

GCE

Mathematics (MEI)

Advanced GCE A2 7895-8

Advanced Subsidiary GCE AS 3895-8

Mark Schemes for the Units

January 2008

3895-8/7895-8/MS/R/08J

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2008

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552310

E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Further Mathematics (MEI) (7896) Advanced GCE Further Mathematics (Additional) (MEI) (7897) Advanced GCE Mathematics (MEI) (7895) Advanced GCE Pure Mathematics (MEI) (7898)

Advanced Subsidiary GCE Further Mathematics (MEI) (3896)
Advanced Subsidiary GCE Further Mathematics (Additional) (MEI) (3897)
Advanced Subsidiary GCE Mathematics (MEI) (3895)
Advanced Subsidiary GCE Pure Mathematics (MEI) (3898)

MARK SCHEME FOR THE UNITS

Unit/Cor	itent		Page
4751 (C1	1		
4752 (C2	2)	Concepts for Advanced Mathematics	5
4753 (C3	3)	Methods for Advanced Mathematics	7
4754 (C4	!)	Applications of Advanced Mathematics	11
4755 (FF	? 1)	Further Concepts for Advanced Mathematics	16
4756 (FF	2)	Further Methods for Advanced Mathematics	20
4758	Diffe	erential Equations	27
4761	Med	chanics 1	31
4762	Med	chanics 2	37
4763	41		
4766	Stat	istics 1	46
4767	Stat	istics 2	50
4768	Stat	istics 3	54
4771	Dec	ision Mathematics 1	58
4776	64		
Grade Th	nresh	olds	66

4751 (C1) Introduction to Advanced Mathematics

Section A

	T		T	
1	$[v=][\pm]\sqrt{\frac{2E}{m}} \text{ www}$	3	M2 for $v^2 = \frac{2E}{m}$ or for $[v =][\pm] \sqrt{\frac{E}{\frac{1}{2}m}}$ or M1 for a correct constructive first step and M1 for $v = [\pm] \sqrt{k}$ ft their $v^2 = k$; if M0 then SC1 for $\sqrt{E}/\frac{1}{2}m$ or $\sqrt{2E/m}$ etc	3
2	$\frac{3x-4}{x+1}$ or $3-\frac{7}{x+1}$ www as final answer	3	M1 for $(3x - 4)(x - 1)$ and M1 for $(x + 1)(x - 1)$	3
3	(i) 1	1		
	(ii) 1/64 www	3	M1 for dealing correctly with each of reciprocal, square root and cubing (allow 3 only for 1/64) eg M2 for 64 or -64 or $1/\sqrt{4096}$ or $1/$	4
4	6x + 2(2x - 5) = 7 $10x = 17$	M1 M1	for subst or multn of eqns so one pair of coeffts equal (condone one error) simplification (condone one error) or appropriate addn/subtn to eliminate variable	
	x = 1.7 o.e. isw $y = -1.6$ o.e .isw	A1 A1	allow as separate or coordinates as requested graphical soln: M0	4
5	(i) −4/5 or −0.8 o.e.	2	M1 for 4/5 or 4/–5 or 0.8 or –4.8/6 or correct method using two points on the line (at least one correct) (may be graphical) or for –0.8x o.e.	
	(ii) (15, 0) or 15 found www	3	M1 for $y =$ their (i) $x + 12$ o.e. or $4x + 5y = k$ and (0, 12) subst and M1 for using $y = 0$ eg $-12 = -0.8x$ or ft their eqn	
			or M1 for given line goes through (0, 4.8) and (6, 0) and M1 for 6 × 12/4.8 graphical soln: allow M1 for correct required line drawn and M1 for answer within 2mm of (15, 0)	5

6	f(2) used	M1	or division by $x - 2$ as far as $x^2 + 2x$	
	1(2) asea		obtained correctly	
	$2^3 + 2k + 7 = 3$	M1	or remainder $3 = 2(4 + k) + 7$ o.e. 2nd	
			M1 dep on first	
	k = -6	A1		3
7	(i) 56	2	8×7×6	
			M1 for $\frac{8 \times 7 \times 6}{3 \times 2 \times 1}$ or more simplified	
	(") 7 ((5)		3/(2/(1	
	(ii) -7 or ft from -their (i)/8	2	M1 for 7 or ft their (i)/8 or for	
			$56 \times (-1/2)^3$ o.e. or ft; condone x^3 in	
			answer or in M1 expression;	4
			0 in qn for just Pascal's triangle seen	
8	(i) 5√3	2	M1 for $\sqrt{48} = 4\sqrt{3}$	
	(ii) common denominator = $(5 - \sqrt{2})(5 + \sqrt{2})$	M1		
	(5 - \2)(5 + \2) =23	A1	allow M1A1 for $\frac{5-\sqrt{2}}{23} + \frac{5+\sqrt{2}}{23}$	
	numerator = 10	B1	23 23	
			allow 3 only for 10/23	5
9	(i) $n = 2m$	M1	or any attempt at generalising; M0 for	
			just trying numbers	
	$3n^2 + 6n = 12m^2 + 12m$ or	M2	or M1 for $3n^2 + 6n = 3n(n + 2) = 3 \times$	
	= 12m(m+1)	IVIZ	even × even and M1 for explaining that	
	(4 is a factor of even × even	
			or M1 for 12 is a factor of 6n when n is	
			even and M1 for 4 is a factor of n^2 so 12	
			is a factor of 3n ²	
	(ii) showing false when <i>n</i> is odd e.g.	B2	or $3n(n+2) = 3 \times \text{odd} \times \text{odd} = \text{odd or}$	
	$3n^2 + 6n = \text{odd} + \text{even} = \text{odd}$	DZ	counterexample showing not always	
			true; M1 for false with partial	
			explanation or incorrect calculation	5

10	i	correct graph with clear asymptote <i>x</i> = 2 (though need not be marked)	G2	G1 for one branch correct; condone (0, -1/2) not shown SC1 for both sections of graph shifted two to left		
		(0, - ½) shown	G1	allow seen calculated	3	
	ii	11/5 or 2.2 o.e. isw	2	M1 for correct first step	2	
	iii	$x = \frac{1}{x - 2}$	M1	or equivs with ys		
		x(x-2) = 1 o.e. $x^2 - 2x - 1$ [= 0]; ft their equiveqn	M1 M1 M1 A1	or $(x - 1)^2 - 1 = 1$ o.e. or $(x - 1) = \pm \sqrt{2}$ (condone one error)		
		attempt at quadratic formula 1 ±√2 cao position of points shown	B1	on their curve with $y = x$ (line drawn or $y = x$ indicated by both coords); condone intent of diagonal line with gradient approx 1through origin as $y = x$ if unlabelled	6	11
11	i	$(x-2.5)^2$ o.e. $-2.5^2 + 8$ $(x-2.5)^2 + 7/4$ o.e.	M1 M1 A1	for clear attempt at -2.5^2 allow M2A0 for $(x - 2.5) + 7/4$ o.e. with no $(x - 2.5)^2$ seen		
		min $y = 7/4$ o.e. [so above x axis] or commenting $(x - 2.5)^2 \ge 0$	B1	ft, dep on $(x - a)^2 + b$ with b positive; condone starting again, showing $b^2 - 4ac < 0$ or using calculus	4	
	ii	correct symmetrical quadratic shape	G1			
		8 marked as intercept on y axis tp (5/2, 7/4) o.e. or ft from (i)	G1 G1	or (0, 8) seen in table	3	
	iii	$x^2 - 5x - 6$ seen or used -1 and 6 obtained x < -1 and $x > 6$ isw or ft their solns	M1 M1 M1	or $(x - 2.5)^2$ [> or =] 12.25 or ft 14 - <i>b</i> also implies first M1 if M0, allow B1 for one of $x < -1$ and $x > 6$	3	
	iv	min = $(2.5, -8.25)$ or ft from (i) so yes, crosses	M1 A1	or M1 for other clear comment re translated 10 down and A1 for referring to min in (i) or graph in (ii); or M1 for correct method for solving $x^2 - 5x - 2 = 0$ or using $b^2 - 4ac$ with this and A1 for showing real solns eg $b^2 - 4ac = 33$; allow M1A0 for valid comment but error in -8.25 ft; allow M1 for showing y can be neg eg (0, -2) found and A1 for correct conclusion	2	12

12	i	$(x-4)^2 - 16 + (y-2)^2 - 4 = 9$ o.e.	M2	M1 for one completing square or for $(x-4)^2$ or $(y-2)^2$ expanded correctly or starting with $(x-4)^2 + (y-2)^2 = r^2$: M1 for correct expn of at least one bracket and M1 for $9 + 20 = r^2$ o.e.	
		rad = √29	B1	or using $x^2 - 2gx + y^2 - 2fy + c = 0$ M1 for using centre is (g, f) [must be quoted] and M1 for $r^2 = g^2 + f^2 - c$	3
	ii	$4^2 + 2^2$ o.e = 20 which is less than 29	M1 A1	allow 2 for showing circle crosses <i>x</i> axis at -1 and 9 or equiv for <i>y</i> (or showing one positive; one negative); 0 for graphical solutions (often using A and B from (iii) to draw circle)	2
	iii	showing midpt of AB = (4, 2) and showing AB = $2\sqrt{29}$ or showing AC or BC = $\sqrt{29}$ or that A or B lie on circle or showing both A and B lie on circle (or AC = BC = $\sqrt{29}$), and showing AB = $2\sqrt{29}$ or that C is midpt of AB or that C is on AB or that gradients of AB and AC are the same or equiv.	2 2 2 2	in each method, two things need to be established. Allow M1 for the concept of what should be shown and A1 for correct completion with method shown allow M1A0 for AB just shown as $\sqrt{116}$ not $2\sqrt{29}$ allow M1A0 for stating mid point of AB = (4,2) without working/method shown NB showing AB = $2\sqrt{29}$ and C lies on AB is not sufficient – earns 2 marks only	
		and showing both A and B are on circle or AC = BC = √29	2	if M0, allow SC2 for accurate graph of circle drawn with compasses and AB joined with ruled line through C.	4
	iv	grad AC or AB or BC = $-5/2$ o.e. grad tgt = $-1/t$ heir grad AC tgt is $y - 7$ = their $m(x - 2)$ o.e.	M1 M1 M1	may be seen in (iii) but only allow this M1 if they go on to use in this part allow for m_1m_2 =-1 used eg y = their mx + c then (2, 7) subst; M0 if grad AC used	
		y = 2/5 x + 31/5 o.e.	A1	condone $y = 2/5x + c$ and $c = 31/5$ o.e.	4

4752 (C2) Concepts for Advanced Mathematics

Section A

1	$40x^3$	2	-1 if extra term	2
2	(i) 3	1		
	(ii) 141	2	M1 for $9 \times (1 + 2 + 3 + 4 + 5) + 1 + 2 + 3$	3
3	right angled triangle with 1 and 2 on correct sides	M1	or M1 for $\sin\theta = \frac{1}{2}\cos\theta$ and M1 for substituting in $\sin^2\theta + \cos^2\theta = 1$	
	Pythagoras used to obtain hyp = $\sqrt{5}$ $\cos \theta = \frac{a}{h} = \frac{2}{\sqrt{5}}$	M1 A1	E1 for sufficient working	3
4	(i)line along $y = 6$ with $V(1, 6), (2, 2), (3, 6)$	2	1 for two points correct	
	(ii) line along $y = 3$ with $V(-2,3), (-1,1), (0,3)$	2	1 for two points correct	4
5	$2x^{6} + \frac{3}{4}x^{\frac{4}{3}} + 7x + c$	5	1 for $2x^6$; 2 for $\frac{3}{4}x^{\frac{4}{3}}$ or 1 for other $kx^{\frac{4}{3}}$; 1 for $7x$;	
	4		1 for $+c$	5
6	(i) correct sine shape through O amplitude of 1 and period 2π shown	1		
	(ii) $7\pi/6$ and $11\pi/6$	3	B2 for one of these; 1 for $-\pi/6$ found	5
7	(i) 60	2	M1 for $2^2 + 2^3 + 2^4 + 2^5$ o.e.	
	(ii) −6 (iii)	1		
	6 4	1	Correct in both quadrants Through (0, 1) shown dep.	
	2 v			5
8	r = 1/3 s.o.i. $a = 54$ or ft $18 \div$ their r	2 M1 M1	1 mark for ar = 18 and ar ³ = 2 s.o.i.	
	$S = \frac{a}{1 - r} \text{ used with } -1 < r < 1$ $S = 81 \text{ c.a.o.}$	A1		5
9	(i) 0.23 c.a.o.	1		
	(ii) 0.1 or 1/10	1	10 ⁻¹ not sufficient	
	(iii) $4(3x+2)$ or $12x+8$	1		4
	(iv) $[y =] 10^{3x+2}$ o.e.	1		

		1 400/2		T	1
10	İ	$h = 120/x^2$ $A = 2x^2 + 4xh$ o.e.	B1 M1		
		completion to given answer	A1	at least one interim step shown	3
		completion to given unswer			
	ii	$A' = 4x - 480/x^2$ o.e.	2	1 for kx^{-2} o.e. included	
		$A'' = 4 + 960 / x^3$	2	ft their A' only if kx ⁻² seen; 1 if one	4
	iii	use of $A' = 0$	M1	error	
	""	$x = \sqrt[3]{120}$ or 4.9(3)	A1		
		Test using A' or A" to confirm			
		minimum	T1		_
		Substitution of their x in A	M1	Dependent on previous M1	5
		A = 145.9 to 146	A1		
11	iA	$BC^2 = 348^2 + 302^2 - 2 \times 348 \times$	M2	M1 for recognisable attempt at	
		302 × cos 72°		Cosine Rule	
		BC = 383.86 1033.86[m] or ft 650 + their BC	A1 1	to 3 sf or more accept to 3 sf or more	4
			1	accept to 3 St of Thore	4
	iB	$\frac{\sin B}{\sin B} = \frac{\sin 72}{\sin 72}$	M1	Cosine Rule acceptable or Sine Rule	
		302 their BC		to find C	
		B = 48.4	A1 M1	or 247 + their C	
		355 – their B o.e. answer in range 306 to307	A1	or 247 + their C	4
		answer in range 300 to307			
	ii	Arc length PQ = $\frac{224}{360} \times 2\pi \times 120$		M1 for $\frac{136}{360} \times 2\pi \times 120$	
			M2	360	
		o.e. or 469.1 to 3 sf or more QP = 222.5to 3 sf or more	B1		
		answer in range 690 to 692 [m]	A1		
					4
12	iA	$x^4 = 8x$	M1		
		(2, 16) c.a.o.	A1		
		PQ = 16 and completion to show		ND analysis 40 million	_
		½ × 2 × 16 = 16	A1	NB answer 16 given	3
	iB	$x^{5}/5$	M1		
		evaluating their integral at their	M1	ft only if integral attempted, not for x^4	
		co-ord of P and zero [or 32/5 o.e.]		or differentiation	
		9.6 o.e.	A1	c.a.o.	3
	iiA	$6x^2h^2 + 4xh^3 + h^4$	2	B1 for two terms correct.	
					2
	iiB	$4x^3 + 6x^2h + 4xh^2 + h^3$	2	B1 for three terms correct	2
			_	2. Isi and terme deficet	_
	iiC	$4x^3$	1		1
	iiD	gradient of [tangent to] curve	1		1

4753 (C3) Methods for Advanced Mathematics

Section A

1 $y = (1+6x^2)^{1/3}$ $\Rightarrow \frac{dy}{dx} = \frac{1}{3}(1+6x^2)^{-2/3}.12x$ $= 4x(1+6x^2)^{-2/3}$	M1 B1 A1 A1 [4]	chain rule used $\frac{1}{3}u^{-2/3}$ ×12x cao (must resolve 1/3 × 12) Mark final answer
2 (i) $fg(x) = f(x-2)$ = $(x-2)^2$ $gf(x) = g(x^2) = x^2 - 2$.	M1 A1 A1 [3]	forming a composite function mark final answer If fg and gf the wrong way round, M1A0A0
(ii) $fg(x)$ $gf(x)$	B1ft B1ft [2]	fg – must have (2, 0)labelled (or inferable from scale). Condone no <i>y</i> -intercept, unless wrong gf – must have (0, –2) labelled (or inferable from scale) Condone no x-intercepts, unless wrong Allow ft only if fg and gf are correct but wrong way round.
3 (i) When $n = 1$, 10 000 = $A e^b$ when $n = 2$, 16 000 = $A e^{2b}$ $\Rightarrow \frac{16000}{10000} = \frac{Ae^{2b}}{Ae^b} = e^b$ $\Rightarrow e^b = 1.6$ $\Rightarrow b = \ln 1.6 = 0.470$ $A = 10000/1.6 = 6250$	B1 B1 M1 E1 B1 B1	soi soi eliminating <i>A</i> (do not allow verification) SCB2 if initial 'B's are missing, and ratio of years = 1.6 = e ^b In 1.6 or 0.47 or better (mark final answer) cao – allow recovery from inexact <i>b</i> 's
(ii) When $n = 20$, $P = 6250 \times e^{0.470 \times 20}$ = £75,550,000	M1 A1 [2]	substituting $n = 20$ into their equation with their A and b Allow answers from £75 000 000 to £76 000 000.
4 (i) $5 = k/100 \Rightarrow k = 500^*$	E1 [1]	NB answer given
(ii) $\frac{dP}{dV} = -500V^{-2} = -\frac{500}{V^2}$	M1 A1 [2]	$(-1)V^{-2}$ o.e. – allow – k/V^2
(iii) $\frac{dP}{dt} = \frac{dP}{dV} \cdot \frac{dV}{dt}$	M1	chain rule (any correct version)
When $V = 100$, $dP/dV = -500/10000 = -0.05$ dV/dt = 10 $\Rightarrow dP/dt = -0.05 \times 10 = -0.5$ So P is decreasing at 0.5 Atm/s	B1ft B1 A1 [4]	(soi) (soi) -0.5 cao

5(i)	$p = 2, 2^{p} - 1 = 3$, prime $p = 3, 2^{p} - 1 = 7$, prime $p = 5, 2^{p} - 1 = 31$, prime $p = 7, 2^{p} - 1 = 127$, prime	M1 E1 [2]	Testing at least one prime testing all 4 primes (correctly) Must comment on answers being prime (allow ticks) Testing $p = 1$ is E0
(ii)	$23 \times 89 = 2047 = 2^{11} - 1$ 11 is prime, 2047 is not So statement is false.	M1 E1 [2]	$2^{11} - 1$ must state or imply that 11 is prime ($p = 11$ is sufficient)
\Rightarrow	$e^{2y} = x^2 + y$ $2e^{2y} \frac{dy}{dx} = 2x + \frac{dy}{dx}$ $(2e^{2y} - 1) \frac{dy}{dx} = 2x$ $\frac{dy}{dx} = \frac{2x}{2e^{2y} - 1} *$	M1 A1 M1 E1 [4]	Implicit differentiation – allow one slip (but with dy/dx both sides) collecting terms
$\begin{array}{c} 0 \\ \Rightarrow \\ \Rightarrow \end{array}$	Gradient is infinite when $2e^{2y} - 1 =$ $e^{2y} = \frac{1}{2}$ $2y = \ln \frac{1}{2}$ $y = \frac{1}{2} \ln \frac{1}{2} = -0.347 \text{ (3 s.f.)}$ $x^2 = e^{2y} - y = \frac{1}{2} - (-0.347)$ $= 0.8465$ $x = 0.920$	M1 A1 M1 A1 [4]	must be to 3 s.f. substituting their y and solving for x cao – must be to 3 s.f., but penalise accuracy once only.

