{2}{5} \times 35$ or $\frac{3}{8} \times 48$	M1	oe	
	14 or 18	A1		
	32	A1		
	Additional Guidance			
	Do not ignore further working after 32 seen			
	$\frac{32}{83}$ on answer line			M1A1A0

Alternative method 1

$35+48-$ their 32 or $35-$ their $14+48-$ their 18 or 51	M1	oe their 32 from (a)
$\frac{51}{83}$ or $0.61(4 \ldots)$ or $61(.4 \ldots) \%$	A1ft	ft their 14 and their 18 from (a)

Alternative method 2

| $\left(1-\frac{2}{5}\right) \times 35+\left(1-\frac{3}{8}\right) \times 48$ | oe |
| :--- | :--- | :--- | :--- |
| or $\frac{3}{5} \times 35+\frac{5}{8} \times 48$ | |
| or $21+30$ | |\quad M1

Question	Answer	Mark	Comments

9	Alternative method 1			
	$\frac{450}{65-35}$ or $\frac{450}{30}$ or 15	M1	oe	
	$(360-65-35) \times \text { their } 15$ or $260 \times$ their 15	M1dep	oe M2 $\frac{260}{30} \times 450$ or $8.66(\ldots) \times 450$ or 8.67×450	
	3900	A1		
	Alternative method 2			
	$\frac{360}{65-35} \times 450 \text { or } \frac{360}{30} \times 450$ or 12×450 or 5400	M1	oe	
	$\frac{360-65-35}{360} \times$ their 5400 or $\frac{260}{360} \times$ their 5400	M1dep	oe eg $0.72(\ldots) \times$ their 5400	
	3900	A1		
	Additional Guidance			
	$260 \div 30=8.6$ and 8.6×450 fully correct working seen			M1M1A0
10	$\div 8$	B1		

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

12	Alternative method 1			
	$280 \div 35$ or 8	M1	oe eg $80 \div 10$	
	$\begin{aligned} & (350-280) \div(40-35) \\ & \text { or } \\ & 70 \div 5 \\ & \text { or } \\ & 14 \end{aligned}$	M1	oe	
	6	A1		
	Alternative method 2			
	$\begin{aligned} & 320 \\ & \text { or } \\ & 350-320 \text { or } 30 \\ & \text { or } \\ & 350-280 \text { and } 320-280 \\ & \text { or } \\ & 70 \text { and } 40 \end{aligned}$	M1	oe	
	$\begin{aligned} & (350-320) \div 5 \\ & \text { or } \\ & (70-40) \div 5 \\ & \text { or } \\ & 30 \div 5 \end{aligned}$	M1dep	oe	
	6	A1		
	Additional Guidance			
	Do not allow a misread from the graph			
	Alt 240 must come from 320-280 and not 40 hours worked			

Question	Answer	Mark	Comments

13(a)	120 and 132 and 96 and 156 and states that 4 out of 5 would be above 100 or 8.3... and states that 4 out of 5 would be above 100 or $10.4 \times 12=124.8$ and states this is above 100 or the hypothesis is correct or median or mode $=10$ and $10 \times 12=$ 120 and states that median or mode is above 100 or $52 \times 12(=624) \text { and } 5 \times 100(=500)$ and states $624>500$	B2	B1 10×12 or 120 and 11×12 or 132 and 8×12 or 96 and 13×12 or 156 or $100 \div 12$ or $8.3 \ldots$ or states that 4 out of 5 with no or incorrect ev or $10.4 \times 12=124.8$ or median or mode $=10$ or $52 \times 12(=624)$ and 5	12 500
	Additional Guidance			
	' 4 out of 5 ' is implied by 'most people'			
	$(10+11+8+10+13) \div 5=10.4$			B0
	52×12 or 624 alone			B0

Question	Answer	Mark	Comments
14	$y=x^{3}+2$ or $a=2$	M1	implied by at least two correct points identified or plotted from $\begin{aligned} & (-3,-25),(-2,-6),(-1,1),(0,2),(1,3) \\ & (2,10) \end{aligned}$
	At least five correct points identified or plotted for their value of a	M1	correct points are $(-3,-25),(-2,-6),(-1,1),(0,2),(1,3)$ $(2,10)$ may be seen in a table or in working
	Seven correct points plotted and joined with a smooth curve	A1	$\pm \frac{1}{2}$ square SC1 fully correct curve for $y=x^{3}$ for $-3 \leq x \leq 2$
	Additional Guidance		

