

GCSE PHYSICS 8463/2H

Paper 2 Higher Tier

Mark scheme

June 2023

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2023 AQA and its licensors. All rights reserved.

Information to Examiners

1. General

The mark scheme for each question shows:

- the marks available for each part of the question
- the total marks available for the question
- the typical answer or answers which are expected
- · extra information to help the examiner make their judgement
- the Assessment Objectives and specification content that each question is intended to cover.

The extra information is aligned to the appropriate answer in the left-hand part of the mark scheme and should only be applied to that item in the mark scheme.

At the beginning of a part of a question a reminder may be given, for example: where consequential marking needs to be considered in a calculation; or the answer may be on the diagram or at a different place on the script.

In general the right-hand side of the mark scheme is there to provide those extra details which confuse the main part of the mark scheme yet may be helpful in ensuring that marking is straightforward and consistent (for example, a scientifically correct answer that could not reasonably be expected from a student's knowledge of the specification).

2. Emboldening and underlining

- **2.1** In a list of acceptable answers where more than one mark is available 'any **two** from' is used, with the number of marks emboldened. Each of the following bullet points is a potential mark.
- **2.2** A bold **and** is used to indicate that both parts of the answer are required to award the mark.
- **2.3** Alternative answers acceptable for a mark are indicated by the use of **or**. Alternative words in the mark scheme are shown by a solidus eg allow smooth / free movement.
- **2.4** Any wording that is underlined is essential for the marking point to be awarded.

2

3. Marking points

3.1 Marking of lists

This applies to questions requiring a set number of responses, but for which students have provided extra responses. The general principle to be followed in such a situation is that 'right + wrong = wrong'.

Each error / contradiction negates each correct response. So, if the number of errors / contradictions equals or exceeds the number of marks available for the question, no marks can be awarded.

However, responses considered to be neutral (indicated as * in example 1) are not penalised.

Example 1: What is the pH of an acidic solution?

StudentResponseMarks
awarded1green, 502red*, 513red*, 80

Example 2: Name two magnetic materials.

2

StudentResponseMarks awarded1iron, steel, tin1

cobalt, nickel, nail*

3.2 Use of symbols / formulae

If a student writes a chemical symbol / formula instead of a required chemical name, or uses symbols to denote quantities in a physics equation, full credit can be given if the symbol / formula is correct and if, in the context of the question, such action is appropriate.

3.3 Marking procedure for calculations

Marks should be awarded for each stage of the calculation completed correctly, as students are instructed to show their working. At any point in a calculation students may omit steps from their working. If a subsequent step is given correctly, the relevant marks may be awarded.

Full marks are **not** awarded for a correct final answer from incorrect working.

3.4 Interpretation of 'it'

Answers using the word 'it' should be given credit only if it is clear that the 'it' refers to the correct subject.

[1 mark]

[2 marks]

3.5 Errors carried forward

An error can be carried forward from one question part to the next and is shown by the abbreviation 'ecf'.

Within an individual question part, an incorrect value in one step of a calculation does not prevent all of the subsequent marks being awarded.

3.6 Phonetic spelling

Marks should be awarded if spelling is not correct but the intention is clear, **unless** there is a possible confusion with another technical term.

3.7 Brackets

(....) are used to indicate information which is not essential for the mark to be awarded but is included to help the examiner identify the sense of the answer required.

3.8 Allow

In the mark scheme additional information, 'allow' is used to indicate creditworthy alternative answers.

3.9 Ignore

Ignore is used when the information given is irrelevant to the question or not enough to gain the marking point. Any further correct amplification could gain the marking point.

3.10 Do not accept

Do **not** accept means that this is a wrong answer which, even if the correct answer is given as well, will still mean that the mark is not awarded.

3.11 Numbered answer lines

Numbered lines on the question paper are intended to support the student to give the correct number of responses. The answer should still be marked as a whole.

4. Level of response marking instructions

Extended response questions are marked on level of response mark schemes.

- Level of response mark schemes are broken down into levels, each of which has a descriptor.
- The descriptor for the level shows the average performance for the level.
- There are two marks in each level.

Before you apply the mark scheme to a student's answer, read through the answer and, if necessary, annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1: Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level.