	Ι	
7(i) $y = 2x \ln(1+x)$ $\Rightarrow \frac{dy}{dx} = \frac{2x}{1+x} + 2\ln(1+x)$ When $x = 0$, $\frac{dy}{dx} = 0 + 2 \ln 1 = 0$ $\Rightarrow \text{ origin is a stationary point.}$	M1 B1 A1 E1 [4]	product rule $d/dx(\ln(1+x)) = 1/(1+x)$ soi www (i.e. from correct derivative)
(ii) $\frac{d^2y}{dx^2} = \frac{(1+x) \cdot 2 - 2x \cdot 1}{(1+x)^2} + \frac{2}{1+x}$ $= \frac{2}{(1+x)^2} + \frac{2}{1+x}$ When $x = 0$, $\frac{d^2y}{dx^2} = 2 + 2 = 4 > 0$ $\Rightarrow (0, 0) \text{ is a min point}$	M1 A1ft A1 M1 E1 [5]	Quotient or product rule on their $2x/(1+x)$ correctly applied to their $2x/(1+x)$ o.e., e.g. $\frac{4+2x}{(1+x)^2}$ cao substituting $x = 0$ into their d^2y/dx^2 www – dep previous A1
(iii) Let $u = 1 + x \Rightarrow du = dx$ $\Rightarrow \int \frac{x^2}{1+x} dx = \int \frac{(u-1)^2}{u} du$ $= \int \frac{(u^2 - 2u + 1)}{u} du$	M1	$\frac{(u-1)^2}{u}$
$= \int (u - 2 + \frac{1}{u}) du *$ $\Rightarrow \int_{0}^{1} \frac{x^{2}}{1 + x} dx = \int_{1}^{2} (u - 2 + \frac{1}{u}) du$ $= \left[\frac{1}{2} u^{2} - 2u + \ln u \right]_{1}^{2}$ $= 2 - 4 + \ln 2 - (\frac{1}{2} - 2 + \ln 1)$ $= \ln 2 - \frac{1}{2}$	E1 B1 B1 M1 A1 [6]	www (but condone du omitted except in final answer) changing limits (or substituting back for x and using 0 and 1) $\left[\frac{1}{2}u^2 - 2u + \ln u\right]$ substituting limits (consistent with u or x) cao
(iv) $A = \int_0^1 2x \ln(1+x) dx$ Parts: $u = \ln(1+x)$, $du/dx = 1/(1+x)$ $dv/dx = 2x \Rightarrow v = x^2$ $= \left[x^2 \ln(1+x)\right]_0^1 - \int_0^1 \frac{x^2}{1+x} dx$ $= \ln 2 - \ln 2 + \frac{1}{2} = \frac{1}{2}$	M1 A1 M1 A1 [4]	substituting their $\ln 2 - \frac{1}{2}$ for $\int_0^1 \frac{x^2}{1+x} dx$ cao

8 (i) Stretch in x-direction s.f. ½ translation in y-direction 1 unit up	M1 A1 M1 A1 [4]	(in either order) – allow 'contraction' dep 'stretch' allow 'move', 'shift', etc – direction can be inferred from $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ or $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ dep 'translation'. $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ alone is M1 A0
(ii) $A = \int_{-\pi/4}^{\pi/4} (1 + \sin 2x) dx$ $= \left[x - \frac{1}{2} \cos 2x \right]_{-\pi/4}^{\pi/4}$ $= \pi/4 - \frac{1}{2} \cos \pi/2 + \pi/4 + \frac{1}{2} \cos (-\pi/2)$ $= \pi/2$	M1 B1 M1 A1 [4]	correct integral and limits. Condone dx missing; limits may be implied from subsequent working. substituting their limits (if zero lower limit used, must show evidence of substitution) or 1.57 or better – cao (www)
(iii) $y = 1 + \sin 2x$ $\Rightarrow dy/dx = 2\cos 2x$ When $x = 0$, $dy/dx = 2$ So gradient at $(0, 1)$ on $f(x)$ is 2 \Rightarrow gradient at $(1, 0)$ on $f^{-1}(x) = \frac{1}{2}$	M1 A1 A1ft B1ft [4]	differentiating – allow 1 error (but not $x + 2\cos 2x$) If 1, then must show evidence of using reciprocal, e.g. $1/1$
(iv) Domain is $0 \le x \le 2$. y 2^{4} $-\pi/4$ 0 $\pi/4$ 2	B1 M1 A1 [3]	Allow 0 to 2, but not $0 < x < 2$ or y instead of x clear attempt to reflect in $y = x$ correct domain indicated (0 to 2), and reasonable shape
(v) $y = 1 + \sin 2x \ x \leftrightarrow y$ $x = 1 + \sin 2y$ $\Rightarrow \sin 2y = x - 1$ $\Rightarrow 2y = \arcsin(x - 1)$ $\Rightarrow y = \frac{1}{2} \arcsin(x - 1)$	M1 A1 [2]	or $\sin 2x = y - 1$ cao

4754 (C4) Applications of Advanced Mathematics

Section A

1 $3 \cos \theta + 4 \sin \theta = R \cos(\theta - \alpha)$ $= R(\cos \theta \cos \alpha + \sin \theta \sin \alpha)$ $\Rightarrow R \cos \alpha = 3$, $R \sin \alpha = 4$ $\Rightarrow R^2 = 3^2 + 4^2 = 25 \Rightarrow R = 5$ $\tan \alpha = 4/3 \Rightarrow \alpha = 0.9273$ $5 \cos(\theta - 0.9273) = 2$ $\Rightarrow \cos(\theta - 0.9273) = 2/5$ $\theta - 0.9273 = 1.1593, -1.1593$ $\Rightarrow \theta = 2.087, -0.232$	M1 B1 M1A1 M1 A1 A1 [7]	R = 5 cwo and no others in the range
2(i) $(1-2x)^{-\frac{1}{2}} = 1 - \frac{1}{2}(-2x) + \frac{(-\frac{1}{2}) \cdot (-\frac{3}{2})}{2!}(-2x)^2 + \dots$ $= 1 + x + \frac{3}{2}x^2 + \dots$ Valid for $-1 < -2x < 1 \Rightarrow -\frac{1}{2} < x < \frac{1}{2}$	M1 A1 A1 M1 A1 [5]	binomial expansion with $p = -\frac{1}{2}$ correct expression cao
(ii) $\frac{1+2x}{\sqrt{1-2x}} = (1+2x)(1+x+\frac{3}{2}x^2+)$ $= 1+x+\frac{3}{2}x^2+2x+2x^2+$ $= 1+3x+\frac{7}{2}x^2+$	M1 A1ft A1 [3]	substituting their $1+x+\frac{3}{2}x^2+$ and expanding
3 $V = \int_{1}^{2} \pi x^{2} dy$ $y = 1 + x^{2} \Rightarrow x^{2} = y - 1$ $\Rightarrow V = \int_{1}^{2} \pi (y - 1) dy$ $= \pi \left[\frac{1}{2} y^{2} - y \right]_{1}^{2}$ $= \pi (2 - 2 - \frac{1}{2} + 1)$ $= \frac{1}{2} \pi$	B1 M1 B1 M1 A1 [5]	$\left[\frac{1}{2}y^2 - y\right]$ substituting limits into integrand

4(i) $\sin(\theta + 45^{\circ}) = \cos \theta$ $\Rightarrow \sin \theta \cos 45 + \cos \theta \sin 45 = \cos \theta$ $\Rightarrow (1/\sqrt{2}) \sin \theta + (1/\sqrt{2}) \cos \theta = \cos \theta$ $\Rightarrow \sin \theta + \cos \theta = \sqrt{2} \cos \theta$ $\Rightarrow \sin \theta = (\sqrt{2} - 1) \cos \theta$ $\Rightarrow \frac{\sin \theta}{\cos \theta} = \tan \theta = \sqrt{2} - 1 *$	M1 B1 A1 M1 E1 [5]	compound angle formula $\sin 45 = 1/\sqrt{2}$, $\cos 45 = 1/\sqrt{2}$ collecting terms
(ii) $\tan \theta = \sqrt{2} - 1$ $\Rightarrow \theta = 22.5^{\circ},$ 202.5°	B1 B1 [2]	and no others in the range
$5 \qquad \frac{4}{x(x^2+4)} = \frac{A}{x} + \frac{Bx+C}{x^2+4}$ $= \frac{A(x^2+4) + (Bx+C)x}{x(x^2+4)}$	M1	correct partial fractions
$\Rightarrow 4 = A(x^2 + 4) + (Bx + C)x$ $x = 0 \Rightarrow 4 = 4A \Rightarrow A = 1$ $\text{coefft of } x^2 : 0 = A + B \Rightarrow B = -1$ $\text{coeffts of } x : 0 = C$ $\Rightarrow \frac{4}{x(x^2 + 4)} = \frac{1}{x} - \frac{x}{x^2 + 4}$	M1 B1 DM1 A1 A1 [6]	A=1 Substitution or equating coeffts $B=-1$ $C=0$
6 $\csc \theta = 3$ $\Rightarrow \sin \theta = 1/3$ $\Rightarrow \theta = 19.47^{\circ},$ 160.53°	M1 A1 A1 [3]	and no others in the range

		
7(i) $\overrightarrow{CD} = \begin{pmatrix} -6 \\ 6 \\ 24 \end{pmatrix} \overrightarrow{CB} = \begin{pmatrix} 0 \\ 20 \\ 0 \end{pmatrix}$.	B1 B1 [2]	
(ii) $\sqrt{(-6)^2 + 6^2 + 24^2}$ = 25.46 cm	M1 A1 [2]	
(iii) $\overline{CD}. \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -6 \\ 6 \\ 24 \end{pmatrix}. \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} = -24 + 0 + 24 = 0$ $(4) (0) (4)$	M1 A1	using scalar product
$\overrightarrow{CB}.\begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 20 \\ 0 \end{pmatrix}.\begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} = 0 + 0 + 0 = 0$ $\Rightarrow \text{ plane BCDE is } 4x + z = c$ At C (say) $4 \times 15 + 0 = c \Rightarrow c = 60$ $\Rightarrow \text{ plane BCDE is } 4x + z = 60$	B1 M1 A1 [5]	or other equivalent methods
(iv) OG: $\mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 6 \\ 24 \end{pmatrix}$ AF: $\mathbf{r} = \begin{pmatrix} 0 \\ 20 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ -6 \\ 24 \end{pmatrix}$	B1 B1	
	M1 E1 E1 [5]	evaluating parameter and checking consistency. [or other methods, e.g. solving]
(v) h=40 POABC: $V = 1/3 \times 20 \times 15 \times 40$ = 4000 cm ³ .	B1 M1	soi 1/3 x w x d x h used for either –condone one error
PDEFG: $V = 1/3 \times 8 \times 6 \times (40-24)$ = 256 cm ³ \Rightarrow vol of ornament = 4000 - 256 = 3744 cm ³	A1 A1	both volumes correct cao
	[4]	

		Ţ
8(i) $\cos \theta = \frac{x}{k}, \sin \theta = \frac{2y}{k}$ $\cos^2 \theta + \sin^2 \theta = 1$ $\Rightarrow \left(\frac{x}{k}\right)^2 + \left(\frac{2y}{k}\right)^2 = 1$ $\Rightarrow \frac{x^2}{k^2} + \frac{4y^2}{k^2} = 1$ $\Rightarrow x^2 + 4y^2 = k^2 *$	M1 M1 E1 [3]	Used substitution
(ii) $\frac{dx}{d\theta} = -k \sin \theta, \frac{dy}{d\theta} = \frac{1}{2}k \cos \theta$ $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = -\frac{\frac{1}{2}k \cos \theta}{k \sin \theta}$ $= -\frac{1}{2}\cot \theta$ $-\frac{x}{4y} = -\frac{2k \cos \theta}{4k \sin \theta} = -\frac{1}{2}\cot \theta = \frac{dy}{dx}$ or, by differentiating implicitly $2x + 8y dy/dx = 0$ $\Rightarrow dy/dx = -2x/8y = -x/4y*$	M1 A1 E1 M1 A1 E1 [3]	oe
(iii) $k=2$	B1 [1]	
(iv) $k = 1$ $k = 2$ $k = 3$ $k = 4$	B1 B1 B1	1 correct curve –shape and position 2 or more curves correct shape- in concentric form all 3 curves correct
(v) grad of stream path = -1/grad of contour $\Rightarrow \frac{dy}{dx} = -\frac{1}{(-x/4y)} = \frac{4y}{x} *$	M1 E1 [2]	
(vi) $\frac{dy}{dx} = \frac{4y}{x} \Rightarrow \int \frac{dy}{y} = \int \frac{4dx}{x}$ $\Rightarrow \ln y = 4 \ln x + c = \ln e^{c}x^{4}$ $\Rightarrow y = Ax^{4} \text{ where } A = e^{c}.$ When $x = 2$, $y = 1 \Rightarrow 1 = 16A \Rightarrow A = 1/16$ $\Rightarrow y = x^{4}/16 *$	M1 A1 M1 M1 A1 E1 [6]	Separating variables $\ln y = 4 \ln x \ (+c)$ antilogging correctly (at any stage) substituting $x = 2$, $y = 1$ evaluating a correct constant www

Paper B Comprehension 4754 (C4)

1	4, 1, 5, 6, 11, 17	B1	for 11 and 17
2	Even, odd, odd, even, odd, odd recurs	B1 M1	for 1 and 4 for reason
_	100 th term is therefore even	A1	WWW
3	$\phi^6 = (3\phi + 2) + (5\phi + 3) = 8\phi + 5$	B1	
4	$1 - EH = 1 - CG = 1 - (\phi - 1)$	M1	oe
	$=2-\phi=2-\left(\frac{1+\sqrt{5}}{2}\right)$	A1	
	$=\frac{3-\sqrt{5}}{2}$	A1	
5	(i)Gradients $-\frac{1}{\phi}$ and $\frac{1}{\phi-1}$	B1 B1	
	(ii) Product of gradients: $-\frac{1}{\phi} \times \frac{1}{\phi - 1} = -\frac{1}{\phi^2 - \phi}$	M1	
	$=-\frac{1}{1}=-1$	E1	
6	$\frac{1+\sqrt{5}}{1+\sqrt{5}}+1$		
	$\frac{\phi+1}{2\phi-1} = \frac{\frac{1+\sqrt{5}}{2}+1}{\frac{1+\sqrt{5}-1}{2}}$	M1	
	$=\frac{3+\sqrt{5}}{2\sqrt{5}}$	A1	
	$= \frac{(3+\sqrt{5})\sqrt{5}}{2\sqrt{5}\times\sqrt{5}} = \frac{3\sqrt{5}+5}{10}$	E1	
7	$a + (a + d) = a + 2d \implies a = d$	M1	
	$(a+d)+(a+2d) = a+3d \implies a=0$ $a=d=0 *$	M1 E1 [18]	

4755 (FP1) Further Concepts for Advanced Mathematics

Qu	Answer	Mark	Comment
Section	on A		
1(i)	$\mathbf{B}\mathbf{A} = \begin{pmatrix} 3 & 1 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ -4 & 14 \end{pmatrix}$	M1 A1 [2]	Attempt to multiply c.a.o.
1(ii)	$\det \mathbf{BA} = (6 \times 14) - (-4 \times 0) = 84$	M1 A1	Attempt to calculate any determinant
	$3 \times 84 = 252$ square units	A1(ft) [3]	c.a.o. Correct area
2(i)	$\alpha^2 = (-3+4j)(-3+4j) = (-7-24j)$	M1	Attempt to multiply with use of $j^2 = -1$
		A1 [2]	c.a.o.
2(ii)	$ \alpha = 5$ $\arg \alpha = \pi - \arctan \frac{4}{3} = 2.21$ (2d.p.) (or 126.87°)	B1 B1	Accept 2.2 or 127°
	$\alpha = 5(\cos 2.21 + j\sin 2.21)$	B1(ft)	Accept degrees and (r, θ) form s.c. lose 1 mark only if α^2 used throughout (ii)
3(i)	$3^{3} + 3^{2} - 7 \times 3 - 15 = 0$ $z^{3} + z^{2} - 7z - 15 = (z - 3)(z^{2} + 4z + 5)$	B1 M1 A1	Showing 3 satisfies the equation (may be implied) Valid attempt to factorise Correct quadratic factor
	$z = \frac{-4 \pm \sqrt{16 - 20}}{2} = -2 \pm \mathrm{j}$	M1	Use of quadratic formula, or other valid method
	So other roots are $-2+j$ and $-2-j$	A1	One mark for both c.a.o.
3(ii)	In (x 1) -2 0 3 Fe	[5] B2 [2]	Minus 1 for each error ft provided conjugate imaginary roots

4	$\sum_{r=1}^{n} [(r+1)(r-2)] = \sum_{r=1}^{n} r^{2} - \sum_{r=1}^{n} r - 2n$	M1	Attempt to split sum up
	$= \frac{1}{6} n(n+1)(2n+1) - \frac{1}{2} n(n+1) - 2n$	A2	Minus one each error
	$= \frac{1}{6} n \Big[(n+1)(2n+1) - 3(n+1) - 12 \Big]$	M1	Attempt to factorise
	$= \frac{1}{6}n(2n^2 + 3n + 1 - 3n - 3 - 12)$	M1	Collecting terms
	$=\frac{1}{6}n(2n^2-14)$		
	$=\frac{1}{3}n(n^2-7)$	A1 [6]	All correct
5(i)	p = -3, r = 7	B2	One mark for each
5(ii)		[2]	s.c. B1 if <i>b</i> and <i>d</i> used instead of <i>p</i> and <i>r</i>
	$q = \alpha\beta + \alpha\gamma + \beta\gamma$	B1	
	$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$	M1	Attempt to find q using $\alpha^2 + \beta^2 + \gamma^2$ and $\alpha + \beta + \gamma$, but not $\alpha\beta\gamma$
	$= (\alpha + \beta + \gamma)^2 - 2q$		
	$\Rightarrow 13 = 3^2 - 2q$	A 4	
	$\Rightarrow q = -2$	A1 [3]	c.a.o.
6(i)	$a_2 = 7 \times 7 - 3 = 46$	M1 A1	Use of inductive definition c.a.o.
	$a_3 = 7 \times 46 - 3 = 319$	[2]	o.a.o.
6(ii)			
	When $n = 1$, $\frac{13 \times 7^0 + 1}{2} = 7$, so true for $n = 1$	В1	Correct use of part (i) (may be implied)
	Assume true for $n = k$	E1	Assuming true for k
	$a_k = \frac{13 \times 7^{k-1} + 1}{2}$		
	$\Rightarrow a_{k+1} = 7 \times \frac{13 \times 7^{k-1} + 1}{2} - 3$	M1	Attempt to use $a_{k+1} = 7a_k - 3$
	$=\frac{13\times7^k+7}{2}-3$		
	$=\frac{13\times7^k+7-6}{2}$		
	_	A1	Correct simplification
	$=\frac{13\times7^k+1}{2}$	711	'
	But this is the given result with $k + 1$ replacing k . Therefore if it is true for k it is	E1	Dependent on A1 and previous E1
	true for $k + 1$. Since it is true for $k = 1$, it is true for $k = 1, 2, 3$ and so true for all positive	E1	
	integers.	[6]	Dependent on B1 and previous E1
			Section A Total: 36

