J une 2005
6676 Pure P6
Mark Scheme

Question Number	Scheme	Marks
1	(a) $\frac{6 x+10}{x+3}=6-\frac{8}{x+3}$ (b) $\quad u_{1}=5.2>5$ If result true for $n=k$, i.e. $u_{k}>5$, $u_{k+1}=6-\frac{8}{u_{k}+3}$ If $u_{k}>5$, then $\frac{8}{u_{k}+3}<1$ so $u_{k+1}>5$ Hence result is true for $n=k+1$ Conclusion and no wrong working seen	B1 (1) B1 M1A1 A1 (4) [5]
2	(a) (i) $\mathbf{b} \times \mathbf{a}$ is perpendicular to \mathbf{a} (and \mathbf{b}) a. $\mathbf{b} \times \mathbf{a}=\|\mathbf{a}\|\|\mathbf{b} \times \mathbf{a}\| \cos 90^{\circ}=0$ or equivalent (ii) $\mathbf{a} \times \mathbf{b}=\mathbf{a} \times \mathbf{c} \Rightarrow \mathbf{a} \times(\mathbf{b}-\mathbf{c})=\mathbf{0}$ As $\mathbf{a} \neq \mathbf{0}$ and $\mathbf{b} \neq \mathbf{c}$, \mathbf{a} is parallel to $\mathbf{(b}-\mathbf{c})$, so $\mathbf{b}-\mathbf{c}=\lambda \mathbf{a}$ (b) (i) If \mathbf{A} non-singular, then $\mathbf{A}^{-1} \mathbf{A B}=\mathbf{A}^{\mathbf{1}} \mathbf{A C} \Rightarrow \mathbf{B}=\mathbf{C}$ (*)AG (ii) $\left(\begin{array}{ll}3 & 6 \\ 1 & 2\end{array}\right)\left(\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}3 & 21 \\ 1 & 7\end{array}\right)$ Set $\left(\begin{array}{ll}3 & 6 \\ 1 & 2\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}3 & 21 \\ 1 & 7\end{array}\right)$ and finding two equations Any non-zero values of a, b, c and d such that $a+2 c=1$ and $b+2 d=7$.	B1 B1 (2) M1 A1 (2) M1A1 (2) B1 M1 A1 (3) [9]

(a) Det $=-12-2(2 k-8)+16=20-4 k \quad$ (*) $^{*} \quad$ AG
(b) Cofactors $\left(\begin{array}{ccc}-4 & 8-2 k & 4 \\ 8-2 k & 3 k-16 & 2 \\ 4 & 2 & -4\end{array}\right) \quad$ [A1 each error]

$$
A^{-1}=\frac{1}{20-4 k}\left(\begin{array}{ccc}
-4 & 8-2 k & 4 \\
8-2 k & 3 k-16 & 2 \\
4 & 2 & -4
\end{array}\right)
$$

(c) Setting $\left(\begin{array}{lll}3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3\end{array}\right)\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)=\left(\begin{array}{c}0 \\ -2 \\ 1\end{array}\right)$

$$
\lambda=-1
$$

(d) Forming equations in x, y and $z: \quad\left(\begin{array}{lll}3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=8\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$
$-5 x+2 y+4 z=0,2 x+2 z=8 y, \quad 4 x+2 y-5 z=0$
Establishing ratio $x: y$: $z:[x=2 y, x=z]$
Eigenvector $(k)\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right)$
\square
\square
\square
\square
\square
\square
\square
\square
\square