The descriptor for the level indicates the different qualities that might be seen in the student's answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer. With practice and familiarity you will find that for better answers you will be able to quickly skip through the lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer. Do **not** look to penalise small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level.

Use the variability of the response to help decide the mark within the level, ie if the response is predominantly level 2 with a small amount of level 3 material it would be placed in level 2 but be awarded a mark near the top of the level because of the level 3 content.

Step 2: Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate marks can help with this. The exemplar materials used during standardisation will help. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student's answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner's mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do not have to cover all of the points mentioned in the indicative content to reach the highest level of the mark scheme.

You should ignore any irrelevant points made. However, full marks can be awarded only if there are no incorrect statements that contradict a correct response.

An answer which contains nothing of relevance to the question must be awarded no marks.

Question	Answers	Extra information	Mark	AO / Spec. Ref.
01.1	perpendicular		1	AO1 4.6.1.1

Question	Answers	Mark	AO / Spec. Ref.
01.2	Level 3: The method would lead to the production of a valid outcome. The key steps are identified and logically sequenced.	5-6	AO3
	Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced.	3-4	AO1
	Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	1-2	AO1
	No relevant content	0	
	Indicative content		4.6.2.2
	 Method: heat the water / kettle add an equal volume of (hot) water to each flask insert a thermometer into each flask record the initial temperature from both flasks OR place an IR detector near each flask the distance between the IR detector and the flask should be the same each time record initial reading from IR detectors (and) start a stop clock record the temperatures / readings after 10 minutes from both flasks calculate the change in temperatures / readings during the 10 minutes compare the results to test the hypothesis to access level 3 the method must allow the correct consideration of a temperature decrease for both flasks or the correct comparison of IR detected from both flasks 		

Question	Answers	Extra information	Mark	AO / Spec. Ref.
01.3	during the 1st minute		1	AO2
	there is the greatest temperature difference (between	allow highest temperature or hottest	1	AO1
	the hot water and the surroundings)			4.6.3.1
	carroananigo)	MP 2 dependent on scoring MP 1		

Question	Answers	Extra information	Mark	AO / Spec. Ref.
01.4	the temperature (increase / change after 10 minutes)	allow the final temperature	1	AO1 4.6.2.2
		do not allow temperature		
		decrease		

Question	Answers	Extra information	Mark	AO / Spec. Ref.
01.5	black surfaces absorb more (infrared than white surfaces)	allow black surfaces have a greater temperature increase (than white surfaces)	1	AO3 4.6.2.2 4.6.3.1
	matt surfaces absorb more (infrared) than shiny surfaces of the same colour	allow matt surfaces have a greater temperature increase than shiny surfaces of the same colour	1	
		if no other marks scored, allow 1 mark for matt black surface is the best absorber and shiny white surface is the worst absorber		
		if no other marks scored, allow 1 mark for matt black has the greatest temperature increase and shiny white has the smallest temperature increase		

Question	Answers	Extra information	Mark	AO / Spec. Ref.
01.6	pressure = $\frac{\text{force}}{\text{area}}$		1	AO1 4.5.5.1.1

Question	Answers	Extra information	Mark	AO / Spec. Ref.
01.7	area of base = 0.0144 (m²)	do not allow this or subsequent marks unless base area is used	1	AO2 4.5.5.1.1
	$1500 = \frac{F}{0.0144}$	this mark may be awarded if base area is incorrectly calculated	1	
	<i>F</i> = 1500 × 0.0144	this mark may be awarded if base area is incorrectly calculated	1	
	<i>F</i> = 21.6 (N)	this mark may be awarded if base area is incorrectly calculated	1	
		allow 22 (N)		

Total Question 1 17

Question	Answers	Extra information	Mark	AO / Spec. Ref.
02.1	7.1 (cm)	allow 7.0 to 7.3 (cm)	1	AO2 4.5.6.1.1
	497 (m)	allow 70 × their incorrect measurement of displacement	1	Ŧ.0.0.1.1

Question	Answers	Extra information	Mark	AO / Spec. Ref.
02.2	0 (N)		1	AO2 4.5.1.4