Section	on B		
7(i)	$(1, 0)$ and $(0, \frac{1}{18})$	B1	
	, 107	B1	
		[2]	
7 (ii)	$x = 2, x = -3, x = \frac{-3}{2}, y = 0$	B4	Minus 1 for each error
-/**	, x = 3, x = 2, y = 0	[4]	
7(iii)	(! i) ³		
	/: : :\	B1	Correct approaches to vertical
	/: :\		asymptotes
	1/18	B1	Through clearly marked (1, 0)
	710	Δ,	and $\left(0, \frac{1}{18}\right)$
		F03	
	:/ \: \	[2]	
	,1 E 1 L		
	x < -3, x > 2	B1	
7(iv)		D0	B1 for $\frac{-3}{2} < x < 1$, or $\frac{-3}{2} \le x \le 1$
	$\frac{-3}{2} < x \le 1$	B2	
	2	[3]	
	Ina	В3	Circle, B1; radius 2, B1;
8(i)			centre 3j, B1
		В3	Half line, B1; from -1, B1;
	3 //		$\frac{\pi}{4}$ to x-axis, B1
	(2)//	[6]	
8(ii)	3	B2(ft)	Correct region between their circle and half line indicated
O(II)			s.c. B1 for interior of circle
	- Re	[2]	
	-1		
		M1	Tangent from origin to circle
	Cleated about declaration about the condition of	V 4 \ t /	Correct point placed by eye
	Sketch should clearly show the radius and centre of the circle and the starting point	A1(ft)	where tangent from origin meets
	and angle of the half-line.		circle
8(iii)		M1	Attempt to use right angled
	$\arg z = \frac{\pi}{2} - \arcsin \frac{2}{3} = 0.84 \text{ (2d.p.)}$		triangle
	2	A1	c.a.o. Accept 48.20° (2d.p.)
		[4]	
		[ד]	

9(i)	(-3, -3)	B1 [1]	
9(ii)	(x, x)	B1 B1 [2]	
9(iii)	$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$	B3 [3]	Minus 1 each error to min of 0
9(iv)	Rotation through $\frac{\pi}{2}$ anticlockwise about the origin	B1 B1 [2]	Rotation and angle (accept 90°) Centre and sense
9(v)	$ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix} $	M1 A1	Attempt to multiply using their T in correct order c.a.o.
		[2]	
9(vi)	$\begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ x \end{pmatrix}$	M1 A1(ft)	May be implied
	So (-x, x)		
	Line $y = -x$	A1	c.a.o. from correct matrix
		[3]	

4756 (FP2) Further Methods for Advanced Mathematics

44.		B 4 4	
1(a)	C.T.	M1	For $\int (1-\cos 2\theta)^2 d\theta$
	Area is $\int_0^{\pi} \frac{1}{2} a^2 (1 - \cos 2\theta)^2 d\theta$	A1	Correct integral expression including limits (may be implied by later work)
	$= \int_0^{\pi} \frac{1}{2} a^2 \left(1 - 2\cos 2\theta + \frac{1}{2} (1 + \cos 4\theta) \right) d\theta$	B1	For $\cos^2 2\theta = \frac{1}{2}(1 + \cos 4\theta)$
	$= \frac{1}{2}a^2 \left[\frac{3}{2}\theta - \sin 2\theta + \frac{1}{8}\sin 4\theta \right]_0^{\pi}$ $= \frac{3}{4}\pi a^2$	B1B1B1 ft	Integrating $a + b \cos 2\theta + c \cos 4\theta$ [Max B2 if answer incorrect and
		A1 7	no mark has previously been lost]
(b)(i)		M1	Applying $\frac{d}{du} \arctan u = \frac{1}{1 + u^2}$
	1		or $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sec^2 y}$
	$f'(x) = \frac{1}{1 + (\sqrt{3} + x)^2}$	A1	
	$f''(x) = \frac{-2(\sqrt{3} + x)}{\left(1 + (\sqrt{3} + x)^2\right)^2}$	M1	Applying chain (or quotient) rule
	$(1+(\sqrt{3}+x)^2)^2$	A1 4	
(ii)	$f(0) = \frac{1}{3}\pi$	B1	Stated; or appearing in series Accept 1.05
	$f'(0) = \frac{1}{4}, f''(0) = -\frac{1}{8}\sqrt{3}$	M1	Evaluating $f'(0)$ or $f''(0)$
	$\arctan(\sqrt{3} + x) = \frac{1}{3}\pi + \frac{1}{4}x - \frac{1}{16}\sqrt{3}x^2 + \dots$	A1A1 ft	For $\frac{1}{4}x$ and $-\frac{1}{16}\sqrt{3}x^2$
		4	ft provided coefficients are non-zero
(iii)	$\int_{-h}^{h} \left(\frac{1}{3}\pi x + \frac{1}{4}x^2 - \frac{1}{16}\sqrt{3}x^3 + \dots\right) dx$		
		M1	Integrating (award if <i>x</i> is
	$= \left[\frac{1}{6} \pi x^2 + \frac{1}{12} x^3 - \frac{1}{64} \sqrt{3} x^4 + \dots \right]^h$	A 1 f4	missed)
	<i> −n</i>	A1 ft	for $\frac{1}{12}x^3$
	$\approx \left(\frac{1}{6}\pi h^2 + \frac{1}{12}h^3 - \frac{1}{64}\sqrt{3}h^4\right)$		
	$-\left(\frac{1}{6}\pih^2 - \frac{1}{12}h^3 - \frac{1}{64}\sqrt{3}h^4\right)$		
	$=\frac{1}{6}h^3$	A1 ag	
		3	Allow ft from $a + \frac{1}{4}x + cx^2$
			provided that $a \neq 0$
			Condone a proof which neglects h^4

2(a)	$\frac{1}{2}\pi$ i ia				
	4th roots of $16j = 16e^{\frac{1}{2}\pi j}$ are $re^{j\theta}$ where				Accept $16^{\frac{1}{4}}$
	$r = 2$ $\theta = \frac{1}{8}\pi$		B1 B1		Accept 16*
			D 1		
	$\theta = \frac{\pi}{8} + \frac{2k\pi}{4}$		M1		Implied by at least two correct (ft) further values
	$\theta = -\frac{7}{8}\pi \; , -\frac{3}{8}\pi \; , \frac{5}{8}\pi$		A1		or stating $k = -2, -1, (0), 1$
	1		M1		Points at vertices of a square centre O
			A1	6	or 3 correct points (ft) or 1 point in each quadrant
			M1		For $e^{j\theta}e^{-j\theta}=1$
(b)(i)	$(1-2e^{j\theta})(1-2e^{-j\theta}) = 1-2e^{j\theta}-2e^{-j\theta}+4$		A1		
	$=5-2(e^{j\theta}+e^{-j\theta})$				
	$=5-4\cos\theta$		A1 ag	3	
	OR $(1-2\cos\theta-2j\sin\theta)(1-2\cos\theta+2j\sin\theta)$	И1			
		A 1			
	$=1-4\cos\theta+4(\cos^2\theta+\sin^2\theta)$				
	$=5-4\cos\theta$	Α1			
(ii)	$C + jS = 2e^{j\theta} + 4e^{2j\theta} + 8e^{3j\theta} + + 2^n e^{nj\theta}$		M1		Obtaining a geometric series
	$= \frac{2 e^{j\theta} \left(1 - (2 e^{j\theta})^n\right)}{1 - 2 e^{j\theta}}$		M1		Summing (M0 for sum to
	- 		A1		infinity)
	$= \frac{2 e^{j\theta} (1 - 2^n e^{nj\theta}) (1 - 2 e^{-j\theta})}{(1 - 2 e^{j\theta}) (1 - 2 e^{-j\theta})}$				
	* / * /		M1		
	$= \frac{2 e^{j\theta} - 4 - 2^{n+1} e^{(n+1)j\theta} + 2^{n+2} e^{nj\theta}}{5 - 4 \cos \theta}$				
	5 – 4 cos <i>t</i> r		A2		Give A1 for two correct terms in
	$C = \frac{2\cos\theta - 4 - 2^{n+1}\cos(n+1)\theta + 2^{n+2}\cos n\theta}{5 - 4\cos\theta}$		M1		numerator
	$5-4\cos\theta$		A1 ag		Equating real (or imaginary)
	$2\sin\theta - 2^{n+1}\sin(n+1)\theta + 2^{n+2}\sin n\theta$		•		parts
	$S = \frac{2\sin\theta - 2^{n+1}\sin(n+1)\theta + 2^{n+2}\sin n\theta}{5 - 4\cos\theta}$		A 4		
			A1	9	

3 (i)	Characteristic equation is $(7 - \lambda)(-1 - \lambda) + 12 = 0$	M1	
	$\lambda^2 - 6\lambda + 5 = 0$ $\lambda = 1, 5$	A1A1	
	When $\lambda = 1$, $\begin{pmatrix} 7 & 3 \\ -4 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$	M1	or $\begin{pmatrix} 6 & 3 \\ -4 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
	7x + 3y = x $-4x - y = y$	M1	can be awarded for either eigenvalue Equation relating x and y
	$y = -2x$, eigenvector is $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$	A1	or any (non-zero) multiple
	When $\lambda = 5$, $\begin{pmatrix} 7 & 3 \\ -4 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 5 \begin{pmatrix} x \\ y \end{pmatrix}$		
	7x + 3y = 5x $-4x - y = 5y$	M1	
	$y = -\frac{2}{3}x$, eigenvector is $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$	A1 8	$SR (M - \lambda I)x = \lambda x \text{ can earn}$ M1A1A1M0M1A0M1A0
(ii)	$\mathbf{P} = \begin{pmatrix} 1 & 3 \\ -2 & -2 \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}$	B1 ft	B0 if P is singular
	$\mathbf{D} = \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}$	B1 ft 2	For B2, the order must be consistent

(iii)	$\mathbf{M} = \mathbf{P} \mathbf{D} \mathbf{P}^{-1}$	M1	May be implied
	$\mathbf{M}^n = \mathbf{P} \mathbf{D}^n \mathbf{P}^{-1}$	M1	
	$=\mathbf{P}\begin{pmatrix}1&0\\0&5^n\end{pmatrix}\mathbf{P}^{-1}$	A1 ft	Dependent on M1M1
	$= \begin{pmatrix} 1 & 3 \\ -2 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 5^n \end{pmatrix} \frac{1}{4} \begin{pmatrix} -2 & -3 \\ 2 & 1 \end{pmatrix}$	B1 ft	For \mathbf{P}^{-1}
	$= \begin{pmatrix} 1 & 3 \times 5^n \\ -2 & -2 \times 5^n \end{pmatrix} \frac{1}{4} \begin{pmatrix} -2 & -3 \\ 2 & 1 \end{pmatrix}$		or $\begin{pmatrix} 1 & 3 \\ -2 & -2 \end{pmatrix} \frac{1}{4} \begin{pmatrix} -2 & -3 \\ 2 \times 5^n & 5^n \end{pmatrix}$
	$= \frac{1}{4} \begin{pmatrix} -2 + 6 \times 5^n & -3 + 3 \times 5^n \\ 4 - 4 \times 5^n & 6 - 2 \times 5^n \end{pmatrix}$ $a = -\frac{1}{2} + \frac{3}{2} \times 5^n$	M1	Obtaining at least one element in a product of three matrices
	$b = -\frac{3}{4} + \frac{3}{4} \times 5^n$	A1 ag	
	$c = 1 - 5^n d = \frac{3}{2} - \frac{1}{2} \times 5^n$	A2 8	Give A1 for one of b, c, d correct
			SR If $\mathbf{M}^n = \mathbf{P}^{-1} \mathbf{D}^n \mathbf{P}$ is used,
			max marks are M0M1A0B1M1A0A1 (d should be correct)
			SR If their P is singular, max marks are M1M1A1B0M0

4 (:)	1	N/4	
4 (i)	$\frac{1}{2}(\mathrm{e}^x + \mathrm{e}^{-x}) = k$	M1	or $\cosh x + \sinh x = e^x$
	$e^{2x} - 2k e^x + 1 = 0$	M1	$or k \pm \sqrt{k^2 - 1} = e^x$
	$e^x = \frac{2k \pm \sqrt{4k^2 - 4}}{2} = k \pm \sqrt{k^2 - 1}$		
	$x = \ln(k + \sqrt{k^2 - 1})$ or $\ln(k - \sqrt{k^2 - 1})$	A1	One value sufficient
	$(k+\sqrt{k^2-1})(k-\sqrt{k^2-1}) = k^2 - (k^2-1) = 1$ $\ln(k-\sqrt{k^2-1}) = \ln(\frac{1}{k+\sqrt{k^2-1}}) = -\ln(k+\sqrt{k^2-1})$	M1	or cosh x is an even function (or equivalent)
	$x = \pm \ln(k + \sqrt{k^2 - 1})$	A1 ag	
		5	
(ii)		M1	For arcosh or
	2	A1	$\ln(\lambda x + \sqrt{\lambda^2 x^2})$ or any cosh substitution For $\operatorname{arcosh} 2x$ or $2x = \cosh u$ or
	$\int_{1}^{2} \frac{1}{\sqrt{4x^{2} - 1}} dx = \left[\frac{1}{2} \operatorname{arcosh} 2x \right]_{1}^{2}$	A1	$\ln(2x + \sqrt{4x^2 - 1})$ or $\ln(x + \sqrt{x^2 - \frac{1}{4}})$ For $\frac{1}{2}$ or $\int \frac{1}{2} du$
	= $\frac{1}{2}$ (arcosh 4 – arcosh 2) = $\frac{1}{2}$ ($\ln(4 + \sqrt{15}) - \ln(2 + \sqrt{3})$)	M1 A1	Exact numerical logarithmic form
(iii)	$6\sinh x - 2\sinh x \cosh x = 0$	M1	Obtaining a value for 1
	cosh x = 3 (or sinh x = 0) $ x = 0$	M1 B1	Obtaining a value for $\cosh x$
	$x = \pm \ln(3 + \sqrt{8})$	A1 4	or $x = \ln(3 \pm \sqrt{8})$
	OR $e^{4x} - 6e^{3x} + 6e^{x} - 1 = 0$ $(e^{2x} - 1)(e^{2x} - 6e^{x} + 1) = 0$ M2 x = 0 B $x = \ln(3 \pm \sqrt{8})$ A	1	or $(e^x - e^{-x})(e^x + e^{-x} - 6) = 0$
(iv)			
(iv)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6\cosh x - 2\cosh 2x$	B1	
	If $\frac{dy}{dx} = 5$ then $6 \cosh x - 2(2 \cosh^2 x - 1) = 5$	M1	Using $\cosh 2x = 2 \cosh^2 x - 1$
	$4\cosh^{2} x - 6\cosh x + 3 = 0$ Discriminant $D = 6^{2} - 4 \times 4 \times 3 = -12$	M1	Considering <i>D</i> , or completing square, or considering turning
	Since $D < 0$ there are no solutions	A1 4	point
1			

OR Gradient $g = 6 \cosh x - 2 \cosh 2x$ $g' = 6 \sinh x - 4 \sinh 2x = 2 \sinh x(3 - 4 \cosh 2x)$	B1	
$g = 0 \sinh x - 4 \sinh 2x - 2 \sinh x (3 - 4 \cos x)$ = 0 when $x = 0$ (only)	<i>х)</i> М1	
$g'' = 6 \cosh x - 8 \cosh 2x = -2 \text{ when } x = 0$	M1	
Max value $g = 4$ when $x = 0$		
So <i>g</i> is never equal to 5	A1	Final A1 requires a complete proof showing this is the only turning point

5 (i)	$\lambda = -1$ $\lambda = 0$ $\lambda = 1$			
	The state of the s	B1B1B	1	
	cusp loop	B1B1	5	Two different features (cusp, loop, asymptote) correctly identified
(ii)	x = 1	B1	1	
(iii)	Intersects itself when $y = 0$	M1		
	$t = (\pm)\sqrt{\lambda}$	A1		
	$\left(\frac{\lambda}{1+\lambda},\ 0\right)$	A1	3	
(iv)	$\frac{\mathrm{d}y}{\mathrm{d}t} = 3t^2 - \lambda = 0$ $t = \pm \sqrt{\frac{\lambda}{3}}$	M1		
	$x = \frac{\frac{\lambda}{3}}{1 + \frac{\lambda}{3}} = \frac{\lambda}{3 + \lambda}$ $x = \frac{\lambda}{1 + \frac{\lambda}{3}} = \frac{\lambda}{3 + \lambda}$	A1 ag		
	$y = \pm \left(\left(\frac{\lambda}{3} \right)^{\frac{3}{2}} - \lambda \left(\frac{\lambda}{3} \right)^{\frac{1}{2}} \right)$ $= \pm \lambda^{\frac{3}{2}} \left(\frac{1}{3\sqrt{3}} - \frac{1}{\sqrt{3}} \right) = \pm \lambda^{\frac{3}{2}} \left(-\frac{2}{3\sqrt{3}} \right)$	M1		One value sufficient
	$=\pm\sqrt{\frac{4\lambda^3}{27}}$	A1 ag	4	
(v)	From asymptote, $a = 8$	B1		
	From intersection point, $\frac{a\lambda}{1+\lambda} = 2$	M1		
	$\lambda = \frac{1}{3}$	A1		
	From maximum point, $b\sqrt{\frac{4\lambda^3}{27}} = 2$	M1		
	<i>b</i> = 27	A1	5	

4758

Differential Equations

1(i)	$\alpha^2 + 2\alpha + 1 = 0$	M1	Auxiliary equation	
′	$\alpha = -1$ (repeated)	A1		
	$CF \ \ y = (A + Bt)e^{-t}$	F1	CF for their roots	
	PI $y = a$	B1	Constant PI	
	in DE $\Rightarrow y = 2$	B1	PI correct	
	$y = 2 + (A + Bt)e^{-t}$	F1	Their PI + CF (with two arbitrary constants)	
	$t = 0, y = 0 \Rightarrow 0 = 2 + A \Rightarrow A = -2$	M1	Condition on y	
	$\dot{y} = (B - A - Bt)e^{-t}$	M1	Differentiate (product rule)	
	$t = 0, \dot{y} = 0 \Rightarrow 0 = B - A \Rightarrow B = -2$	M1	Condition on \dot{y}	
	$y = 2 - (2 + 2t)e^{-t}$	A1		
				10

