edexcel

June 2005 6676 Pure P6 Mark Scheme

Question Number	Scheme	Marks
1	(a) $\frac{6x+10}{x+3} = 6 - \frac{8}{x+3}$	B1 (1)
	(b) $u_1 = 5.2 > 5$	B1
	If result true for $n = k$, i.e. $u_k > 5$, $u_{k+1} = 6 - \frac{8}{u_k + 3}$	
	If $u_k > 5$, then $\frac{8}{u_k + 3} < 1$ so $u_{k+1} > 5$	M1A1
	Hence result is true for $n = k + 1$ Conclusion and no wrong working seen	A1 (4)
2	(a) (i) $\mathbf{b} \times \mathbf{a}$ is perpendicular to \mathbf{a} (and \mathbf{b})	B1
	$\mathbf{a} \cdot \mathbf{b} \times \mathbf{a} = \mathbf{a} \mathbf{b} \times \mathbf{a} \cos 90^\circ = 0 \text{ or equivalent}$	B1 (2)
	(ii) $\mathbf{a} \times \mathbf{b} = \mathbf{a} \times \mathbf{c} \implies \mathbf{a} \times (\mathbf{b} - \mathbf{c}) = 0$	M1
	As $\mathbf{a} \neq 0$ and $\mathbf{b} \neq \mathbf{c}$,	
	a is parallel to $(\mathbf{b} - \mathbf{c})$, so $\mathbf{b} - \mathbf{c} = \lambda \mathbf{a}$	A1 (2)
	(b) (i) If A non-singular, then $A^{-1}AB = A^{-1}AC \implies B = C$ (*)AG	M1A1 (2)
	(ii) $\begin{pmatrix} 3 & 6 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 5 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 21 \\ 1 & 7 \end{pmatrix}$	B1
	Set $\begin{pmatrix} 3 & 6 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 3 & 21 \\ 1 & 7 \end{pmatrix}$ and finding two equations	M1
	Any non-zero values of a, b, c and d such that $a + 2c = 1$ and $b + 2d = 7$	A1 (3)
	u + 2c - 1 and $c + 2u - 7$.	[9]

Question Number	Scheme	Marks
3	(a) Normal to plane is $\begin{vmatrix} i & j & k \\ 2 & 0 & 3 \\ 1 & -2 & 1 \end{vmatrix}$ = 6i + j - 4k (or any multiple)	M1A1 (2)
	(b) Equation of plane is $6x + y - 4z = d$	M1
	Substituting appropriate point in equation to give $6x + y - 4z = 16$ [e.g. (1, 6,-1), (3, -2, 0), (3, 6, 2) etc.]	A1 (2)
	(c) $\rho = -2$	B1 (1)
	(d) Direction of line is perpendicular to both normals	
	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 1 \\ 6 & 1 & -4 \end{vmatrix} = -9\mathbf{i} + 10\mathbf{j} - 11\mathbf{k}$ [Planes are: $6x + y - 4z = 16$, $x + 2y + z = 2$]	M1
	Finding a point on line	M1A1
	a and b identified	M1
	Any correct equation of correct form e.g. $\begin{bmatrix} r - \begin{pmatrix} -3 \\ 6 \\ -7 \end{bmatrix} \mathbf{x} \begin{pmatrix} 9 \\ -10 \\ 11 \end{bmatrix} = 0.$	A1 (5) [10]
	Alternative: Using equations of planes to find general point on line	
	Using equations of planes to form any two of 10x + 9y = 24, $11x - 9z = 30$, $11y + 10z = -4$ M1 Putting in parametric form M1	
	e.g. $\left(\lambda, \frac{24-10\lambda}{9}, \frac{-30+11\lambda}{9}\right)$ A1	
	a and b identified M1 Writing in required form; a correct equation A1	

4 (a)
(b) Drawing correct half-line passing as shown
Find either xor y coord of A.

$$z = -\frac{3\sqrt{2}}{2} + (3 + \frac{3\sqrt{2}}{2})i$$
(Algebraic approach, i.e. using $y = 3 - x$ and equation of circle
will only gain MTA1, unless the second solution is ruled out,
when B1 can be given by implication, and final A1, if correct]
(c) $|z-3i| = 3 \rightarrow [\frac{2i}{\omega} - 3i] = 3$

$$\Rightarrow \frac{|2i-3i\omega|}{|\omega|} = 3$$
(c) $|z-3i| = 3 \rightarrow [\frac{2i}{\omega} - 3i] = 3$

$$\Rightarrow \frac{|2i-3i\omega|}{|\omega|} = 10$$
Line with equation $u = \frac{1}{3}$
(f) $\omega = \frac{2i}{x^2 + y^2} - 6y = 0$, $u = \frac{2y}{x^2 + y^2}$, $v = \frac{2x}{x^2 + y^2}$ M1A1
A1 (5)
Some alternatives:
(i) $\omega = \frac{2i}{3\cos\theta + 3i(1+\sin\theta)} = \frac{2i(\cos\theta - i(1+\sin\theta))}{3(\cos^2\theta + (1+\sin\theta)^2)}$
M1A1
(ii) $\omega = \frac{2i}{3\cos\theta + 3i(1+\sin\theta)} = \frac{2i(\cos\theta - i(1+\sin\theta))}{3(\cos^2\theta + (1+\sin\theta)^2)}$
M1A1
 $z = \frac{2}{3} \frac{(1+\sin\theta) + i\cos\theta}{2+2\sin\theta}$, $z = \frac{1}{3} + i \frac{\cos\theta}{1+\sin\theta}$, M1A1
So locus is line $u = \frac{1}{3}$
A1