Question	Answers	Extra information	Mark	AO / Spec. Ref.
02.3	constant velocity	allow constant speed (in a straight line)	1	AO1 4.5.6.2.1
		do not accept stationary		
		allow constant acceleration if a mathematical error in 02.2 gives a non-zero value for resultant force		

Question	Answers	Extra information	Mark	AO / Spec. Ref.
02.4	any one from: • tension • normal contact (force) • upthrust	allow lift, thrust and water resistance allow normal reaction (force) ignore drag	1	AO1 4.5.1.2

Question	Ans	Mark	AO / Spec. Ref.	
02.5	horizontal line drawn to 10s along the <i>x</i> -axis		1	AO3 4.5.6.1.4
	line with a positive gradient starting from 10 s	allow an upward curving line with increasing gradient starting from 10 s	1	
		0 10 20 30 Time in seconds		

Question	Answers	Extra information	Mark	AO / Spec. Ref.
02.6	line of best fit drawn and extrapolated to 10 km	do not accept a straight line	1	AO2 4.5.5.2
	28 (kPa)	allow 26 to 32 (kPa)	1	
		allow a value correctly extrapolated from their line		
		allow 2 marks for a correct mathematically extrapolated value		

Question	Answers	Extra information	Mark	AO / Spec. Ref.
02.7	the average density of the air above the aeroplane decreases		1	AO3 4.5.5.2

Total Question 2	10
	10

Question	Answers	Extra information	Mark	AO / Spec. Ref.
03.1	apply the force further away from the pivot	do not allow increase the length of the lever	1	AO2 4.5.4

Question	Answers	Extra information	Mark	AO / Spec. Ref.
03.2	<i>v</i> = 15 (m/s)		1	AO2 4.5.7.1
	24 000 = <i>m</i> × 15	allow a value of <i>v</i> = 14.5 (m/s)	1	
	$m = \frac{24\ 000}{15}$		1	
	<i>m</i> = 1600 (kg)		1	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
03.3	distance travelled during first 3 seconds = 22.5 (m)		1	AO2 4.5.6.1.5
	distance travelled during last 2 seconds = 30 (m)		1	
	total distance = 52.5 (m)	allow 53 (m) allow 1 mark for the correct addition of their calculated distances	1	
		allow a maximum of 2 marks for total distance = 50.75 (m) if velocity used = 14.5 (m/s)		

Question	Answers	Extra information	Mark	AO / Spec. Ref.
03.4	stopping distance includes thinking distance	allow stopping distance = braking distance + thinking distance	1	AO1
	there is an additional time before the driver applies the brakes.	allow the driver's reaction time will increase (due to the distraction)	1	AO2
	(so) the thinking distance will increase		1	AO2
				4.5.6.1.1
				4.5.6.3.1 4.5.6.3.2

Question	Answers	Extra information	Mark	AO / Spec. Ref.
	work is done due to friction (in the brakes) (causing) an increase in the internal / thermal energy (of the brakes)	ignore friction alone	1	AO1 4.5.6.3.4

3 13

Question	Answers	Extra information	Mark	AO / Spec. Ref.
04.1	current	allow charge flow	1	AO1 4.7.3.3
	or			
	potential difference			

Question	Answers	Extra information	Mark	AO / Spec. Ref.
04.2	S N S		1	AO1 4.7.1.2

Question	Answers	Extra information	Mark	AO / Spec. Ref.
04.3	an induced magnet is a material that becomes a magnet when it is placed in a magnetic field	allow 'when close to another magnet' for 'when it is placed in a magnetic field'	1	AO1 4.7.1.1
	or			
	an induced magnet loses most / all of its magnetism (quickly) when removed from a magnetic field	allow 'no magnets are nearby' for 'removed from a magnetic field'		
		<pre>'temporary magnet' alone is insufficient</pre>		

Question	Answers	Extra information	Mark	AO / Spec. Ref.
04.4	motor effect		1	AO1 4.7.2.2 4.7.2.4