(ii) Both terms in CF hence will give zero if substituted in

PI
$$v = ht^2 e^{-t}$$

$$PI y = bt^2 e^{-t}$$

$$\dot{y} = (2bt - bt^2)e^{-t}, \ddot{y} = (2b - 4bt + bt^2)e^{-t}$$

in DE
$$\Rightarrow (2b - 4bt + bt^2 + 2(2bt - bt^2) + bt^2)e^{-t} = e^{-t}$$

$$\Rightarrow b = \frac{1}{2}$$

$$y = \left(C + Dt + \frac{1}{2}t^2\right)e^{-t}$$

$$t = 0, y = 0 \Rightarrow 0 = C$$

$$\dot{y} = \left(D + t - C - Dt - \frac{1}{2}t^2\right)e^{-t}$$

$$t = 0, \dot{y} = 0 \Rightarrow 0 = D - C \Rightarrow D = 0$$

$$y = \frac{1}{2}t^2 e^{-t}$$

Differentiate twice and M1

substitute

Α1 PI correct

Their PI + CF (with two F1 arbitrary constants)

M1 Condition on y

Μ1 Condition on \dot{y}

Α1

E1

В1

(iii) $t > 0 \Rightarrow \frac{1}{2}t^2 > 0 \text{ and } e^{-t} > 0 \Rightarrow y > 0$

$$\dot{y} = \left(t - \frac{1}{2}t^2\right)e^{-t}$$
 so $\dot{y} = 0 \Leftrightarrow t - \frac{1}{2}t^2 = 0 \Leftrightarrow t = 0$ or 2

Maximum at $t = 2, y = 2e^{-2}$

E1

Solve $\dot{y} = 0$ M1

Α1 Maximum value of y

Starts at origin В1

В1 Maximum at their value of y

y > 0В1

6

2(i)	$\frac{dv}{dt} + \frac{3}{1+t}v = g - \frac{3}{1+t}$	M1	Rearrange
	$I = \exp\left(\int \frac{3}{1+t} dt\right) = e^{3\ln(1+t)} = (1+t)^3$	M1 A1 A1	Attempt integrating factor Correct Simplified
	$(1+t)^3 \frac{dv}{dt} + 3(1+t)^2 v = g(1+t)^3 - 3(1+t)^2$	F1	Multiply DE by their I
	$\frac{\mathrm{d}}{\mathrm{d}t} \left(\left(1 + t \right)^3 v \right) = g \left(1 + t \right)^3 - 3 \left(1 + t \right)^2$		
	$(1+t)^3 v = \int (g(1+t)^3 - 3(1+t)^2) dx$	M1	Integrate
	$= \frac{1}{4}g(1+t)^4 - (1+t)^3 + A$	A1	RHS
	$v = \frac{1}{4}g(1+t)-1+A(1+t)^{-3}$	F1	Divide by their I (must also divide constant)
	$t = 0, v = 0 \Rightarrow 0 = \frac{1}{4}g - 1 + A$	M1	Use condition
	$v = \frac{1}{4}g(1+t) - 1 + \left(1 - \frac{1}{4}g\right)(1+t)^{-3}$	E1	Convincingly shown
/ii\	1		
(ii)	$(1+t)\frac{\mathrm{d}v}{\mathrm{d}t} + 5v = (1+t)g$	M1	Rearrange
	$\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{5}{1+t}v = g$		
	$I = \exp\left(\int \frac{5}{1+t} dt\right) = e^{5\ln(1+t)} = (1+t)^5$	M1 A1	Attempt integrating factor Simplified
	$(1+t)^5 \frac{dv}{dt} + 5(1+t)^4 v = g(1+t)^5$	F1	Multiply DE by their I
	$\frac{\mathrm{d}}{\mathrm{d}t} \left(\left(1 + t \right)^5 v \right) = g \left(1 + t \right)^5$		
	$(1+t)^5 v = \int g (1+t)^5 dx$	M1	Integrate

$=\frac{1}{6}g\left(1+t\right)^{6}+B$	A1	RHS
$v = \frac{1}{6}g(1+t) + B(1+t)^{-5}$	F1	Divide by their <i>I</i> (must also divide constant)
$t = 0, v = 0 \Longrightarrow 0 = \frac{1}{6}g + B$	M1	Use condition
$v = \frac{1}{6}g\left(1 + t - \left(1 + t\right)^{-5}\right)$	F1	Follow a non-trivial GS
		The state of the s

(iii)	First model: $\frac{dv}{dt} = \frac{1}{4}g - 3(1 - \frac{1}{4}g)(1 + t)^{-4}$	M1	Find acceleration
	As $t \to \infty$, $(1+t)^{-4} \to 0$	B1	Identify term(s) \rightarrow 0 in their solution for either model
	Hence acceleration tends to $\frac{1}{4}g$	A1	
	Second model $\frac{dv}{dt} = \frac{1}{6}g\left(1+5\left(1+t\right)^{-6}\right)$	M1	Find acceleration
	Hence acceleration tends to $\frac{1}{6}g$	A1	

3(i)	$P = A e^{0.5t}$	M1	Any valid method	
	$t = 0, P = 2000 \Longrightarrow A = 2000$	M1	Use condition	
	$P = 2000 \mathrm{e}^{0.5t}$	A1		
				3
(ii)	$CF\ P = A\mathrm{e}^{0.5t}$	F1	Correct or follows (i)	
	$PI P = a\cos 2t + b\sin 2t$	B1		
	$\dot{P} = -2a\sin 2t + 2b\cos 2t$	M1	Differentiate	
	$-2a\sin 2t + 2b\cos 2t = 0.5(a\cos 2t + b\sin 2t) + 170\sin 2t$	M1	Substitute	
	-2a = 0.5b + 170	M1	Compare coefficients	
	2b = 0.5a	M1	Solve	
	solving $\Rightarrow a = -80, b = -20$	A1		
	GS $P = Ae^{0.5t} - 80\cos 2t - 20\sin 2t$	F1	Their PI + CF (with one arbitrary constant)	
				8
(iii)	$t = 0, P = 2000 \Rightarrow A = 2080$	M1	Use condition	
	$P = 2080 e^{0.5t} - 80\cos 2t - 20\sin 2t$	F1	Follow a non-trivial GS	
(:)		114	Lland of almost the	2
(iv)	<i>t P P P</i> 0 2000 1000	M1 A1	Use of algorithm 2100	
	0.1 2100 1082.58	A1	1082.5	
	0.2 2208	A1	2208	
				4
(v)	(A) Limiting value $\Rightarrow \dot{P} = 0$	M1	Set $\dot{P} = 0$	
	$\Rightarrow P\left(1 - \frac{P}{12000}\right)^{\frac{1}{2}} = 0$	M1	Solve	
	(as limit non-zero) limiting value = 12000	A1		
	· · · · · · · · · · · · · · · · · · ·			3
	(B) Growth rate max when			
	$f(P) = P\left(1 - \frac{P}{12000}\right)^{\frac{1}{2}} max$	M1	Recognise expression to maximise	
	$f'(P) = \left(1 - \frac{P}{12000}\right)^{\frac{1}{2}} - \frac{1}{2 \times 12000} P \left(1 - \frac{P}{12000}\right)^{-\frac{1}{2}}$	M1	Reasonable attempt at derivative	
	$f'(P) = 0 \Leftrightarrow \left(1 - \frac{P}{12000}\right) - \frac{1}{2 \times 12000}P = 0$	M1	Set derivative to zero	
	$\Leftrightarrow P = 8000$	A1		
				4

4(i)	$\ddot{x} = -3\dot{x} + \dot{y}$	M1	Differentiate first equation	
.,	$=-3\dot{x}+(-5x+y+15)$	M1	Substitute for \dot{y}	
	$y = 3x - 9 + \dot{x}$	M1	y in terms of x, \dot{x}	
	$\ddot{x} = -3\dot{x} - 5x + (3x - 9 + \dot{x}) + 15$	M1	Substitute for <i>y</i>	
	$\ddot{x} + 2\dot{x} + 2x = 6$	E1	•	
				5
(ii)	$\lambda^2 + 2\lambda + 2 = 0$	M1	Auxiliary equation	
	$\lambda = -1 \pm j$	A1		
	$CF \ \ x = \mathrm{e}^{-t} \left(A \cos t + B \sin t \right)$	M1	CF for complex roots	
		F1	CF for their roots	
	PI x = a	B1	Constant PI	
	$2a = 6 \Rightarrow a = 3$	B1	PI correct Their CF + PI (with two arbitrary	
	GS $x = 3 + e^{-t} \left(A \cos t + B \sin t \right)$	F1	constants)	
			·	7
(iii)	$y = 3x - 9 + \dot{x}$	M1	y in terms of x, \dot{x}	
	$=9+3e^{-t}\left(A\cos t+B\sin t\right)-9$	N 4 4	Differentiate ward ask atitute	
	$-e^{-t}(A\cos t + B\sin t) + e^{-t}(-A\sin t + B\cos t)$	M1	Differentiate x and substitute	
	$y = e^{-t} ((2A+B)\cos t + (2B-A)\sin t)$	A1	Constants must correspond with	
		, , ,	those in x	
(iv)	$0 = 3 + A \Rightarrow A = -3$	M1	Condition on x	3
(11)	$0 = 2A + B \Rightarrow B = 6$	M1	Condition on y	
	$x = 3 + 3e^{-t} \left(2\sin t - \cos t \right)$	F1	Follow their GS	
	$y = 15 e^{-t} \sin t$	F1	Follow their GS	
				4
(v)	x	B1	Sketch of <i>x</i> starts at origin	
		B1	Asymptote $x = 3$	
	3			
	ı			
		B1	Sketch of <i>y</i> starts at origin	
	IV.		Decaying oscillations (may	
		B1	decay rapidly)	
	/ \	B1	Asymptote $y = 0$	
				5

4761 Mechanics 1

Q 1		Mark	Comment	Sub
(i)	15	B1	Acc and dec shown as straight lines	
		B1 B1	Horizontal straight section All correct with v and times marked and at least one axis labelled. Accept (t, v) or (v, t) used.	3
(ii)	Distance is found from the area area is $\frac{1}{2} \times 10 \times 15 + 20 \times 15 + \frac{1}{2} \times 5 \times 15$ (or $\frac{1}{2} \times (20 + 35) \times 15$)	M1 A1	At least one area attempted or equivalent <i>uvast</i> attempted over one appropriate interval. Award for at least two areas (or equivalent) correct Allow if a trapezium used and only 1 substitution error.	
	= 412.5 so distance is 412.5 m	A1	FT their diagram. cao (Accept 410 or better accuracy)	3
2 (i)	(6) (4) (4)	6	Library (NO) with an attack to Code	
2 (1)	$\binom{6}{9} = 1.5 \mathbf{a} \text{ giving } \mathbf{a} = \binom{4}{6} \text{ so } \binom{4}{6} \text{ m s}^{-2}$	M1 A1	Use of N2L with an attempt to find a . Condone spurious notation. Must be a vector in proper form. Penalise only once in paper.	
(11)				2
(ii)	Angle is $\arctan(\frac{6}{4})$ = 56.309 so 56.3° (3 s. f.)	M1 F1	Use of arctan with their $\frac{6}{4}$ or $\frac{4}{6}$ or equiv. May use F . FT their a provided both cpts are +ve and non-zero.	2
(iii)	Using $\mathbf{s} = t\mathbf{u} + 0.5t^2\mathbf{a}$ we have	M1	Appropriate single <i>uvast</i> (or equivalent sequence of <i>uvast</i>). If integration used twice condone omission of r (0) but not v (0).	
	$\mathbf{s} = 2 \begin{pmatrix} -2 \\ 3 \end{pmatrix} + 0.5 \times 4 \begin{pmatrix} 4 \\ 6 \end{pmatrix}$	A1	FT their a only	
	$\operatorname{so}\begin{pmatrix}4\\18\end{pmatrix}\operatorname{m}$	A1	cao. isw for magnitude subsequently found. Vector must be in proper form (penalise only once in paper).	
		7	only once in paper).	3

Q 3		Mark	Comment	Sub
(i)	$m \times 9.8 = 58.8$ so $m = 6$	M1 A1	T = mg. Condone sign error. cao. CWO.	2
(ii)	Resolve $\rightarrow 58.8\cos 40 - F = 0$	M1	Resolving their tension. Accept $s \leftrightarrow c$. Condone sign errors but not extra forces.	
	F = 45.043 so 45.0 N (3 s. f.)	B1 A1	(their 7) × cos 40 (or equivalent) seen Accept ± 45 only.	3
(iii)	Resolve \uparrow $R + 58.8 \sin 40 - 15 \times 9.8 = 0$ R = 109.204 so $109 N (3 s. f.)$	M1 A1 A1	Resolving their tension. All forces present. No extra forces. Accept $s\leftrightarrow c$. Condone errors in sign. All correct cao	3
		8		3
Q 4		Mark	Comment	Sub
(i)	Resultant is $\binom{4}{1} + \binom{-6}{2} = \binom{-2}{3} = \binom{-2}{6}$ Magnitude is $\sqrt{(-2)^2 + 3^2 + 6^2} = \sqrt{49} = 7 \text{ N}$	M1 A1 M1 F1	Adding the vectors. Condone spurious notation. Vector must be in proper form (penalise only once in the paper). Accept clear components. Pythagoras on their 3 component vector. Allow e.g. – 2² for (– 2)² even if evaluated as – 4.	
		ГІ	FT their resultant.	4
(ii)	F + 2G + H = 0	M1	Either F + 2 G + H = 0 or F + 2 G = H	
	So H = -2 G - F = $-\begin{pmatrix} -12\\4\\8 \end{pmatrix} - \begin{pmatrix} 4\\1\\2 \end{pmatrix}$	A1	Must see attempt at H = -2 G - F	
	$= \begin{pmatrix} 8 \\ -5 \\ -10 \end{pmatrix}$	A1	cao. Vector must be in proper form (penalise only once in the paper).	
		7		3
		7		

Q 5		Mark	Comment	Sub
	a = 12 - 6t a = 0 gives $t = 2$	M1 A1 F1	Differentiation, at least one term correct. Follow their <i>a</i>	
	$x = \int (2 + 12t - 3t^{2}) dx$ $2t + 6t^{2} - t^{3} + C$	M1 A1	Integration indefinite or definite, at least one term correct. Correct. Need not be simplified. Allow as definite integral. Ignore C or limits	
	x = 3 when $t = 0$	M1	Allow $x = \pm 3$ or argue it is \int_{0}^{2} from A then ± 3	
	so $3 = C$ and			
	$x = 2t + 6t^2 - t^3 + 3$	A1	Award if seen WWW or $x = 2t + 6t^2 - t^3$ seen with +3 added later.	
	x(2) = 4 + 24 - 8 + 3 = 23 m	B1	FT their <i>t</i> and their <i>x</i> if obtained by integration but not if -3 obtained instead of +3. [If 20 m seen WWW for displacement award SC6] [Award SC1 for position if constant acceleration used for displacement and then +3 applied]	8
		8		

Q 6		Mark	Comment	Sub
(i)	3.5 = 0.5 + 1.5T	M1	Suitable <i>uvast</i> , condone sign errors.	
	so T = 2 so 2 s	A1	cao	
	$s = \frac{3.5 + 0.5}{2} \times 2$	M1	Suitable <i>uvast</i> , condone sign errors.	
	_			
	so s = 4 so 4 m	F1	FT their T.	
			[If s found first then it is cao. In this	
			case when finding <i>T</i> , FT their <i>s</i> , if used.]	
			useu.j	4
(ii)				
(A)	NO. 1. 00 00 77 00 15		Use of N2L. Allow weight omitted	
(- ')	N2L ↓: $80 \times 9.8 - T = 80 \times 1.5$	M1	and use of F = mga	
			Condone errors in sign but do not	
			allow extra forces.	
	T . 004 004 N	B1	weight correct (seen in (A) or (B))	
	T = 664 so 664 N	A1	cao	
/D\			N2L with all forces and using $F = ma$.	
(B)	N2L \downarrow : $80 \times 9.8 - T = 80 \times (-1.5)$	M1	Condone errors in sign but do not	
	1122 1. 60//3/6 1 60//(1/6)	1011	allow extra forces.	
	T = 904 so 904 N	A1	cao [Accept 904 N seen for M1 A1]	
				5
(iii)			Use of N2L with $F = ma$. Allow 1 force	
	N2L \uparrow : 2500 – 80×9.8 – 116 = 80 <i>a</i>	M1	missing. No extra forces. Condone	
			errors in sign.	
		A1	±20, accept direction wrong or	
	$a = 20 \text{ so } 20 \text{ m s}^{-2} \text{ upwards.}$	A1	omitted	
		A1	upwards made clear (accept diagram)	
				4
(iv)	N2L ↑ on equipment: $80-10\times9.8=10a$	M1	Use of N2L on equipment. All forces.	
` '	N2L 1 On equipment. 80-10×9.8-10a	1011	F = ma.	
			No extra forces. Allow sign errors.	
	a = -1.8	A1	Allow ±1.8	
			NOI for quotom or for man plans	
	N2L ↑	M1	N2L for system or for man alone. Forces correct (with no extras);	
			accept sign errors; their ±1.8 used	
	either			
	all: $T - (80+10) \times 9.8 - 116 = 90 \times (-1.8)$			
	or			
	on man: T – (80×9.8) – 116 – 80			
	$= 80 \times (-1.8)$			
	T = 836 so 836 N	A1	cao	
			[NB The answer 836 N is	
			independent of the value taken for <i>g</i> and hence may be obtained if all	
			weights are omitted.]	
			2 3	4
		17		

Q 7		Mark	Comment	Sub
(i)	Horiz $21t = 60$	M1	Use of horizontal components and $a = 0$ or $s = vt - 0.5at^2$ with $v = 0$.	
	so $\frac{20}{7}$ s (2.8571)	A1	Any form acceptable. Allow M1 A1 for answer seen WW.	
			[If $s = ut + 0.5at^2$ and $u = 0$ used without justification award M1 A0] [If $u = 28$ assumed to find time then award SC1]	
	either $0 = u - 9.8 \times \frac{20}{7}$	M1	Use of $v = u + at$ (or $v^2 = u^2 + 2as$) with $v = 0$. or Use of $v = u + at$ with $v = -u$ and	
	or $-u = u - 9.8 \times \left(\frac{40}{7}\right)$		appropriate t.	
	or $40 = u \times \frac{20}{7} - 4.9 \left(\frac{20}{7}\right)^2$		or Use of $s = ut + 0.5at^2$ with $s = 40$ and appropriate t Condone sign errors and, where appropriate,	
			$u \leftrightarrow v$.	
	so <i>u</i> = 28 so 28 m s ⁻¹	E1	Accept signs not clear but not errors. Enough working must be given for 28 to be properly shown.	
			[NB $u = 28$ may be found first and used to find time]	
				4
(ii)	$y = 28t - 0.5 \times 9.8t^2$	E1	Clear & convincing use of $g = -9.8$ in	
			$s = ut + 0.5at^2 \text{ or } s = vt - 0.5at^2 \text{ NB: AG}$	1
(iii)	Start from same height with same (zero) vertical speed at same time, same	E1	For two of these reasons	
	acceleration	N44	0.75×21 <i>t</i> seen or 21 <i>t</i> and 5.25 <i>t</i> both seen	
	Distance apart is $0.75 \times 21t = 15.75t$	M1	with intention to subtract. Need simplification - LHS alone insufficient.	
		A1	CWO.	
(iv)				3
(A)	either Time is $\frac{20}{7}$ s by symmetry	B1	Symmetry or <i>uvast</i>	
	so $15.75 \times \frac{20}{7} = 45$ so 45 m or Hit ground at same time.	B1	FT their (iii) with $t = \frac{20}{7}$	
	By symmetry one travels 60 m so the other travels 15 m in	B1		
	this time ($\frac{1}{4}$ speed) so 45 m.	B1		
	шпе (4 эроса) зо то тт.	ום	[SC1 if 90 m seen]	2
(B)	see next page			