15	37500×0.2 or 7500	M1		
	(9260 - their 7500$) \div 0.4$ or $1760 \div 0.4$ or 4400	M1dep		
	their $4400+37500+12500$	M1dep	dep on M2	
	54400	A1		
	Additional Guidance			

16(a)	$2 \times 14 \times 9 \times 8$	M1	oe
	2016	A1	
	Additional Guidance		
	$2016 \div 4=504$ penalise further working after 2016 seen	M1A0	
	$2 \times 14 \times 9 \times 8 \times 4$ with 2016 not seen	M0A0	
	$2 \times 14 \times 9 \times 8 \div 4$ with 2016 not seen	M0A0	

Question	Answer	Mark	Comments

17	$\begin{aligned} & (f(10)=) 3 \times 10^{2}-4 \times 10+8 \\ & \text { or }(f(10)=) 300-40+8 \\ & \text { or }(f(10)=) 268 \\ & \text { or } \\ & (f(5)=) 3 \times 5^{2}-4 \times 5+8 \\ & \text { or }(f(5)=) 75-20+8 \\ & \text { or }(f(5)=) 63 \\ & \text { or }(2 f(5)=) 2 \times 63 \text { or } 126 \end{aligned}$	M1		
	268 and 126 and No	A1		
	Additional Guidance			
18	$-\frac{1}{7} \text { and } \frac{3}{2}$	B1		

Question	Answer	Mark	Comments

19(a)	$\tan D B H=\frac{8}{13}$	M1	$\text { oe } \tan ^{-1}$	
	31.6...	A1		
	Additional Guidance			
	31.6... in working, 32 on answer line - correct rounding			M1A1
	31.6... in working, 31 on answer line - incorrect rounding			M1A0
	$\tan \frac{8}{13}$ or $\tan =\frac{8}{13}$			MOAO

| 19(b) | $58.39 \ldots$ or 58.4 | B1ft | $\mathrm{ft} \mathrm{90-their} \mathrm{31.6} \mathrm{\ldots}$ |
| :--- | :--- | :---: | :---: | :---: |
| | Additional Guidance | | |
| | Correct or follow through | | |

20	$\sqrt{2}$	B1	

Question	Answer	Mark	Comments

Alternative me thod 1

$1125 \div 5 \times 2$ or 450	M1	oe
their $450 \div 6 \times(7 \div 4)$ or 75×1.75 or 131.25	M1dep	
$1125 \div$ their 131.25	M1dep	
$8.57 \ldots$ or 8.6 or $8 \frac{4}{7}$ or 8	A1	

Alternative method 2

$5 \div 2$ or 2.5 and $7 \div 4$ or 1.75	M1	oe
their $2.5 \div$ their 1.75 or $\frac{10}{7}$	or $1.42857 \ldots$	M1dep

Alternative method 3

(Small bottle fills) $6 \times \frac{4}{7}$ or $\frac{24}{7}$	M1	
(Large bottle fills) their $\frac{24}{7} \times \frac{5}{2}$	M1dep	
or $\frac{120}{14}$	M1dep	
their $120 \div$ their 14	A 1	
$8.57 \ldots$ or 8.6 or $8 \frac{4}{7}$ or 8		

Mark scheme for Question 21 continues on next page

Question	Answer	Mark	Comments

21 cont	Alternative method 4			
	Any two of $b_{1}=6 g_{1} \text { and } b_{2}=2.5 b_{1}$ and $g_{2}=1.75 g_{1}$	M1	oe any letters for small bottle (b_{1}), small glass $\left(g_{1}\right)$, large bottle $\left(b_{2}\right)$ and large glass (g_{2})	
	$b_{2}=2.5 \times 6 g_{1}$ or $b_{2}=15 g_{1}$	M1dep	oe	
	$b_{2}=$ their $15\left(\frac{g_{2}}{1.75}\right)$	M1dep		
	$8.57 \ldots$ or 8.6 or $8 \frac{4}{7}$ or 8	A1		
	Additional Guidance			
	If the student attempts more than one method, mark each method and award the highest mark			
	Correct answer seen in working, 9 on answer line			M1M1M1A0

Question	Answer	Mark	Comments

22	Alternative method 1			
	$(x-5)^{2}$ or $(5-x)^{2}$ or $x^{2}-10 x+25(=0)$ or $b=-10$ or $c=25$	M1		
	$b=-10$ and $c=25$	A1		
	Alternative method 2 - using $\boldsymbol{b}^{\mathbf{2}} \mathbf{- 4 a c}$			
	$b^{2}-4(\times 1) \times c=0$ or $b^{2}-4(\times 1) \times(-25-5 b)=0$ or $b^{2}+100+20 b=0$ or $(b+10)^{2}=0$			
	$b=-10$ and $c=25$	A1		
	Additional Guidance			
	Do not allow $c=25$ from ($x+5$	$+x)^{2}$		