Question	Answers	Extra information	Mark	AO / Spec. Ref.
04.5	16 mA = 0.016 A	allow 1.6 × 10 ⁻² (A)	1	AO2 4.7.2.2
	0.013 = <i>B</i> × 0.016 × 6.5	allow correct substitution using incorrectly / not converted current	1	
	$B = \frac{0.013}{0.016 \times 6.5}$	allow correct re-arrangement using incorrectly / not converted current	1	
	<i>B</i> = 0.125 (T)	allow correct calculation using incorrectly / not converted current	1	
		allow 0.13 (T)		

Question	Answers	Mark	AO / Spec. Ref.
04.6	Level 2 : Scientifically relevant features are identified; the way(s) in which they are similar / different is made clear and (where appropriate) the magnitude of the similarity / difference is noted.	3-4	AO3 4.6.1.4
	Level 1: Relevant features are identified and differences noted.	1-2	
	No relevant content	0	
	 Indicative content: for all three people, the minimum sound level that can be heard increases as frequency increases 		
	 Age the minimum sound level that can be heard increases with age between 2000 and 3000 Hz the minimum sound level that can be heard increases more in B compared to C C has very little variation in the minimum sound level that can be heard at all frequencies 		
	 Working in a loud environment: increases the minimum sound level that can be heard at all frequencies above 2000 Hz compared to working in a quiet environment the minimum sound level that can be heard increases more as frequency increases from 2000 to 4000 Hz compared to working in a quiet environment doesn't affect the minimum sound level that can be heard at 2000 Hz 		
	to access level 2 the answer must include at least one comparison for age and one comparison for working in a loud environment, using supporting data/information from the graph		

Total Question 4

12

Question	Answers	Extra information	Mark	AO / Spec. Ref.
05.1	the total amount of energy (of the bumper car and barrier) remains constant. or total momentum (of bumper car and barrier) before collision equals total momentum (of bumper car and barrier) after collision or the resultant external force acting (on the system) is zero	allow there are no external forces (acting on the system)	1	AO1 4.5.7.2 4.1.2.1

Question	Answers	Extra information	Mark	AO / Spec. Ref.
05.2	the force of the car on the barrier is equal to the force of the barrier on the car and in the opposite direction		1	AO1 4.5.6.2.3

Question	Answers	Extra information	Mark	AO / Spec. Ref.
05.3	$F = \frac{700}{0.28}$		1	AO2 4.5.7.3
	<i>F</i> = 2 500 (N)		1	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
05.4	increases the time taken for the collision to occur	allow increases contact time do not accept slows down time	1	AO1 4.5.7.3
	(so) the rate of change of momentum decreases	allow reduces acceleration / deceleration	1	
	reducing the force (on the people)	reduces impact is insufficient	1	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
05.5	$2.5^2 - u^2 = 2 \times 2.0 \times 1.5$		1	AO2
	$u^2 = 2.5^2 - (2 \times 2.0 \times 1.5)$		1	4.5.6.1.5
	<i>u</i> = 0.50 (m/s)	allow 0.5 (m/s)	1	

Total Question 5	10
------------------	----

Question	Answers	Extra information	Mark	AO / Spec. Ref.
06.1	satellite	allow moon	1	AO1 4.8.1.3

Question	Answers	Extra information	Mark	AO / Spec. Ref.
06.2	12.5 cm = 0.125 m		1	AO2 4.6.1.2
	$3 \times 10^8 = f \times 0.125$	this mark may be awarded for an incorrectly / not converted value for wavelength	1	
	$f = \frac{3 \times 10^8}{0.125}$	this mark may be awarded for an incorrectly / not converted value for wavelength	1	
	f = 2 400 000 000 (Hz)	this mark may be awarded for an incorrectly / not converted value for wavelength	1	
	<i>f</i> = 2.4 × 10 ⁹ (Hz)	this mark may be awarded for an incorrectly calculated value for frequency in standard form using the given data	1	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
06.3	gravitational force causes the Hubble Space Telescope to accelerate towards the Earth		1	AO1 4.5.1.1 4.5.6.1.3 4.8.1.3
	this changes the direction of motion (but not the speed)		1	
	so changes the velocity of the Hubble Space Telescope	if no other marks awarded, allow 1 mark for gravitational force maintains circular orbit	1	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
06.4	galaxy A has the greater <u>red</u> <u>shift</u>		1	AO3 4.8.2
	(so) A is travelling (away from us) faster (than B)		1	
	(because) A is further away (from us than B)		1	
		if no other marks awarded, allow 1 mark for galaxy A and galaxy B are moving away from us		