(B) either Time to fall is $40-10=0.5\times9.8\times t^2$ M1 Considering time from explosion with $u=0$. Condone sign errors. LHS. Allow ± 30 All correct cao here of $\pm 30.3 \pm 30$ All correct can here of $\pm 30.3 \pm 30$ All correct can here of $\pm 30.3 \pm 30$ All correct can here of $\pm 30.3 \pm 30$ All correct can here of $\pm 30.3 \pm 30$ All correct can here of $\pm 30.3 \pm 30$ All correct can here of $\pm 30.3 \pm 30$ All correct can here of $\pm 30.3 \pm 30$ All correct can here of $\pm 30.3 \pm 30$ All correct can here of $\pm 30.3 \pm 30$ All correct can here of $\pm 30.3 \pm 30$ All correct can here of $\pm 30.3 \pm 30$ All correct can here of $\pm 30.3 \pm 30$ All correct cao here of $\pm 30.3 \pm 30$ All correct cao here of $\pm 30.3 \pm 30$ All correct cao here of $\pm 30.3 \pm 30$ All correct cao here of $\pm 30.3 \pm 30$ All correct	Q7	continued			
Time to fall is $40-10=0.5\times9.8\times t^2$ Time to fall is $40-10=0.5\times9.8\times t^2$ A1 $t=2.47435$ need $15.75\times2.47435=38.971$ so 39.0 (3sf) or Need time so $10=28t-4.9t^2$ $4.9t^2-28t+10=0$ so $t=\frac{28t\sqrt{30}-1.4.09.00}{33}$ so 0.382784 or 5.33150 Time required is 5.33150 Time require	(B)			-	
$t = 2.47435 \\ \text{need } 15.75 \times 2.47435 = 38.971 \text{ so} \\ 39.0 \text{ (3sf)} \\ \text{or} \\ \text{Need time so } 10 = 28t - 4.9t^2 \\ 4.9t^2 - 28t + 10 = 0 \\ \text{so } t = \frac{28t + \sqrt{28^2 - 46.9 \times 10}}{8} \\ \text{so } 0.382784 \text{ or } 5.33150 \\ \text{Time required is } 5.33150 \\ \text{So } 10 = 28t - 4.9t^2 \\ \text{So } 10 = 28t - 4.9t^2 \\ \text{So } 10 = 28t + 10 = 0 \\ \text{So } 10 = 28t + 1$		0.0.00			
t = 2.47435 need 15.75×2.47435 = 38.971 so 39.0 (3sf) or Need time so $10 = 28t - 4.9t^2$ M1 $4.9t^2 - 28t + 10 = 0$ so $t = \frac{28t + \sqrt{28^2 - 40.49 \times 10^2}}{3.8}$ so 0.382784 or 5.33150 A1 Larger root correct to at least 2 s. f. Both method marks may be implied from two correct roots alone (to at least 1 s. f.). [SC1 for either root seen WW] Time required is 5.33150 $-\frac{20}{7} = 2.47435$ need 15.75×2.47435 = 38.971 so 39.0 (3sf) W1 Horiz $(x =) 21t$ Elim t between $x = 21t$ and $y = 28t - 4.9t^2$ So $y = 28(\frac{x}{21}) - 4.9(\frac{x}{211})^2$ So $y = \frac{4x}{3} - \frac{0.1t^2}{9} = \frac{1}{90}(120x - x^2)$ E1 Some simplification must be shown. [SC2 for 3 points shown to be on the curve. Award more only if it is made clear that (a) trajectory is a parabola]		Time to fall is $40-10=0.5\times9.8\times t^2$	A1	Condone sign errors.	
need $15.75 \times 2.47435 = 38.971$ so 39.0 (3sf) or Need time so $10 = 28t - 4.9t^2$ $4.9t^2 - 28t + 10 = 0$ $50 = 28t - \sqrt{38^2 - 44.9 + 9.00}$ $50 = 28t - \sqrt{38^2 - 44.9 + 9.00}$ $50 = 2.47435$ $50 = 2$			l		
39.0 (3sf) or Need time so $10 = 28t - 4.9t^2$			A1	cao	
$ \begin{array}{c} 4.9t^2-28t+10=0 \\ \text{so } t=\frac{28\pm\sqrt{38^2-48\times49\times10}}{98} \\ \text{so } 0.382784\ldots\text{ or } 5.33150\ldots \\ \end{array} $ $ \begin{array}{c} \text{Dep. Attempt to solve quadratic by a method that could give two roots.} \\ \end{array} $ $ \begin{array}{c} \text{Dep. Attempt to solve quadratic by a method that could give two roots.} \\ \end{array} $ $ \begin{array}{c} \text{Dep. Attempt to solve quadratic by a method that could give two roots.} \\ \end{array} $ $ \begin{array}{c} \text{Dep. Attempt to solve quadratic by a method that could give two roots.} \\ \end{array} $ $ \begin{array}{c} \text{Dep. Attempt to solve quadratic by a method that could give two roots.} \\ \end{array} $ $ \begin{array}{c} \text{Dep. Attempt to solve quadratic by a method that could give two roots.} \\ \end{array} $ $ \begin{array}{c} \text{Dep. Attempt to solve quadratic by a method that could give two roots.} \\ \end{array} $ $ \begin{array}{c} \text{Dep. Attempt to solve quadratic by a method that could give two roots.} \\ \end{array} $ $ \begin{array}{c} \text{Dep. Attempt to solve quadratic by a method that could give two roots.} \\ \end{array} $ $ \begin{array}{c} \text{Dep. Attempt to solve quadratic by a method that could give two roots.} \\ \end{array} $ $ \begin{array}{c} \text{Dep. Attempt to solve quadratic by a method that could give two roots.} \\ \end{array} $ $ \begin{array}{c} \text{Dep. Attempt to solve quadratic by a method that could give two roots.} \\ \end{array} $ $ \begin{array}{c} \text{Dep. Attempt to solve quadratic by a method that could give two roots.} \\ \end{array} $		39.0 (3sf)	F1	FT their (iii) only.	
that could give two roots. $t = \frac{28t\sqrt{32^2-40x}(9+0)}{9-0x}$ so 0.382784 or 5.33150 Time required is 5.33150 $-\frac{20}{7} = 2.47435$ need $15.75\times2.47435=38.971$ so 39.0 (3sf) Horiz $(x =) 21t$ Elim t between $x = 21t$ and $y = 28t - 4.9t^2$ So $y = \frac{4x}{3} - \frac{0.1x^2}{9} = \frac{1}{90}(120x - x^2)$ Hat could give two roots. A1 Larger root correct to at least 2 s. f. Both method marks may be implied from two correct roots alone (to at least 1 s. f.). [SC1 for either root seen WW] FT their (iii) only. 5 Intention must be clear, with some attempt made. t completely and correctly eliminated from their expression for x and correct y . Only accept wrong notation if subsequently explicitly explication must be shown. [SC2 for 3 points shown to be on the curve. Award more only if it is made clear that (a) trajectory is a parabola (b) 3 points define a parabola]		Need time so $10 = 28t - 4.9t^2$	M1	Equating $28t - 4.9t^2 = \pm 10$	
so 0.382784 or 5.33150 Time required is 5.33150 $-\frac{20}{7} = 2.47435$ need 15.75×2.47435 so 39.0 (3sf) Horiz $(x =) 21t$ Elim t between $x = 21t$ and $y = 28t - 4.9t^2$ so $y = 28(\frac{x}{21}) - 4.9(\frac{x}{21})^2$ So $y = \frac{4x}{3} - \frac{0.1x^2}{9} = \frac{1}{90}(120x - x^2)$ E1 Larger root correct to at least 2 s. f. Both method marks may be implied from two correct roots alone (to at least 1 s. f.). [SC1 for either root seen WW] F1 FT their (iii) only. 5 Horiz $(x =) 21t$ Elim t between $x = 21t$ and $y = 28t - 4.9t^2$ A1 Intention must be clear, with some attempt made. t completely and correctly eliminated from their expression for x and correct y . Only accept wrong notation if subsequently explicitly given correct value e.g. $\frac{x^2}{21}$ seen as $\frac{x^2}{441}$. Some simplification must be shown. [SC2 for 3 points shown to be on the curve. Award more only if it is made clear that (a) trajectory is a parabola (b) 3 points define a parabola]		$4.9t^2 - 28t + 10 = 0$	M1*		
Time required is 5.33150 $-\frac{20}{7}$ = 2.47435 need 15.75×2.47435 so 39.0 (3sf) M1 Horiz $(x =) 21t$ Elim t between $x = 21t$ and $y = 28t - 4.9t^2$ So $y = 28(\frac{x}{21}) - 4.9(\frac{x}{21})^2$ So $y = \frac{4x}{3} - \frac{0.1x^2}{9} = \frac{1}{90}(120x - x^2)$ E1 Both method marks may be implied from two correct roots alone (to at least 1 s. f.). [SC1 for either root seen WW] F1 F1 their (iii) only. 5 Horiz $(x =) 21t$ Elim t between $x = 21t$ and $y = 28t - 4.9t^2$ A1 Intention must be clear, with some attempt made. t completely and correctly eliminated from their expression for x and correct y . Only accept wrong notation if subsequently explicitly given correct value e.g. $\frac{x^2}{21}$ seen as $\frac{x^2}{41}$. Some simplification must be shown. [SC2 for 3 points shown to be on the curve. Award more only if it is made clear that (a) trajectory is a parabola (b) 3 points define a parabola]		SO $t = \frac{28 \pm \sqrt{28^2 - 4 \times 4.9 \times 10}}{9.8}$			
Time required is $5.33150 \frac{20}{7} = 2.47435$ need $15.75 \times 2.47435 = 38.971$ so 39.0 (3sf) Horiz $(x =) 21t$ Elim t between $x = 21t$ and $y = 28t - 4.9t^2$ So $y = 28\left(\frac{x}{21}\right) - 4.9\left(\frac{x}{21}\right)^2$ B1 Horiz $(x =) 21t$ Elim t between t interpretable t interpretable t completely and correctly eliminated from their expression for t and correct t . Only accept wrong notation if subsequently explicitly given correct value e.g. $\frac{x^2}{21}$ seen as $\frac{x^2}{441}$. So $y = \frac{4x}{3} - \frac{0.1x^2}{9} = \frac{1}{90}(120x - x^2)$ E1 Some simplification must be shown. [SC2 for 3 points shown to be on the curve. Award more only if it is made clear that (a) trajectory is a parabola]		so 0.382784 or 5.33150	A1	Both method marks may be implied from two correct roots alone (to at least 1 s. f.).	
2.47435 need 15.75×2.47435 = 38.971 so 39.0 (3sf) F1 FT their (iii) only.		Time required is 5.33150 $-\frac{20}{7}$ =		[OCTION CHIRCH TOOL SECTION VVV]	
39.0 (3sf) F1 F1 their (iii) only. 5 (v) Horiz $(x =) 21t$ Elim t between $x = 21t$ and $y = 28t - 4.9t^2$ So $y = 28(\frac{x}{21}) - 4.9(\frac{x}{21})^2$ B1 Intention must be clear, with some attempt made. t completely and correctly eliminated from their expression for x and correct y . Only accept wrong notation if subsequently explicitly given correct value e.g. $\frac{x^2}{21}$ seen as $\frac{x^2}{441}$. So $y = \frac{4x}{3} - \frac{0.1x^2}{9} = \frac{1}{90}(120x - x^2)$ E1 Some simplification must be shown. [SC2 for 3 points shown to be on the curve. Award more only if it is made clear that (a) trajectory is a parabola (b) 3 points define a parabola]		,	M1		
(v) Horiz $(x =) 21t$ Elim t between $x = 21t$ and $y = 28t - 4.9t^2$ So $y = 28\left(\frac{x}{21}\right) - 4.9\left(\frac{x}{21}\right)^2$ A1 Intention must be clear, with some attempt made. t completely and correctly eliminated from their expression for x and correct y . Only accept wrong notation if subsequently explicitly given correct value e.g. $\frac{x^2}{21}$ seen as $\frac{x^2}{441}$. So $y = \frac{4x}{3} - \frac{0.1x^2}{9} = \frac{1}{90}(120x - x^2)$ E1 Some simplification must be shown. [SC2 for 3 points shown to be on the curve. Award more only if it is made clear that (a) trajectory is a parabola (b) 3 points define a parabola]			F1	FT their (iii) only.	5
Elim t between $x = 21t$ and $y = 28t - 4.9t^2$ M1 Intention must be clear, with some attempt made. So $y = 28\left(\frac{x}{21}\right) - 4.9\left(\frac{x}{21}\right)^2$ A1 Intention must be clear, with some attempt made. t completely and correctly eliminated from their expression for x and correct y . Only accept wrong notation if subsequently explicitly given correct value e.g. $\frac{x^2}{21}$ seen as $\frac{x^2}{441}$. Some simplification must be shown. [SC2 for 3 points shown to be on the curve. Award more only if it is made clear that (a) trajectory is a parabola (b) 3 points define a parabola]					
$y = 28t - 4.9t^{2}$ So $y = 28\left(\frac{x}{21}\right) - 4.9\left(\frac{x}{21}\right)^{2}$ A1 $y = 28\left(\frac{x}{21}\right) - 4.9\left(\frac{x}{21}\right)^{2}$ A2 $y = 4x - \frac{1}{3} - \frac{0.1x^{2}}{9} = \frac{1}{90}\left(120x - x^{2}\right)$ A3 $y = 4x - \frac{1}{3} - \frac{0.1x^{2}}{9} = \frac{1}{90}\left(120x - x^{2}\right)$ E1 Some simplification must be shown. [SC2 for 3 points shown to be on the curve. Award more only if it is made clear that (a) trajectory is a parabola (b) 3 points define a parabola]	(v)		B1		
so $y = 28\left(\frac{x}{21}\right) - 4.9\left(\frac{x}{21}\right)^2$ A1 their expression for x and correct y . Only accept wrong notation if subsequently explicitly given correct value e.g. $\frac{x^2}{21}$ seen as $\frac{x^2}{441}$. Some simplification must be shown. [SC2 for 3 points shown to be on the curve. Award more only if it is made clear that (a) trajectory is a parabola]			M1		
so $y = \frac{4x}{3} - \frac{0.1x^2}{9} = \frac{1}{90} (120x - x^2)$ E1 Some simplification must be shown. [SC2 for 3 points shown to be on the curve. Award more only if it is made clear that (a) trajectory is a parabola (b) 3 points define a parabola]		$SO_{V} = 28(\frac{x}{x}) - 49(\frac{x}{x})^{2}$	Δ1	their expression for x and correct y. Only	
[SC2 for 3 points shown to be on the curve. Award more only if it is made clear that (a) trajectory is a parabola (b) 3 points define a parabola] 4		y = 20(21) 1.5 (21)		explicitly given correct value	
Award more only if it is made clear that (a) trajectory is a parabola (b) 3 points define a parabola] 4		so $y = \frac{4x}{3} - \frac{0.1x^2}{9} = \frac{1}{90} (120x - x^2)$	E1	Some simplification must be shown.	
				Award more only if it is made clear that (a) trajectory is a parabola (b) 3 points define a	
			10		4

4762 Mechanics 2

Q1		Mark	Comment	Sub
(a) (i)	either In direction of the force $I = Ft = mv$	M1	Use of <i>Ft</i> = <i>mv</i>	
	so $1500 \times 8 = 4000v$ giving $v = 3$ so 3 m s ⁻¹ or	A1 A1	Use of T = Thv	
	N2L gives $a = \frac{1500}{4000}$	M1	Appropriate use of N2L and uvast	
	$v = 0 + \frac{1500}{4000} \times 8$	A1		
	giving $v = 3 \text{ so } 3 \text{ m s}^{-1}$	A1		3
(ii)	before 500 4000 after $V_s \text{ m s}^{-1}$ $V_R \text{ m s}^{-1}$			
	PCLM $12000 = 4000V_R + 500V_S$ so $24 = 8V_R + V_S$	M1 A1	Appropriate use of PCLM Any form	
	NEL $\frac{V_{\rm S} - V_{\rm R}}{0 - 3} = -0.2$	M1	Appropriate use of NEL	
	so $V_{\rm S} - V_{\rm R} = 0.6$ Solving	A1	Any form	
	$V_{\rm R} = 2.6$, $V_{\rm S} = 3.2$ so ram 2.6 m s ⁻¹ and stone 3.2 m s ⁻¹	A1 F1	Either value	6
(iii)	$0.5 \times 4000 \times 3^2 - 0.5 \times 4000 \times 2.6^2 - 0.5 \times 500 \times 3.2^2$	M1 B1	Change in KE. Accept two terms Any relevant KE term correct (FT their	
	= 1920 J	A1	speeds) cao	3
(b)	see over			

1		Mark	Comment	Sub
(b) (i)	72i N s 8(9cos 60i + 9sin 60j) = $(36i + 36\sqrt{3}j)$ N s	B1 E1	Neglect units but must include direction Evidence of use of 8 kg , 9 m s ⁻¹ and 60°	2
(ii)	$72\mathbf{i} + (36\mathbf{i} + 36\sqrt{3}\mathbf{j}) = 12(u\mathbf{i} + v\mathbf{j})$ Equating components 72 + 36 = 12u so $u = 936\sqrt{3} = 12v so v = 3\sqrt{3}$	M1 M1 A1	PCLM. Must be momenta both sides Both	3
(iii)	either $4 \times 18 = 8 \times 9$ so equal momenta so $60/2 = 30^{\circ}$ or $\arctan\left(\frac{3\sqrt{3}}{9}\right) = \arctan\left(\frac{1}{\sqrt{3}}\right) = 30^{\circ}$	M1 A1 M1 A1	Must be clear statements cao FT their <i>u</i> and <i>v</i> . cao	2

Q 2		Mark	Comment	Sub
(i) (A)	$0.5 \times 80 \times 3^2 = 360 \text{ J}$	M1 A1	Use of KE	2
(B)	$360 = F \times 12$ so $F = 30$ so 30 N	M1 F1	W = Fd attempted FT their WD	
(ii)	Using the WE equation	M1	Attempt to use the WE equation. Condone one missing term	2
	$0.5 \times 80 \times 10^2 - 0.5 \times 80 \times 4^2$	M1	Δ KE attempted	
	$= 80 \times 9.8 \times h - 1600$ $h = 6.32653 \text{ so } 6.33 \text{ (3 s. f.)}$	B1 A1 A1	1600 with correct sign All terms present and correct (neglect signs) cao	5
(iii) (A)	We have driving force $F = 40$ so $200 = 40v$ and $v = 5$ so 5 m s ⁻¹	B1 M1 A1	May be implied Use of $P = Fv$	3
(B)	From N2L, force required to give accn is $F-40=80\times2$ so $F=200$ $P=200\times0.5=100$ so 100 W	M1 A1 A1 M1 A1	Use of N2L with all terms present (neglect signs) All terms correct correct use of P = Fv cao	5
		17		

