Question Number	Scheme	Marks
Number 1.	Total in School = $(15 \times 30) + 150 = 600$ random sample of $\frac{30}{600} \times 40$ (Use of $\frac{40}{their600}$) = 2 from each of the 15 classes random sample of $\frac{15}{600} \times 40$ Either = 10 from sixth form; Label the boys in each class from 1 – 15 and the girls from 1 – 15. use random numbers to select 1 girl and 1 boy Label the boys in the sixth form from 1 – 75 and the girls from 1 – 75. use random numbers to select <u>5</u> different boys and 5 different girls.	B1 M1 A1 B1 B1 B1 (7)

Question Number	Scheme		Ма	rks
2. (a)	E(R) = 20 + 10 = 30		B1	(1)
(b)	Var(R) = 4 + 0.84, = 4.84		M1, A1	(2)
(c)	R ~ N(30, 4.84)	(Use of normal with their (a),(b))	B1ft	()
	$P(28.9 < R < 32.64) = P(R < 32.64) - P(R < 28.9)$ $= P\left(Z < \frac{32.64 - 30}{2.2}\right) - P\left(Z < \frac{28.9 - 30}{2.2}\right)$	Stand their σ and μ	M1	
	= P(Z < 1.2) - P(Z < - 0.5)		A1, A1	
	= 0.8849 - (1 - 0.6915)	Correct area	M1	
	= 0.8849 - 0. 3085 = 0.5764	(accept AWRT 0.576)	A1	(6)
				9

3. (a)	$\widehat{\mu} = 82 + 98 + 140 + 110 + 90 + 125 + 150 + 130 + 125 + 150 + 125 $	70+110	M1	
	μ ^μ 10 = 110.5		A1	
	$\hat{\sigma}^2 = \frac{1}{9} (128153 - 10 \times 110.5^2)$	128153	B1	
	= 672.28	(AWRT 672)	M1 A1	(5)
(b)	95% confidence limits are	(condone use of 5 instead of 25) (for 1.96)	M1 B1	
	110.5 $\pm 1.96 \times \frac{25}{\sqrt{10}}$		A1√	
	95% conf. lim. = AWRT(95, 126)		A1 A1	(5)
(c)	Number of intervals = $\frac{95}{100} \times 15$		M1	
	= 14.25	(Allow 14 or 14.3 if method is clear)	A1	(2)
				12

H_0 : No ass	sociation be	tween gende	r and accepta	nce	B1
		ance are ass			
	Accept	Not accept	Total		
Males	170 (180)	110 (100)	280	- · ·	M1 A
Females	280 (270)	140 (150)	420	Expected	
Totals	450	250	700	Values	
0		E	$(O E)^2$]	
			$\frac{(O-E)^2}{E}$		
170		100	E	-	
170		180	0.5556	4	
110 280		100 270	1.0000 0.3704	4	
140		150	0.3704	4	
140		150	0.0007]	
	2				
$\sum \frac{(O-E)}{E}$	2 = 2.59 (Y	'ates' 2.34)		(Condone use of Yates')	M1 .
$E_{v=1;(5\%)}$					B1; I
			evidence to re		M1
		i between a p	persons gende	r and their acceptance (of the offer	A1√
of a flu jab	.)				

5. (a)	μ_b = mean mark of boys, μ_g = mean mark of girls.			
	$ \begin{array}{l} H_0: \mu_b = \mu_g \\ H_1: \mu_b \neq \mu_g \end{array} \qquad $	oth	B1	
	$z = \frac{53 - 50}{\sqrt{\frac{144}{80} + \frac{144}{80}}}$		M1 A1	
	 = 1.58 Critical region z ≥ 1.96 1.58 < 1.96 insufficient evidence to reject Ho. No diff. between mean scores of boys and girls. 		A1 B1 M1 A1	(7)
(b)	$ H_0: \mu_b = \mu_g H_1: \mu_b < \mu_g $		B1	
	$z = -\frac{62 - 59}{\sqrt{\frac{36}{80} + \frac{36}{80}}}$		M1	
	= 3.16		A1	
	Critical region $z \ge 1.6449$ (accept 1.645) 3.16 > 1.6449 sufficient evidence to reject H ₀ .		B1	
	the mean mark for boys is less than the mean mark of the girls.		A1	
	Girls have improved more than boys			(5)
(c)	or girls performed better than boys after 1 year		B1	(1)
				13

6. (a)	r = 27.07, s = 18.04, t = 0.11 using tables or 0.12 using totals	M1 A1 B1 B1 ft	
(b)	Ho : A Poisson model Po(2) is a suitable model.	B1	(4)
	H ₁ : A Poisson model Po(2) is not a suitable model. Amalgamate data	M1	
	$\sum \frac{(O-E)^2}{E} = 3.28 \text{ (awrt)}$	M1 A1	
	v = 6 - 1 = 5 $\chi_5^2(5\%) = 11.070$ (follow through their degrees of freedom)	B1 B1ft	
	$\chi_5^2(5\%)$ = 11.070 (follow through their degrees of freedom) 3.25 < 11.070 There is insufficient evidence to reject H _o , <u>Po(2) is a suitable model.</u>	A1ft	(7)
(c)	The expected values, and hence $\sum rac{(O-E)^2}{E}$ would be different,	B1 B1	(2)
	and the degrees of freedom would be 1 less.		13

	riadies	cannot b	e assumed	d to be norn	nally distribi	utea			B1	(1)
		20-29	30-39	40-49	50-59	60-69	70+]		
Rank		5	6	4	3	1	2	_	M1 A1	
Rank	~	6	5	4	1	3	2	-		
d		1	1	0	2	2	0	_	dM1 (dep	
đ	l^2	1	1	0	4	4	0		on rankin attempt)	ıg
$\sum d^2$	=10						(follow th	nrough their rankings)	A1 ft	
$r_{s} = 1$	$-\frac{6\Sigma}{6}$	$\frac{d^2}{d^2} =$	$1 - \frac{60}{210} =$	- 0.714			$\left(\frac{5}{7} \text{ or } a\right)$	wrt 0.714)	M1 A1	(6)
-	n(n	² – 1)	210				ζ,)		
H₀: <i>ρ</i> =	= 0								B1	
	≠ 0 (or ,								B1	
			lue = 0.885	57 (or 0.828	6)				B1√	
0.714 < 0.8857 No evidence to reject H₀;									M1	
				en deaths fr	om nnoum	! !			A 4	
						oconiosis ar	nd lung can	cer.	A1	(5)
					on phean	oconiosis ar	nd lung can	Cer.	AI	(5)
						oconiosis ar	nd lung can	Cer.		(5) 12
						oconiosis ar	nd lung can	Cer.	AI	
						oconiosis ar	nd lung can	cer.	AI	
						oconiosis ar	nd lung can	Cer.	AI	(5) 12
						oconiosis ar	nd lung can	Cer.	AI	
						oconiosis ar	nd lung can	Cer.	AI	
						oconiosis ar	nd lung can	Cer.		
						oconiosis ar	nd lung can	Cer.		
							nd lung can	Cer.		
						oconiosis ar	nd lung can	Cer.		
							nd lung can	Cer.		
							nd lung can	Cer.		