Question	Answer	Mark	Comments

23	$\frac{3}{8}$	B1	

Question	Answer	Mark	Comments

Mark scheme for Question 25 continues on the next page

Question	Answer	Mark	Comments

25 cont	Alternative method 2			
	Correct method to work out $60 \times$ any viable distance, eg $\frac{1}{2} \times 5 \times 102$ or 255 or 102×40 or 4080 or $\frac{1}{2}(102+96) \times 15$ or 96×15 and $\frac{1}{2} \times 6 \times 15$ or 1440 and 45 or 1485 or $\frac{1}{2}(40+45) \times 102 \text { or } 4335$	M1	first sectio second se third sectio first and se	ons
	Correct method to work out $60 \times$ all parts of distance, eg $\frac{1}{2} \times 5 \times 102 \text { or } 255$ and $102 \times 40 \text { or } 4080$ and $\frac{1}{2}(102+96) \times 15 \text { or } 1485$	M1dep	5820 impli	
	130 - their whole distance or $130-\frac{5820}{60}$ or 130-97	M1dep	$\begin{aligned} & \text { eg } \\ & 130-\frac{\text { their }}{} \\ & \text { dep on M2 } \end{aligned}$	$\frac{r ~ 4080+\text { their } 1485}{60}$
	33	A1		
		itional	idance	
	Accept fractions used as decimals	rect to 2	p or better	

Question	Answer	Mark	Comments

26(a)	$\frac{1}{2} \times 9.7 \times 3.8 \times \sin 73^{\circ}$ or $17.6 \ldots$	M1	oe	
	their $17.6 \ldots \times 6 \div 8.5$ or $105.7 \ldots \div 8.5$ or $12.4 \ldots$	M1dep	oe	
	13	A1		
	Additional Guidance			
	$\frac{1}{2} \times 9.7 \times 3.8=18.43 \quad 18.43 \times 6 \div 8.5=13.0 \ldots$			MOMOAO
26(b)	$9.7^{2}+3.8^{2}-2 \times 9.7 \times 3.8 \times \cos 73^{\circ}$ or $94.09+14.44-73.72 \cos 73^{\circ}$ or $86.976 \ldots$ or 86.98 or 87	M1	oe	
	$\sqrt{\text { their 86.976... }}$	M1dep		
	9.3(2...) or 9.33	A1		
	$\frac{\sin x}{\text { their } 9.32 \ldots}=\frac{\sin 42}{8}$ or $\sin ^{-1}[0.7778,0.7804]$	M1	oe their 9.32... must be their length of the vertical line	
	[51, 51.3]	A1ft	ft their 9.3(2...) or 9.33	
	Additional Guidance			
	Their $9.32 \ldots$ must come from M1M1 or be clearly identified in working or on the diagram as the length of the vertical line			

Question	Answer	Mark	Comments

27	$(P Q=) \mathbf{a + b}+\mathbf{c}$	M1	oe	
	$(X Y=) \frac{2}{3} \mathbf{a}+\mathbf{b}+\frac{2}{3} \mathbf{c}$ or $(X Y=)-\frac{1}{3} \mathbf{a}+\mathbf{a}+\mathbf{b}+\mathbf{c}-\frac{1}{3} \mathbf{c}$	M1		
	$(P Q=) \mathbf{a}+\mathbf{b}+\mathbf{c}$ and $(X Y=) \frac{2}{3} \mathbf{a}+\mathbf{b}+\frac{2}{3} \mathbf{c}$ and No, as $X Y$ is not a multiple of $P Q$	A1	oe	
	Additional Guidance			

Question	Answer	Mark	Comments

28	$\frac{y+3}{2}=x$ or $x=2 y-3 \text { and } x+3=2 y$ or $2 x-3=55$	M1	
	$\frac{x+3}{2}$ or $\frac{55+3}{2}$	A1	
	$2 x^{2}-3$ or $2 \times 4^{2}-3 \text { or } 2 \times 16-3$	M1	
	$\frac{55+3}{2}=29$ and $2 \times 4^{2}-3=29 \text { or } 2 \times 16-3=29$	A1	
	Additional Guidance		
	29 with no working or only from incorrect working		MOAOMOAO