Q 3		Mark	Comment	Sub
(i)	For \overline{z} $(2\times20\times100+2\times50\times120)\overline{z}$ $=2\times2000\times50+2\times6000\times60$ so $\overline{z}=57.5$ and $\overline{y}=0$	M1 B1 B1 A1 B1	Method for c.m. Total mass of 16000 (or equivalent) At least one term correct NB This result is given below. NB This result is given below. Statement (or proof) required. N.B. If incorrect axes specified, award max 4/5	5
(ii)	\overline{y} and \overline{z} are not changed with the folding For \overline{x} $100 \times 120 \times 0 + 2 \times 20 \times 100 \times 10 = 16000\overline{x}$ so $\overline{x} = \frac{40000}{16000} = 2.5$	E1 M1 B1 E1	A statement, calculation or diagram required. Method for the c.m. with the folding Use of the 10 Clearly shown	4
(iii)	Moments about AH. Normal reaction acts through this line c.w. $P \times 120 - 72 \times (20 - 2.5) = 0$ so $P = 10.5$	M1 B1 B1 A1 A1	May be implied by diagram or statement $20-2.5 \text{ or equivalent}$ All correct cao	5
(iv)	$F_{\rm max} = \mu R$ so $F_{\rm max} = 72 \mu$ For slipping before tipping we require $72 \mu < 10.5$ so $\mu < 0.1458333$ ($7/48$)	M1 A1 M1 A1	Allow $F = \mu R$ Must have clear indication that this is max F Accept \leq . Accept their F_{\max} and R . cao	4

Q 4		Mark	Comment	Sub
(i)	Centre of CE is 0.5 m from D a.c. moment about D $2200\times0.5=1100$ so 1100 N m c.w moments about D $R\times2.75-1100=0$ R=400 so 400 N	B1 M1 E1 M1 B1 A1	Used below correctly Use of their 0.5 0.5 must be clearly established. Use of moments about D in an equation Use of 1100 and 2.75 or equiv	6
(ii)	c.w moments about D $W \times 1.5 - 1100 - 440 \times 2.75 = 0$ so $W = 1540$	M1 A1 E1	Moments of all relevant forces attempted All correct Some working shown	3
(iii) (A)	c.w. moments about D $1.5 \times 1540 \cos 20 - 1.75T$ $-1100 \cos 20 - 400 \times 2.75 \cos 20 = 0$ T = 59.0663 so $59.1 N (3 s. f.)$	M1 M1 A1 B1 A1 A1	Moments equation. Allow one missing term; there must be some attempt at resolution. At least one res attempt with correct length Allow sin ↔ cos Any two of the terms have cos 20 correctly used (or equiv) 1.75 T All correct cao Accept no direction given	6
(iii) (B)	either Angle required is at 70° to the normal to CE so $T_1 \cos 70 = 59.0663$ so $T_1 = 172.698$ so 173 N (3 s.f.) or $400 \cos 20 \times 2.75 + 1100 \cos 20$ $= 1540 \cos 20 \times 1.5 - T \sin 20 \times 1.75$ T = 172.698 so 173 N (3s.f.)	B1 M1 A1 M1 A1 A1	FT (iii) (A) Moments attempted with all terms present All correct (neglect signs) FT(iii)(A)	3

4763 Mechanics 3

	_		
1(a)(i)	[Force] = $M L T^{-2}$	B1	
	[Density] = $M L^{-3}$	B1	
		2	
(ii)	$[E] = \frac{[F][l_0]}{[A][l - l_0]} = \frac{(M L T^{-2})(L)}{(L^2)(L)}$	B1	for $[A] = L^2$
	$[L] - \frac{[A][l - l_0]}{[A][l - l_0]} - \frac{(L^2)(L)}{(L^2)(L)}$	M1	Obtaining the dimensions of <i>E</i>
	$= M L^{-1} T^{-2}$	A1	Obtaining the difficultions of E
		3	
(iii)	$T = L^{\alpha} (M L^{-3})^{\beta} (M L^{-1} T^{-2})^{\gamma}$		
(,	$-2\gamma = 1, \beta + \gamma = 0$		
	$\gamma = -\frac{1}{2}$		
	-	B1 cao	
	$\beta = \frac{1}{2}$	F1	
	$\alpha - 3\beta - \gamma = 0$	M1	Obtaining equation involving
	$\alpha = 1$	A1 A1	α, β, γ
		5	
(b)	AP = 1.7 m	B1	
(5)	$F = T \cos \theta$	M1	Resolving in any direction
	$R + T\sin\theta = 5 \times 9.8$	M1	Resolving in another direction
			(M1 for resolving requires no
			force omitted, with attempt to resolve all appropriate forces)
	$T\cos\theta = 0.4(49 - T\sin\theta)$	M1	Using $F = 0.4R$ to obtain an
	$\frac{8}{17}T = 0.4(49 - \frac{15}{17}T)$	IVII	equation involving just one force
	$\frac{1}{17}I = 0.4(49 - \frac{1}{17}I)$ $T = 23.8$	A1	(or <i>k</i>)
	1 – 23.0	A1	Correct equation Allow
	T = k(1.7 - 1.5)	M1	T cos 61.9 etc
	Stiffness is 119 N m ⁻¹		or $R = 28$ or $F = 11.2$ May be
		A1	implied
			Allow M1 for $T = \frac{\lambda}{1.5} \times 0.2$
		8	If $R = 49$ is assumed, max
		8	marks are
			B1M1M0M0A0A0M1A0

	1	I	T
2(a)(i)	$0.1 + 0.01 \times 9.8 = 0.01 \times \frac{u^2}{0.55}$	M1 A1	Using acceleration $u^2/0.55$
	Speed is $3.3 \mathrm{ms^{-1}}$	A1 3	
/::\	1 . 2 2	_	
(ii)	$\frac{1}{2}m(v^2 - u^2) = mg(2 \times 0.55 - 0.15)$	M1	Using conservation of energy
	$\frac{1}{2}(v^2 - 3.3^2) = 9.8 \times 0.95$	A1	Coming conservation or energy
	$v^2 = 29.51$		(ft is $v^2 = u^2 + 18.62$)
	2		(n + 18
	$R - mg\cos\theta = m\frac{v^2}{a}$		
	l "	M1	Forces and acceleration
	$R - 0.01 \times 9.8 \times \frac{0.4}{0.55} = 0.01 \times \frac{29.51}{0.55}$		towards centre
	Normal reaction is 0.608 N	A1	
	Normal reaction is 0.000 iv	A1	(ft is $\frac{u^2 + 22.54}{55}$)
		5	$(n \approx \frac{1}{55})$
(b)(i)	$T = 0.8 r \omega^2$	B1	
	$T = \frac{160}{2}(r-2)$	B1	
	$\omega^2 = \frac{80(r-2)}{0.8r} = \frac{100(r-2)}{r}$		
	$\omega = \frac{1}{0.8r} = \frac{1}{r}$	E1	
	$\omega^2 = 100 - \frac{200}{r} < 100$, so $\omega < 10$		
	r	E1	
		4	
(ii)	$EE = \frac{1}{2} \times \frac{160}{2} \times (r-2)^2 = 40(r-2)^2$	B1	
	2 2		_
	$KE = \frac{1}{2}m(r\omega)^2$	M1	Use of $\frac{1}{2}mv^2$ with $v = r\omega$
	$= \frac{1}{2} \times 0.8 \times r^2 \times \frac{100(r-2)}{r}$		
	$-\frac{1}{2}$ $\times 0.0 \times r$ \times r		
	=40r(r-2)	A1	
	Since $r > r - 2$, $40r(r - 2) > 40(r - 2)^2$		
	i.e. KE > EE		
		E1	From fully correct working only
		4	
(iii)	When $\omega = 6$, $36 = \frac{100(r-2)}{r}$		
	$viieii \omega = 0, 30 = \frac{r}{r}$	M1	Obtaining <i>r</i>
	r = 3.125		
	T = 80(r-2) = 80(3.125-2)	N44	
	T = 80(T - 2) = 80(3.123 - 2) Tension is 90 N	M1	
	TENSION IS SO IN	A1 cao	
		3	

3 (i)	$\frac{\mathrm{d}x}{\mathrm{d}t} = A\omega\cos\omega t - B\omega\sin\omega t$	B1		
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -A\omega^2 \sin \omega t - B\omega^2 \cos \omega t$	B1 ft		Must follow from their \dot{x}
	$= -\omega^2 (A\sin\omega t + B\cos\omega t) = -\omega^2 x$	E1	3	Fully correct completion SR For $\dot{x} = -A\omega\cos\omega t + B\omega\sin\omega t$ $\ddot{x} = -A\omega^2\sin\omega t - B\omega^2\cos\omega t$ award B0B1E0
(ii)	B=2	B1		
	$A\omega = -1.44$ $-B\omega^{2} = -0.18$ or $-0.18 = -\omega^{2}(2)$ $\omega = 0.3, A = -4.8$	M1 A1 cao M1 A1 cao A1 cao	6	Using $\frac{dx}{dt} = -1.44$ when $t = 0$ $\frac{d^2x}{dt^2} = -0.18$ when $t = 0$ (or $x = 2$)
(iii)	Period is $\frac{2\pi}{\omega} = \frac{2\pi}{0.3} = 20.94 = 20.9 \text{ s}$ (3 sf) Amplitude is $\sqrt{A^2 + B^2} = \sqrt{4.8^2 + 2^2} = 5.2 \text{ m}$	E1 M1 A1	3	or $1.44^2 = 0.3^2(a^2 - 2^2)$
(iv)	$x = -4.8 \sin 0.3t + 2 \cos 0.3t$ $v = -1.44 \cos 0.3t - 0.6 \sin 0.3t$ When $t = 12, x = 0.3306 (v = 1.56)$ When $t = 24, x = -2.5929 (v = -1.35)$	M1 A1		Finding x when $t = 12$ and $t = 24$ Both displacements correct
	Distance travelled is (5.2 – 0.3306) + 5.2 + 2.5929 = 12.7 m	M1 M1 A1	5	Considering change of direction Correct method for distance ft from their A, B, ω and amplitude: Third M1 requires the method to be comparable to the correct one A1A1 both require $\omega \approx 0.3, \ A \neq 0, \ B \neq 0$ Note ft from $A = +4.8$ is $x_{12} = -3.92 \ (v < 0) x_{24} = 5.03 \ (v > 0)$ Distance is $(5.2 - 3.92) + 5.2 + 5.03 = 11.5$

			1
4 (i)	$V = \int_{1}^{8} \pi \left(x^{-\frac{1}{3}} \right)^{2} dx$	M1	π may be omitted throughout
	$=\pi\left[3x^{\frac{1}{3}}\right]_{1}^{8}=3\pi$	A1	
	$V \overline{x} = \int_{1}^{8} \pi x (x^{-\frac{1}{3}})^{2} \mathrm{d}x$	M1	
	$= \pi \left[\frac{3}{4} x^{\frac{4}{3}} \right]_{1}^{8} = \frac{45}{4} \pi$	A1	
	$\bar{x} = \frac{\frac{45}{4}\pi}{3\pi}$ $= \frac{15}{4} = 3.75$	M1	Dependent on previous M1M1
	4	A1 6	
(ii)	$A = \int_{1}^{8} x^{-\frac{1}{3}} \mathrm{d}x$	M1	
	$= \left[\frac{3}{2} x^{\frac{2}{3}} \right]_{1}^{8} = \frac{9}{2} = 4.5$	A1	
	$A\overline{x} = \int_{1}^{8} x \left(x^{-\frac{1}{3}}\right) dx$	M1	
	$= \left[\frac{3}{5} x^{\frac{5}{3}} \right]_{1}^{8} = \frac{93}{5} = 18.6$	A1	
	$\bar{x} = \frac{18.6}{4.5} = \frac{62}{15} (\approx 4.13)$	A1	
	$A\overline{y} = \int_{1}^{8} \frac{1}{2} (x^{-\frac{1}{3}})^{2} \mathrm{d}x$	M1	If $\frac{1}{2}$ omitted, award M1A0A0
	$= \left[\frac{3}{2} x^{\frac{1}{3}} \right]_{1}^{8} = \frac{3}{2} = 1.5$	A1	
	$\overline{y} = \frac{1.5}{4.5} = \frac{1}{3}$	A1 8	

(iii)	$(1)\left(\frac{\overline{x}}{\overline{y}}\right) + (3.5)\left(\frac{4.5}{0.25}\right) = (4.5)\left(\frac{62/15}{1/3}\right) = \left(\frac{18.6}{1.5}\right)$	M1 M1	Attempt formula for CM of composite body (one coordinate sufficient) Formulae for both coordinates; signs must now be correct, but areas (1 and 3.5) may be
	$\overline{x} = 2.85$ $\overline{y} = 0.625$	A1 A1	wrong. ft only if $1 < \overline{x} < 8$ ft only if $0.5 < \overline{y} < 1$ Other methods: M1A1 for \overline{x} M1A1 for \overline{y} (In each case, M1 requires a complete and correct method leading to a numerical value)

4766 Statistics 1

Q1	Mode = 7	B1 cao	
(i)	Median = 12.5	B1 cao	2
()			
(ii)	Positive or positively skewed	E1	1
, <u>,</u>	(A) Median	E1 cao	
(iii)	(B) There is a large outlier or possible outlier of 58 / figure of 58.	E1indep	2
	Just 'outlier' on its own without reference to either 58 or large scores E0		
	Accept the large outlier affects the mean (more) E1		
(iv)	There are $14.75 \times 28 = 413$ messages	M1 for 14.75 × 28 but 413	2
	So total cost = 413×10 pence = £41.30	can also imply the mark A1 cao	
		TOTAL	7
Q2	$\binom{4}{3}$ × $\binom{31}{4}$ × $\binom{4}{6}$ × 4	N44 6 4	
(i)	$3 \times 3! = 4 \times 6 = 24$ codes or ${}^{4}P_{3} = 24$ (M2 for ${}^{4}P_{3}$)	M1 for 4 M1 for ×6	3
	$Or \qquad 4 \times 3 \times 2 = 24$	A1	3
(ii)		M1 for 4 ³	
` ′	$4^3 = 64 \text{ codes}$	A1 cao	2
		TOTAL	5
Q3			
(i)	Probability = $0.3 \times 0.8 = 0.24$	M1 for 0.8 from (1-0.2) A1	2
	Either: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$	M1 for adding 0.3 and	
(ii)	$= 0.3 + 0.2 - 0.3 \times 0.2$	0.2	
		M1 for subtraction of (0.3×0.2)	
	= 0.5 - 0.06 = 0.44	A1 cao	
	Or: $P(AUB) = 0.7 \times 0.2 + 0.3 \times 0.8 + 0.3 \times 0.2$	M1 either of first terms	
	= 0.14 + 0.24 + 0.06 = 0.44	M1 for last term	3
	$Or: P(AUB) = 1 - P(A' \cap B')$	A1 M1 for 0.7 × 0.8 or	
	$= 1 - 0.7 \times 0.8 = 1 - 0.56 = 0.44$	0.56	
	- 1 - 0.7 × 0.0 - 1 - 0.30 - 0.44	M1 for complete method as seen	
		A1	
(iii)	$P(A B) = \frac{P(A \cap B)}{P(B)} = \frac{0.06}{0.44} = \frac{6}{44} = 0.136$	M1 for numerator of	
	P(B) = 0.44 - 44	their 0.06 only M1 for 'their 0.44' in	3
		denominator	
		A1 FT (must be valid	
		p)	0
		TOTAL	8

(ii)	E(X) = $1 \times 0.2 + 2 \times 0.16 + 3 \times 0.128 + 4 \times 0.512 = 2.952$ Division by 4 or other spurious value at end loses A mark E(X ²) = $1 \times 0.2 + 4 \times 0.16 + 9 \times 0.128 + 16 \times 0.512 = 10.184$ Var(X) = $10.184 - 2.952^2 = 1.47$ (to 3 s.f.) Expected cost = $2.952 \times £45000 = £133000$ (3sf)	M1 for Σ rp (at least 3 terms correct) A1 cao M1 for Σ x^2p at least 3 terms correct M1 for $E(X^2) - E(X)^2$ Provided ans > 0 A1 FT their $E(X)$ but not a wrong $E(X^2)$ B1 FT (no extra multiples / divisors introduced at this stage) G1 labelled linear scales G1 height of lines	1 2
		TOTAL	8
Q5 (i)	Impossible because the competition would have finished as soon as Sophie had won the first 2 matches	E1	1
(ii)	SS, JSS, JSJSS	B1, B1, B1 (-1 each error or omission)	3
(iii)	$0.7^2 + 0.3 \times 0.7^2 + 0.7 \times 0.3 \times 0.7^2 = 0.7399$ or $0.74(0)$ { $0.49 + 0.147 + 0.1029 = 0.7399$ }	M1 for any correct term M1 for any other correct term M1 for sum of all three correct terms A1 cao	4
		TOTAL	8

	Section B		
Q6	Mean = $\frac{180.6}{12}$ = 15.05 or 15.1	B1 for mean	
(i)		DI loi illeali	
	$S_{xx} = 3107.56 - \frac{180.6^2}{12}$ or $3107.56 - 12$ (their 15.05) ² =	M1 for attempt at S_{xx}	
	(389.53)		3
	389.53 = 5.05 or bottor		
	$s = \sqrt{\frac{389.53}{11}} = 5.95$ or better	A1 cao	
/!! \	NB Accept answers seen without working (from calculator)	NA4 5 (1 () () (1	
(ii)	$\overline{x} + 2s = 15.05 + 2 \times 5.95 = 26.95$ $\overline{x} - 2s = 15.05 - 2 \times 5.95 = 3.15$	M1 for attempt at either M1 for both	
	$x - 2s - 15.05 - 2 \times 5.95 - 5.15$ So no outliers	A1 for limits and	
		conclusion FT their	3
		mean and sd	
(iii)	New mean = $1.8 \times 15.05 + 32 = 59.1$	B1FT	
	New $s = 1.8 \times 5.95 = 10.7$	M1 A1FT	3
(iv)	New York has a higher mean or 'is on average' higher (oe)	E1FT using 0 F (\overline{x} dep)	
	New York has greater spread /range /variation or SD (oe)	E1FT using 0 F (σ dep)	2
(v)		D.4.6. III	
	Upper bound (70) 100 110 120 150 170 190	B1 for all correct cumulative frequencies	
	Cumulative frequency (0) 6 14 24 35 45 48	(may be implied from	
		graph). Ignore cf of 0	
		at this stage	
	> 50	G1 for linear scales	
	50 ye 40	(linear from 70 to 190) ignore x < 70	
	Cumulative frequency	vertical: 0 to 50 but not	
	<u>§</u> 20	beyond 100 (no inequality scales)	
	10		
	O C C	G1 for labels	5
	0 50 100 150 200	G1 for points plotted as	3
	Hours	(UCB, their cf). <u>Ignore</u>	
(vi)		(70,0) at this stage. No mid – point or LCB plots.	
(vi)	NB all G marks dep on attempt at cumulative frequencies.	C1 for injury all of	
		G1 for joining all of 'their points'(line or	
		smooth curve) AND now	
	NB All G marks dep on attempt at cumulative frequencies	including (70,0)	2
		M1 for use of 43.2	
	Line on graph at cf = 43.2(soi) or used 90th percentile = 166	A1FT but dep on 3rd G mark earned	
	Jour percentile - 100	mark carricu	
		TOTAL	18