6676 Pure P6 June 2005 Advanced Subsidiary/Advanced Level in GCE Mathematics

5	(a) $z^n = e^{in\theta} = (\cos n\theta + i\sin n\theta), z^{-n} = e^{-in\theta} = (\cos n\theta - i\sin n\theta)$	M1
	Completion (needs to be convincing) $z^n - \frac{1}{z^n} = 2i \sin n\theta$ (*)AG	A1 (2)
	(b) $\left(z-\frac{1}{z}\right)^5 = z^5 - 5z^3 + 10z - \frac{10}{z} + \frac{5}{z^3} - \frac{1}{z^5}$	M1A1
	$= \left(z^{5} - \frac{1}{z^{5}}\right) - 5\left(z^{3} - \frac{1}{z^{3}}\right) + 10\left(z - \frac{1}{z}\right)$	
	$(2i\sin\theta)^5$ = 32i sin ⁵ θ = 2i sin 5 θ – 10i sin 3 θ + 20i sin θ	M1A1
	$\Rightarrow \sin^5 \theta = \frac{1}{16} (\sin 5\theta - 5\sin 3\theta + 10\sin \theta) \text{ (*) AG}$	A1 (5)
	(c) Finding $\sin^5 \theta = \frac{1}{4} \sin \theta$	M1
	$\theta = 0, \pi$ (both)	B1
	$(\sin^4 \theta = \frac{1}{4}) \implies \sin \theta = \pm \frac{1}{\sqrt{2}}$	M1
	$ heta=rac{\pi}{4},rac{3\pi}{4};$ $rac{5\pi}{4},rac{7\pi}{4}$	A1;A1 (5)
		[12]
6	(a) $\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)_0 = \frac{1}{4}$	B1 (1)
	(b) $\left(\frac{dy}{dx}\right)_0 \approx \frac{y_1 - y_{-1}}{2h} \Rightarrow \frac{1}{2} \approx \frac{y_1 - y_{-1}}{0.2} \Rightarrow y_1 - y_{-1} \approx 0.1$	M1A1
	$\left(\frac{d^2 y}{dx^2}\right)_0 \approx \frac{y_1 - 2y_0 + y_{-1}}{h^2} \Rightarrow \frac{1}{4} \approx \frac{y_1 - 2 + y_{-1}}{0.01}$	M1
	$\Rightarrow y_1 + y_{-1} \approx 2.0025$ Adding to give $y_1 \approx 1.05125$	M1A1 (6)
	(c) Diff: $4(1 + x^2)\frac{d^3y}{dx^3} + 8x\frac{d^2y}{dx^2} + 4x\frac{d^2y}{dx^2} + 4\frac{dy}{dx} = \frac{dy}{dx}$	M1A1
	Substituting appropriate vales $\Rightarrow 4\left(\frac{d^3y}{dx^3}\right)_0 = -\frac{3}{2} \Rightarrow \left(\frac{d^3y}{dx^3}\right)_0 = -\frac{3}{8}$	M1A1 (4)
	(d) $y = y_0 + y'_0 x + \frac{y''_0}{2!} x^2 + \frac{y'''_0}{3!} x^3 + \dots = 1 + \frac{1}{2} x + \frac{1}{8} x^2 - \frac{1}{16} x^3 + \dots$	M1A1√(2)
	(e) 1.05119	A1 (1) [14]

6676 Pure P6 June 2005 Advanced Subsidiary/Advanced Level in GCE Mathematics

(a) Det =
$$-12 - 2(2k - 8) + 16 = 20 - 4k$$
 (*) AG M1A1 (2)
(b) Cofactors $\begin{pmatrix} -4 & 8 - 2k & 4 \\ 8 - 2k & 3k - 16 & 2 \\ 4 & 2 & -4 \end{pmatrix}$ [A1 each error] M1A3
 $A^{-1} = -\frac{1}{20 - 4k} \begin{pmatrix} -4 & 8 - 2k & 4 \\ 8 - 2k & 3k - 16 & 2 \\ 4 & 2 & -4 \end{pmatrix}$ M1A1 $\sqrt{6}$)
(c) Setting $\begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix} \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$ M1
 $\lambda = -1$ A1 (2)
(d) Forming equations in x y and z: $\begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix} \begin{pmatrix} x \\ z \end{pmatrix} = 8 \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ M1
 $-5x + 2y + 4z = 0, 2x + 2z = 8y, 4x + 2y - 5z = 0$
Establishing ratio x: y: z: [x = 2y, x = 3]
Eigenvector $\binom{2}{1} \frac{2}{2}$ M1
A1 (4)
[14]