Total Question 6	12
------------------	----

Question	Answers	Extra information	Mark	AO / Spec. Ref.
07.1	specular (reflection)		1	AO1 4.6.2.6

Question	Answers	Extra information	Mark	AO / Spec. Ref.
07.2	the angle of incidence = the (mean) angle of reflection		1	AO3 4.6.1.3 RPA9

Question	Answers	Extra information	Mark	AO / Spec. Ref.
07.3	<u>random</u>		1	AO3 4.6.1.3 RPA9
	 any one from: the student's eye / head might not be in the same position each time the centre of the ray may not have been marked correctly the mirror / ray box may not have been (re)placed correctly 	allow parallax allow protractor not in the correct position incorrect measurement of the angle(s) is insufficient	1	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
07.4	all points on a wavefront enter the glass at the same time	allow incident ray (of light) is along the normal	1	AO1 4.6.1.3 RPA9

Question	Answers	Extra information	Mark	AO / Spec. Ref.
07.5	the resolution (of the protractor) is 1(°)		1	AO3 4.6.1.3 RPA9
	(so) could not be used to measure the difference between the results	allow (so) could not be used to measure to 1 decimal place	1	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
07.6	different parts of the wavefront enter the glass at different times		1	AO1 4.6.2.2
	the velocity / speed (of light) is less in glass		1	
	(so) one part of the wave front changes speed before other parts		1	

7 10

Question	Answers	Extra information	Mark	AO / Spec. Ref.
08.1	iron	allow nickel / cobalt do not allow steel	1	AO1 4.7.3.4
	it is easily magnetised (and demagnetised)	allow it is a magnetic material MP 2 is dependent on MP 1	1	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
08.2	$\frac{230}{V_{\rm s}} = \frac{2000}{40}$		1	AO2 4.7.3.4
	$V_{\rm s} = \frac{40}{2000} \times 230$	subsequent marks can only be awarded if the first equation is correct and has been used	1	
	V _s = 4.6 (V)	conect and has been used	1	
	$4.6 \times I_{\rm s} = 6.9$	this mark may be awarded if the pd is incorrectly calculated	1	
	<i>I</i> _s = 1.5 A	allow a correctly calculated <i>I</i> s using an incorrectly calculated pd	1	
	OR			
	$6.9 = I_{\rm p} \times 230$ (1)			
	$I_{\rm p} = \frac{6.9}{230} $ (1)	subsequent marks can only be awarded if the first equation is correct and has been used		
	$I_{\rm p} = 0.03 ({\rm A})$ (1)			
	$I_{\rm s} = 0.03 \times \frac{2000}{40}$ (1)	this mark may be awarded if <i>I</i> _p is incorrectly calculated		
	$I_{\rm s} = 1.5 ({\rm A})$ (1)	allow a correctly calculated I_s using an incorrectly calculated I_p		

Total Question 8

7

Question	Answers	Extra information	Mark	AO / Spec. Ref.
09.1	the coil moves through the (magnetic) field or the coil cuts (magnetic) field lines		1	AO1 4.7.1.2 4.7.3.1 4.7.3.2
	a potential difference is <u>induced</u> (across the coil)		1	
	there is a <u>complete circuit</u> , so a current is induced (in the coil)		1	
	(because) each half-revolution, the two ends of the coil swap from one brush to the other or each half-revolution, (the two halves of) the commutator switch brushes / contacts	(because) the half of the coil connected to each brush always moves in the same direction	1	
	(so) the direction of the (induced) current / potential difference does not reverse every half rotation	allow the direction of the (induced) current / potential difference is the same every half rotation	1	

Question	Answers	Mark	AO / Spec. Ref.
09.2	Potential difference		AO1 4.7.3.2

Question	Answers	Extra information	Mark	AO / Spec. Ref.
09.3	(after disconnection) there is no (induced) current		1	AO1 4.7.3.1
	(so) no magnetic field (produced around / by the coil)		1	
	to oppose the movement of the coil	allow no force opposes the movement of the coil	1	

Total Question 9		