Q7	X ~ B(12, 0.05)		
(i)	(A) $P(X = 1) = {12 \choose 1} \times 0.05 \times 0.95^{11} = 0.3413$	M1 0.05×0.95^{11}	
	(1)	M1 $\binom{12}{1} \times pq^{11} (p+q) =$	
	OR from tables $0.8816 - 0.5404 = 0.3412$	1 A1 cao OR: M1 for 0.8816 seen and M1 for subtraction of 0.5404	3
	(B) $P(X \ge 2) = 1 - 0.8816 = 0.1184$	A1 cao M1 for 1 – P(X ≤ 1) A1 cao	2
	(C) Expected number $E(X) = np = 12 \times 0.05 = 0.6$	M1 for 12×0.05 A1 cao (= 0.6 seen)	
(ii)	<i>Either</i> : $1 - 0.95^n \le \frac{1}{3}$ $0.95^n \ge \frac{2}{3}$	M1 for equation in n	
	$n \le \log \frac{2}{3} / \log 0.95$, so $n \le 7.90$ Maximum $n = 7$	M1 for use of logs A1 cao	
	Or: (using tables with $p = 0.05$): $n = 7$ leads to $P(X \ge 1) = 1 - P(X = 0) = 1 - 0.6983 = 0.3017 (< \frac{1}{3}) or 0.6983 (> \frac{2}{3}) n = 8 leads to P(X \ge 1) = 1 - P(X = 0) = 1 - 0.6634 = 0.3366 (> \frac{1}{3}) or 0.6634 (< \frac{2}{3}) Maximum n = 7 (total accuracy needed for tables) Or: (using trial and improvement):$	M1indep M1indep A1 cao dep on both M's	3
	$1 - 0.95^7 = 0.3017 \ (< \frac{1}{3}) \text{ or } 0.95^7 = 0.6983 \ (> \frac{2}{3}) $ $1 - 0.95^8 = 0.3366 \ (> \frac{1}{3}) \text{ or } 0.96^8 = 0.6634 \ (< \frac{2}{3}) $ Maximum $n = 7$ (3 sf accuracy for calculations)	M1indep (as above) M1indep (as above)	
	NOTE: $n = 7$ unsupported scores SC1 only	A1 cao dep on both M's	
(iii)	Let $X \sim B(60, p)$ Let $p = \text{probability}$ of a bag being faulty H_0 : $p = 0.05$ H_1 : $p < 0.05$	B1 for definition of <i>p</i> B1 for H ₀ B1 for H ₁	8
	$P(X \le 1) = 0.95^{60} + 60 \times 0.05 \times 0.95^{59} = 0.1916 > 10\%$	M1 A1 for probability M1 for comparison	
	So not enough evidence to reject H ₀	A1	
	Conclude that there is not enough evidence to indicate that the new process reduces the failure rate or scientist incorrect/ wrong.	E1	
		TOTAL	18

4767 Statistics 2

(i)	x is independent, y is dependent since the values of x are chosen by the student	B1 E1 dep	
	but the values of <i>y</i> are dependent on <i>x</i>	E1 dep	3
(ii)	\bar{x} = 2.5, \bar{y} = 80.63	B1 for \bar{x} and \bar{y} used	
	$b = \frac{Sxy}{Sxx} = \frac{2530.3 - 30 \times 967.6/12}{90 - 30^2/12} = \frac{111.3}{15} = 7.42$	(SOI)	
		M1 for attempt at gradient	
	OR $b = \frac{2530.3/12 - 2.50 \times 80.63}{90/12 - 2.50^2} = \frac{9.275}{1.25} = 7.42$	(b) A1 for 7.42 cao	
	Hence least squares regression line is: $y - \overline{y} = b(x - \overline{x})$	M1 for equation of line	
	$\Rightarrow y - 80.63 = 7.42(x - 2.5)$ $\Rightarrow y = 7.42x + 62.08$	A1 FT (<i>b</i> >0) for complete equation	5
(iii)	(A) For x = 1.2, predicted growth = 7.42 × 1.2 + 62.08 = 71.0 (B) For x = 4.3, predicted growth = 7.42 × 4.3 + 62.08 = 94.0	M1 for at least one prediction attempted. A1 for both answers (FT their equation if b>0)	
	Valid relevant comments relating to the predictions such as: Comment re interpolation/extrapolation Comment relating to the fact that <i>x</i> = 4.3 is only just beyond the existing data. Comment relating to size of residuals near each predicted value (need not use word 'residual')	E1 (first comment) E1 (second comment)	4
(iv)	$x = 3 \Rightarrow$ predicted $y = 7.42 \times 3 + 62.08 = 84.3$ Residual = $80 - 84.3 = -4.3$	M1 for prediction M1 for subtraction A1 FT (<i>b</i> >0)	3
(v)	This point is a long way from the regression line. The line may be valid for the range used in the experiment but then the relationship may break down for higher concentrations, or the relationship may be non linear.	E1 E1 for valid in range E1 for either 'may break down' or 'could be non linear' or other relevant comment	3
			18

(i)	Binomial (94,0.1)	B1 for binomial	
		B1 dep for parameters	2
(ii)	n is large and p is small	B1, B1 Allow	
		appropriate numerical	
		ranges	2
(iii)	$\lambda = 94 \times 0.1 = 9.4$	B1 for mean	
	$^{\circ}$ 4 $^{\circ}$ 4		
	(A) $P(X = 4) = e^{-9.4} \frac{9.4^4}{4!} = 0.0269 (3 \text{ s.f.})$	M1 for calculation or	
		use of tables	
	or from tables = $0.0429 - 0.0160 = 0.0269$ <i>cao</i>	A1	
	(B) Using tables: $P(X \ge 4) = 1 - P(X \le 3)$	M1 for attempt to find	
		$P(X \ge 4)$	5
	= 1 - 0.0160 = 0.9840 <i>cao</i>	A1 cao	
(iv)	P(sufficient rooms throughout August)	M1	
, ,	$= 0.9840^{31} = 0.6065$	A1 FT	2
(v)	$(A) 31 \times 94 = 2914$	B1 for binomial	
	Binomial (2914,0.1)	B1 dep, for parameters	2
	(B)Use Normal approx with	B1	
	$\mu = np = 2914 \times 0.1 = 291.4$		
	$\sigma^2 = npq = 2914 \times 0.1 \times 0.9 = 262.26$	B1	
	$D(X \le 200.5) - D(Z \le 300.5 - 291.4)$	B1 for continuity corr.	1
	$P(X \le 300.5) = P\left(Z \le \frac{300.5 - 291.4}{\sqrt{262.26}}\right)$	M1 for probability	
		using correct tail	5
	$= P(Z \le 0.5619) = \Phi(0.5619) = 0.7130$	A1 cao, (but FT wrong	
		or omitted CC)	
			18

(i)	$X \sim N(56, 6.5^2)$		
	P(52.5 < X < 57.5) = P $\left(\frac{52.5 - 56}{6.5} < Z < \frac{57.5 - 56}{6.5}\right)$	M1 for standardizing	
	= P(-0.538 < Z < 0.231)	A1 for -0.538 and 0.231	
	$= \Phi(0.231) - (1 - \Phi(0.538))$ $= 0.5914 - (1 - 0.7046)$ $= 0.5914 - 0.2954$	M1 for prob. with tables and correct structure A1 CAO (min 3 s.f., to include use of difference column)	
	= 0.2960 (4 s.f.) <i>or</i> 0.296 (to 3 s.f.)	,	4
(ii)	P(5-year-old < 62) = P $\left(Z < \frac{62 - 56}{6.5}\right)$		
	$=\Phi(0.923)=0.8220$	B1 for 0.8220 or 0.1780	
	P(young adult < 62) = P $\left(Z < \frac{62 - 68}{10}\right)$	B1 for 0.2743 or 0.7257	
	= $\Phi(-0.6)$ = 1 - 0.7257 = 0.2743 P(One over, one under) = 0.8220 × 0.7257 + 0.1780 × 0.2743 = 0.645	M1 for either product M1 for sum of both products	5
(iii)	0.07	A1 CAO G1 for shape	
()	0.06 0.05 0.04 0.03 0.02 0.01 0.02 0.01 0.02 0.03 0.02 0.03 0.03 0.03 0.04 0.05	G1 for means, shown explicitly or by scale G1 for lower max height in young adults G1 for greater variance in young adults	4
(iv)	$Y \sim N(82, \sigma^2)$ From tables $\Phi^{-1}(0.88) = 1.175$ $\frac{62 - 82}{\sigma} = -1.175$	B1 for 1.175 seen M1 for equation in σ with z-value	
	$-20 = -1.175 \sigma$	M1 for correct handling of LH tail	4
	$\sigma = 17.0$	A1 cao	17
			1/

,			sex and en sex	and subje		B1
						, ,
OBS	Math s	English	Both	Neither	Row	
Male	38	19	6	32	sum 95	-
Female	42	55	9	49	155	-
Col	80	74	15	81	250	-
sum	00	74	15	01	250	
]					M1 A2 for expected
						values
EXP	Maths	English	Both	Neither	Row	(allow A1 for at least
<u> </u>					sum	one row or column
Male	30.40	28.12	5.70	30.78	95	correct)
Female	49.60	45.88	9.30	50.22	155	N41 for valid attempt at
Col	80	74	15	81	250	M1 for valid attempt at (O-E) ² /E
sum						A1
						NB These M1 A1 marks
CONT	N 1 - 41-	<u>. F.</u>	aliah T	Doth	NIo:H	cannot be implied by a
CONT	Math		glish	Both	Neither	correct final value of X ²
Male	1.900		958	0.016	0.048	M1 for summation
Female	1.16) 1.0	313	0.010	0.030	A1 cao for X^2
$X^2 = 7.94$	2					B1 for 3 deg of f B1 CAO for cv
Refer to χ Critical val Result is s	lue at 5% significan	t		here is so	me	
Refer to χ . Critical val Result is s There is e associatio	lue at 5% significan vidence in between reversed	t to sugge en sex ar	st that th id subje	ct choice.		B1 CAO for cv B1 E1
Refer to χ . Critical val Result is s There is e association NB if H ₀ H ₁ first B1 or fi H ₀ : μ = 67	lue at 5% significan vidence in between reversed inal E1	t to sugge en sex ar , or 'corre u >67.4	st that the subjection attention att	ect choice. entioned, c	do not award	B1 CAO for cv B1 E1
Refer to χ . Critical val Result is some second to the s	lue at 5% significan vidence in between reversed inal E1.4; H ₁ : µ lenotes ti	t to sugge en sex ar , or 'corre	st that the subject ation' me	ect choice. entioned, c	do not award	B1 CAO for cv B1 E1 B1 For both correct
Refer to χ . Critical val Result is s There is e association NB if H ₀ H ₁ first B1 or first H ₀ : μ = 67. Where μ d students ta	lue at 5% significan vidence in between reversed in the significant of	to sugge en sex ar , or 'corre u >67.4 he mean th the ne	st that the subject of the subject o	of the population	do not award	B1 CAO for cv B1 E1 B1 for both correct B1 for definition of μ
Refer to χ . Critical val Result is s There is endoes association NB if H ₀ H ₁ first B1 or find the students to μ distribute the state of the	lue at 5% significan vidence in between reversed in the significant of	to sugge en sex ar , or 'corre u >67.4 he mean th the ne	st that the subject of the subject o	of the population	do not award	B1 CAO for cv B1 E1 B1 for both correct B1 for definition of μ M1
Refer to χ . Critical val Result is some secondary of the secondary of t	lue at 5% significan vidence in between reversed in the significant of	to sugge en sex ar , or 'corre J > 67.4 he mean th the ne $\frac{3-67.4}{9/\sqrt{12}}$	st that the subject of the subject o	of the population	do not award	B1 CAO for cv B1 E1 B1 for both correct B1 for definition of μ
Refer to χ . Critical val Result is s There is erassociation NB if H ₀ H ₁ first B1 or find the standard of the standard o	lue at 5% significan vidence in between reversed in al E1 4; H_1 : μ lenotes the aught with H_2 : H_3 : H_4 : $H_$	to sugge en sex ar, or 'corre u > 67.4 he mean th the ne $\frac{3-67.4}{9/\sqrt{12}}$	st that the subject ation' measurement of the state of t	of the population	do not award	B1 CAO for cv B1 E1 B1 for both correct B1 for definition of μ M1
Refer to χ . Critical val Result is s There is erassociation NB if H ₀ H ₁ first B1 or first B1 or	lue at 5% significant vidence in between reversed in al E1. 4; H_1 : μ lenotes the aught with aught with H_1 : H_2 : H_3 : H_4 : H_4 : H_4 : H_5 : H_4 : H_5 : H_6 : H_6 : H_7 : H_7 : H_8	to sugge en sex ar , or 'corre u > 67.4 he mean th the ne $\frac{3-67.4}{9/\sqrt{12}}$ critical va t significa	st that the subject th	of the population of the popul	do not award	B1 CAO for cv B1 E1 B1 for both correct B1 for definition of μ M1 A1 cao
Refer to χ . Critical val Result is some services of the ser	lue at 5% significant vidence in between reversed in al E1. 4; H_1 : μ lenotes the aught with stic = $\frac{68}{8}$. 1 tailed (82 so no asufficient in sufficient in suf	to sugge en sex ar, or 'corre $a > 67.4$ he meanth the ne $a = 67.4$ $a = $	st that the subject ation' method score of which the score of $\frac{0.9}{2.57}$ allue of zero, the to rejude to contact the subject the subject to contact the subject the subject the subject the subject the subject to contact the subject the	ect choice. entioned, continued, continued, continued, continued, continued that entitles are the continued that entitles are	do not award	B1 CAO for cv B1 E1 B1 for both correct B1 for definition of μ M1 A1 cao B1 for 1.282 M1 for comparison

4768 Statistics 3

(~)	$P(T > t) = \frac{k}{t^2}, \qquad t \ge 1,$			
	F(t) = P(T < t) = 1 - P(T > t)	M1	Use of 1 – P().	
	$\therefore F(t) = 1 - \frac{k}{t^2}$			
	F(1) = 0	M1		
		IVII		
	$\therefore 1 - \frac{k}{1^2} = 0$			
	∴ <i>k</i> = 1	A1	Beware: answer given.	3
(ii)	$f(t) = \frac{d F(t)}{dt}$	M1	Attempt to differentiate c's cdf.	
	$=\frac{2}{t^3}$	A1	(For $t \ge 1$, but condone absence of this.) Ft c's cdf provided answer sensible.	2
(iii)	r [∞] 201 r r 2 r	M1	Correct form of integral for the	
(,	$\mu = \int_{1}^{\infty} tf(t)dt = \int_{1}^{\infty} \frac{2}{t^{2}}dt$		mean, with correct limits. Ft c's	
			pdf.	
	$=\left[\frac{-2}{t}\right]^{\infty}$	A1	Correctly integrated. Ft c's pdf.	
	r . ¬ i			
	=0-(-2)=2	A1	Correct use of limits leading to correct value. Ft c's pdf provided	3
			answer sensible.	
	H_0 : $m = 5.4$	B1	Both hypotheses. Hypotheses in	
	$H_1: m \neq 5.4$	D4	words only must include	
	where <i>m</i> is the population median time for the task.	B1	"population". For adequate verbal definition.	
	ino taok.		i or adoquate verbar definition.	
	Times - 5.4 Rank of			
	6.4 1.0 8 5.9 0.5 5			
	5.0 -0.4 4			
	6.2 0.8 7			
	6.8 1.4 10	M1	for subtracting 5.4.	
	6.0 0.6 6 5.2 -0.2 2	M1	for ranks.	
	6.5 1.1 9	A1	FT if ranks wrong.	
	5.7 0.3 3			
	5.3 -0.1 1			
	$W_{-} = 1 + 2 + 4 = 7 \text{ (or } W_{+} = 3 + 5 + 6 + 7 + 8 + 9 + 10 = 48)$	B1		
	Refer to tables of Wilcoxon single sample	M1	No ft from here if wrong.	
	(/paired) statistic for $n = 10$.			
	Lower (or upper if 48 used) double-tailed	A1	i.e. a 2-tail test. No ft from here if	
	5% point is 8 (or 47 if 48 used). Result is significant.	A1	wrong. ft only c's test statistic.	
	Seems that the median time is no longer as	A1	ft only c's test statistic.	10
	previously thought.	' '	it stry s s tost stations.	'

Q2 $X \sim N(260, \sigma = 24)$ When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only. (i) P ($X < 300$) = P($Z < \frac{300 - 260}{24} = 1.6667$) = 0.9522 M1 For standardising. Award once, here or elsewhere. A1 For standardising. Award once, here or elsewhere. A2 For standardising. Award once, here or elsewhere. A2 For standardising. Award once, here or elsewhere. A2 For standardising. Award once, here or elsewhere. A3 For standardising. Award once, here or elsewhere. A4 For standardising. Award once, here or elsewhere. A3 For standardising. Award once, here or elsewhere. A4 For standardising. Award once, here or elsew					
(ii) $Y \sim N(260 \times 0.6 = 156, 24^2 \times 0.6^2 = 207.36$ P(Y > 175) = P(Z > $\frac{175 - 156}{14.4} = 1.3194$ C.a.o. 3 (iii) $Y_1 + Y_2 + Y_3 + Y_4 \sim N(624, 829.44)$ B1 Mean. Ft mean of (ii). Variance. Accept sd (= 28.8). Ft variance of (iii). Vari	Q2	$X \sim N(260, \ \sigma = 24)$		suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the	
$\begin{array}{c} 24^2 \times 0.6^2 = 207.36 \\ P(Y>175) = P(Z>\frac{175-156}{14.4} = 1.3194) \\ = 1-0.9063 = 0.0937 \end{array} \hspace{0.5cm} \text{A1} \hspace{0.5cm} \text{c.a.o.} \hspace{0.5cm} 3 \\ \hline \textbf{(iii)} \hspace{0.5cm} Y_1 + Y_2 + Y_3 + Y_4 \sim \text{N}(624, \\ P(\text{this} < 600) = P(Z<\frac{600-624}{28.8} = -0.8333) \\ = 1-0.7976 = 0.2024 \end{array} \hspace{0.5cm} \text{A1} \hspace{0.5cm} \text{c.a.o.} \hspace{0.5cm} 3 \\ \hline \textbf{(iv)} \hspace{0.5cm} \text{Require w such that} \\ 0.975 = P(\text{above} > w) = P\left(Z>\frac{w-624}{28.8}\right) \\ = P(Z>-1.96) \\ \therefore w-624 = 28.8 \times -1.96 \Rightarrow w=567.5(52) \end{array} \hspace{0.5cm} \text{A1} \hspace{0.5cm} \text{Ft parameters of (iii).} \end{array}$	(i)	27	A1		3
(iii) $Y_1 + Y_2 + Y_3 + Y_4 \sim N(624, 829.44)$ B1 Mean. Ft mean of (ii). Variance. Accept sd (= 28.8). Ft variance of (ii). A1 c.a.o. 3 (iv) Require w such that $0.975 = P(above > w) = P\left(Z > \frac{w - 624}{28.8}\right)$ B1 Ft parameters of (iii). B1 Ft parameters of (iii). A1 Ft parameters of (iii). B1 Ft parameters of (iii). B2 Ft parameters of (iii). B3 Ft variance of (iii). A1 Ft parameters of (iii). B2 Ft parameters of (iii). B3 Ft parameters of (iii). B1 Ft parameters of (iii). B1 Ft parameters of (iii). B2 Ft parameters of (iii). B1 Ca.o. 3 (v) On $\sim N(150, \sigma = 18)$ Mean. Variance. Accept sd (= 48.744). B1 Parameters of (iii). B1 Ca.o. B1 Ca.o. B1 Ca.o. B1 For 2.576. Ca.o. Must be expressed as an interval. B2 For 2.576. Ca.o. Must be expressed as an interval.	(ii)	$24^2 \times 0.6^2 = 207.36$			
Second		= 1 - 0.9063 = 0.0937	A1	c.a.o.	3
Solution Sequire Solution	(iii)	829.44)		Variance. Accept sd (= 28.8).	
(iv) Require w such that $0.975 = P(above > w) = P\left(Z > \frac{w - 624}{28.8}\right)$ B1 Formulation of requirement. B1 -1.96 Ft parameters of (iii). 3 (v) $On \sim N(150, \sigma = 18)$ $X_1 + X_2 + X_3 + On_1 + On_2 \sim N(1080, 2376)$ P (this > 1000) = P(Z > $\frac{1000 - 1080}{48.744} = -1.6412$) = 0.9496 A1 C.a.o. 3 (vi) Given $\bar{x} = 252.4$ $s_{n-1} = 24.6$ C1 is given by $252.4 \pm 2.576 \times \frac{24.6}{\sqrt{100}}$ M1 Correct use of 252.4 and $\frac{24.6}{\sqrt{100}}$ For 2.576. C.a.o. Must be expressed as an interval. 3		P (this < 600) = P($Z < \frac{600 - 624}{28.8} = -0.8333$)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		= 1 - 0.7976 = 0.2024	A1	c.a.o.	3
$ \begin{array}{c} = P(Z > -1.96) \\ \therefore w - 624 = 28.8 \times -1.96 \Rightarrow w = 567.5(52) \end{array} \qquad \text{A1} \qquad \text{Ft parameters of (iii)}. \qquad 3 \\ \hline \textbf{(v)} \qquad On \sim N(150, \ \sigma = 18) \\ X_1 + X_2 + X_3 + On_1 + On_2 \sim N(1080, \\ P \text{ (this } > 1000) = P(Z > \frac{1000 - 1080}{48.744} = -1.6412) \\ = 0.9496 \qquad \qquad \text{A1} \qquad \text{C.a.o.} \qquad \qquad 3 \\ \hline \textbf{(vi)} \qquad \text{Given} \qquad \overline{x} = 252.4 s_{n-1} = 24.6 \\ \text{CI is given by} \qquad 252.4 \pm 2.576 \times \frac{24.6}{\sqrt{100}} \\ = 252.4 \pm 6.33(6) = (246.0(63), 258.7(36)) \qquad \text{B1} \qquad \text{For } 2.576. \\ = 252.4 \pm 6.33(6) = (246.0(63), 258.7(36)) \qquad \text{B1} \qquad \text{For } 2.576. \\ \text{C.a.o. Must be expressed as an interval.} \qquad 3 \\ \hline \end{array} $	(iv)		M1	Formulation of requirement.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(B1	- 1.96	
$X_1 + X_2 + X_3 + On_1 + On_2 \sim N(1080, \\ P(\text{this} > 1000) = P(Z > \frac{1000 - 1080}{48.744} = -1.6412) \\ = 0.9496$ B1 Mean. Variance. Accept sd (= 48.744). A1 c.a.o. (vi) Given $\bar{x} = 252.4$ $s_{n-1} = 24.6$ Cl is given by $252.4 \pm 2.576 \times \frac{24.6}{\sqrt{100}}$ M1 Correct use of 252.4 and $24.6/\sqrt{100}$. B1 For 2.576. c.a.o. Must be expressed as an interval.		,	A1	Ft parameters of (iii).	3
	(v)	$X_1 + X_2 + X_3 + On_1 + On_2 \sim N(1080, 2376)$	I		
CI is given by $252.4 \pm 2.576 \times \frac{24.6}{\sqrt{100}}$ M1 Correct use of 252.4 and $24.6/\sqrt{100}$. B1 For 2.576. c.a.o. Must be expressed as an interval.		10.711	A1	c.a.o.	3
$= 252.4 \pm 6.33(6) = (246.0(63), 258.7(36))$	(vi)	Given $\bar{x} = 252.4 s_{n-1} = 24.6$			
= $252.4 \pm 6.33(6)$ = $(246.0(63), 258.7(36))$ A1 c.a.o. Must be expressed as an interval.		CI is given by $252.4 \pm 2.576 \times \frac{24.6}{\sqrt{100}}$	M1		
18		= $252.4 \pm 6.33(6)$ = $(246.0(63), 258.7(36))$		c.a.o. Must be expressed as an	3
					18

Q3				
(i)	A <i>t</i> test should be used because			
(')	the sample is small,	E1		
	the population variance is unknown,	E1		
	the background population is Normal	E1		3
(ii)	H ₀ : μ = 380	B1	Both hypotheses. Hypotheses in	
(/	H_1 : μ < 380		words only must include "population".	
	where μ is the mean temperature in the chamber.	B1	For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\overline{X} =$ " or similar unless \overline{X} is clearly and explicitly stated to be a <u>population</u> mean.	
	$\overline{x} = 373.825$ $s_{n-1} = 9.368$	B1	s_n = 8.969 but do <u>NOT</u> allow this here or in construction of test statistic, but FT from there.	
	Test statistic is $\frac{373.825 - 380}{9.368}$	M1	Allow c's \overline{x} and/or s_{n-1} .	
	9.308		Allow alternative: 380 + (c's -	
	$\sqrt{12}$		$1.796) \times \frac{9.368}{\sqrt{12}}$ (= 375.143) for	
			subsequent comparison with \overline{x} .	
			(Or \overline{x} – (c's –1.796) × $\frac{9.368}{\sqrt{12}}$	
			(= 378.681) for comparison with 380.)	
	= -2.283(359).	A1	c.a.o. but ft from here in any case if wrong. Use of $380 - \overline{x}$ scores M1A0, but ft.	
	Pofor to t	1.//1	No ft from horo if wrong	
	Refer to t_{11} . Single-tailed 5% point is -1.796 .	M1 A1	No ft from here if wrong. Must be minus 1.796 unless	
	Single-tailed 5% point is =1.796.	AI	absolute values are being compared. No ft from here if	
	Significant.	A1	wrong. ft only c's test statistic.	
	Seems mean temperature in the chamber	A1	ft only c's test statistic.	9
	has fallen.	Α.	it offing 0.3 tool statistic.	
(iii)	CI is given by			
(,	373.825 ±	M1		
	2.201	B1		
	_			
	$\times \frac{9.368}{\sqrt{12}}$	M1		
	= 373.825 ± 5.952= (367.87(3), 379.77(7))	A1	c.a.o. Must be expressed as an interval. ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{11} is OK.	4
(iv)	Advantage: greater certainty.	E1	Or equivalents.	
	Disadvantage: less precision.	E1		2
				18

Q4											
(a) (i)	$\overline{x} = \frac{1125}{500} = 2.25$ For binomial E		p		B1 M1	Use distri					
	$\therefore \hat{p} = \frac{2.25}{5} = 0.4$	15			A1	Bewa	are: answer	given.	3		
(ii)			1			,					
	f_0	32	110	154	125		63	16			
	f (tables)	25.164 25.15	102.944 102.95	168.455 168.45	137	.827	56.384 56.35	9.226 9.25			
	f _e (tables)	25.15	102.95	100.43	137	.00	30.33	9.25			
	$X^2 = 1.8571 + 0.7763 + 2$ $= 10.52(49)$	4.9737	+ 1.2404 +	1.1938 +	M1 A1 M1	frequ All co Or us 1.865 1.197	78 + 0.7848	+ 1.2396 +			
	Refer to χ_4^2 . Upper 5% poir Significant.				M1 A1 A1	wrong table if wro No ft ft onl	Allow correct df (= cells – 2) from wrongly grouped or ungrouped table, and FT. Otherwise, no FT if wrong. No ft from here if wrong. ft only c's test statistic.				
	Suggests bino	mial mod	el does not	fit.	A1	ft only c's test statistic.					
	The model approximately middle and to the biggest di	underesti	mate at the	tails.	E1	Accept also any other sensible comment e.g. at 2.5% significance, the result would NOT have been significant.					
	A binomial mo independent w "success". It so be independer p will be the sa	vith a cons eems unli nce within	stant proba kely that th families ar	bility of ere will	E2	which	· , ,	ensible comment s independence	12		
(b)	She should try	to choos	e a simple	random	E1						
	sample which would in frame and usin number gener			E1 E1	pract rando Allow sugg syste every	sible I ble - choosing ly; by the number					
									18		

4771 Decision Mathematics 1

•

(i)	6 routes $M \rightarrow A \rightarrow I \rightarrow T \rightarrow Pi \rightarrow C$ $M \rightarrow A \rightarrow I \rightarrow T \rightarrow Pi \rightarrow R \rightarrow C$ $M \rightarrow A \rightarrow I \rightarrow T \rightarrow Pi \rightarrow H \rightarrow R \rightarrow C$ $M \rightarrow V \rightarrow I \rightarrow T \rightarrow Pi \rightarrow R \rightarrow C$ $M \rightarrow V \rightarrow I \rightarrow T \rightarrow Pi \rightarrow R \rightarrow C$ $M \rightarrow V \rightarrow I \rightarrow T \rightarrow Pi \rightarrow H \rightarrow R \rightarrow C$	B1	
(ii)	6 routes $M \rightarrow A \rightarrow I \rightarrow Pa \rightarrow Pi \rightarrow C$ $M \rightarrow A \rightarrow I \rightarrow Pa \rightarrow Pi \rightarrow R \rightarrow C$ $M \rightarrow A \rightarrow I \rightarrow Pa \rightarrow Pi \rightarrow H \rightarrow R \rightarrow C$ $M \rightarrow V \rightarrow I \rightarrow Pa \rightarrow Pi \rightarrow C$ $M \rightarrow V \rightarrow I \rightarrow Pa \rightarrow Pi \rightarrow R \rightarrow C$ $M \rightarrow V \rightarrow I \rightarrow Pa \rightarrow Pi \rightarrow H \rightarrow R \rightarrow C$	B1 B1	
(iii)	$M \rightarrow V \rightarrow I \rightarrow Pa \rightarrow Pi \rightarrow H \rightarrow R \rightarrow Pi \rightarrow C$ $R \rightarrow H$	B1	
(iv)	e.g. $P \rightarrow T \rightarrow I \rightarrow V \rightarrow M \rightarrow A \rightarrow I \rightarrow Pa \rightarrow P \rightarrow H \rightarrow R \rightarrow C \rightarrow P \rightarrow R$	M1 A2	ends at R (–1 each error/omission)

2. У

3.

y = 2008 c = 2008/100 = 20	
n = 2008 – 19 x (2008/19) = 2008 – 19 x (105) = 13	
k = 3/25 = 0	B1
$i = 20 - 5 - 20 / 3 + 19 \times 13 + 15 = 271$	B1
i = 1	B1
i = 1 - 0 = 1 j = 2008 + 502 + 1 + 2 - 20 + 5 = 2498	В
i = 6	B1
p = -5	B1
m = 3	B1
d = 23	B1
So 23 rd March	B1

										1		
(i)	e.g.	0–3→ 4–7→ 8–9→	blue								M1 A1 A1	proportions OK efficient
(ii)	e.g.	0–1→ 2–5→ 6–7→ 8–9→	blue green								M1 A2 A1	some rejected proportions OK (–1 each error) efficient
(iii)	e.g.											
	Eye col	ours									B1	br/br→br (4 times)
	Eye col Parent	hr	ow br	ow	bro n	ow	blue				B1 B1 B1	br/br→br (4 times) br/gr→bl gr/gr→gr
		1 br	n n	row			blue				B1 B1	br/gr→bl `
	Parent	1 br n 2 br n pr	ow br		n bro	OW	blue brow				B1 B1 M1 A1	br/gr→bl gr/gr→gr br/bl rule application
	Parent	br n 2 br n	ow bl	ue	n bro	OW	blue				B1 B1 M1	br/gr→bl gr/gr→gr br/bl rule
	Parent	1 br n 2 br n pr	ow br	ue	n bro n bro	OW	blue brow n	V			B1 B1 M1 A1	br/gr→bl gr/gr→gr br/bl rule application
	Parent Parent Offspri	1 br n 2 br n ng br n gree	ow br	ue Tow	n bro n bro n	ow ow brow	blue brow n				B1 B1 M1 A1 A1	br/gr→bl gr/gr→gr br/bl rule application application

5.

6.

			4776	Nu	merical	Methods		
1	x f(x)	2 0.24	3 0.03		root = (2 =	2 x 0.03 - 3 x 0.24) / (0. 3.142857	03 - 0.24)	[M1A1] [A1]
	Eg:	graph show to the left o	_		= 3 with re	oot some way		[G2]
·		to the left o	n the right	•				[TOTAL 5]
2	x 0 1 0.5	f(x) 1 0.333333 0.477592	T1 = M = hence and	0.666667 0.477592 T2 = (T1 + S = (T1 + 2	•	0.572129 0.540617		[M1A1] [M1A1] [M1A1] [M1A1]
				`	,			
3	x f(x)	0 2	1 2.57	3 3.85			3 terms: form:	[TOTAL 8] [M1] [M1]
	f(2) = =	2(2-1)(2-3), 3.186667	/(0-1)(0-3) (3.19)) + 2.57(2-0)	(2-3)/(1-0)(1-3) + 3.85(2-0)(2-1).	use x=2: /(3-0)(3-1)	[M1] [A1A1A1] [A1] [TOTAL 7]
4	x x ³ (2-x)-1	1.5 0.6875	2 -1	change o	f sign, so	root (may be implied)		[M1A1]
	a 1.5 1.75 1.75	b 2 2 1.875	x 1.75 1.875 1.8125	x ³ (2-x)-1 0.339844 -0.17603	mpe 0.25 0.125 0.0625			[M1A1] [A1] [A1]
	4 further ite	erations reqo	d: mpe 0.0	325, 0.0156	25, 0.007	8125, 0.00390625		[M1A1]
5		owing curve, tantially diffe	_		kes clear	that tangent and chord	I	[TOTAL 8] [G3]
	h g(2 + h) est g '(2)	0 3.61	0.1 3.849 2.39	0.01 3.633 2.3	0.001 3.612 2			[M1A1A1A1]
	Clear loss	of significant	t figures a	s h is reduce	ed			[E1]

[TOTAL 8]

4776				Mark Sch	eme	January 2008
6 (i)	x 3 4	f(x) 1 3	Δf	$\Delta^2 f$	$\Delta^3 f$	
	5 6	-1 -10	-4 -9	-6 -5	1	[M1A1A1]
		$= 1 + 2(x-3) - $ $= 1 + 2x-6 - 3x^{2} + 23x - 4x^{2}$	x ² +21x-36	/2		[M1A1] [A1] [A1]
	q'(x) = -6x +	23 = 0 at x =	23/6 (= 3.8	333)		[M1A1]
	q(x) = 0 at x	= 4.847(127)	; also at 2.	81954 - no	reqd.	[M1A1]
	q(6) = -11 (c	or point out tha	at the seco	nd differen	ces not constar	it) [A1] [subtotal 12]
(ii)		= 1 + 2(4.5-3) = 1.6875	- 6(4.5-3)	(4.5-4)/2 +	1(4.5-3)(4.5-4)	(4.5-5)/6 [M1A1A1] [A1]
	S = 1.5/3 (1	+ 4x1.6875 -1	10) = -1	.125		[M1A1] [subtotal 6]
						[TOTAL 18]
7 (i)	mpe 0.000 (000 5 000 5 / 2.506	628			[B1]
	=	2.000	1.	99 x 10 ⁻⁷		[M1A1] [subtotal 3]
(ii)	•	0.000 000 5 = he positive an		errors will	tend to cancel o	put [M1A1] [E1] [subtotal 3]
(iii)	In practice 1	0.000 001 = 0 000 x 0.000 0 erage error in	00 5 = 0.0		0 000 5	[M1A1] [M1A1] [E1] [subtotal 5]
(iv)	R to L:	1 (or 1.000 00 1.000 001 res 8 sf, (R to	,			[B1] [B1] [E1] [subtotal 3]
(v)		ler more accu allows the ver		ms at the e	nd of the series	[E1]
	-	e to the sum.	-			[E1]
		sheet is likely sheet works to		-	-	[E1] [E1] [subtotal 4]
						[TOTAL 18]

Grade Thresholds

Advanced GCE (Subject) (Aggregation Code(s)) January 2008 Examination Series

Unit Threshold Marks

Unit		Maximum Mark	Α	В	С	D	E	U
All units	UMS	100	80	70	60	50	40	0
4751	Raw	72	54	46	38	31	24	0
4752	Raw	72	55	48	41	34	28	0
4753	Raw	72	57	50	43	36	28	0
4753/02	Raw	18	15	13	11	9	8	0
4754	Raw	90	77	68	59	50	41	0
4755	Raw	72	55	47	39	32	25	0
4756	Raw	72	59	51	44	37	30	0
4758	Raw	72	62	54	46	38	30	0
4758/02	Raw	18	15	13	11	9	8	0
4761	Raw	72	60	52	44	37	30	0
4762	Raw	72	61	53	45	37	30	0
4763	Raw	72	58	51	44	37	30	0
4766/	Raw	72	56	49	42	35	28	0
G241	Raw	70		F.4	40	20	24	0
4767		72	62	54	46	38	31	_
4768	Raw	72	54	47	40	33	27	0
4771	Raw	72	60	53	46	39	33	0
4776	Raw	72	58	50	42	35	27	0
4776/02	Raw	18	14	12	10	8	7	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	В	С	D	E	U
7895-7898	600	480	420	360	300	240	0
3895-3898	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
7895	25.5	50.0	75.5	85.9	95.3	100	106
7896	42.9	85.7	85.7	85.7	85.7	100	7
7897							0
7898							0
3895	22.7	40.7	59.3	77.8	94.8	100	383
3896	80	80	95	95	100	100	20
3897	0	100	100	100	100	100	1
3898	56.4	76.9	87.2	97.4	97.4	100	39

556 candidates aggregated this series

For a description of how UMS marks are calculated see: http://www.ocr.org.uk/learners/ums_results.html

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

