Mathematics (MEI)

Advanced GCE A2 7895-8

Advanced Subsidiary GCE AS 3895-8

Mark Schemes for the Units

January 2008

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2008
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552310
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Further Mathematics (MEI) (7896)Advanced GCE Further Mathematics (Additional) (MEI) (7897)Advanced GCE Mathematics (MEI) (7895)Advanced GCE Pure Mathematics (MEI) (7898)
Advanced Subsidiary GCE Further Mathematics (MEI) (3896)Advanced Subsidiary GCE Further Mathematics (Additional) (MEI) (3897)Advanced Subsidiary GCE Mathematics (MEI) (3895)
Advanced Subsidiary GCE Pure Mathematics (MEI) (3898)
MARK SCHEME FOR THE UNITS
Unit/Content Page
4751 (C1) Introduction to Advanced Mathematics 1
4752 (C2) Concepts for Advanced Mathematics 5
4753 (C3) Methods for Advanced Mathematics 7
4754 (C4) Applications of Advanced Mathematics 11
4755 (FP1) Further Concepts for Advanced Mathematics 16
4756 (FP2) Further Methods for Advanced Mathematics 20
4758 Differential Equations 27
4761 Mechanics 1 31
4762 Mechanics 2 37
4763 Mechanics 3 41
4766 Statistics 1 46
4767 Statistics 2 50
4768 Statistics 3 54
4771 Decision Mathematics 1 58
4776 Numerical Methods 64
Grade Thresholds 66

4751 (C1) Introduction to Advanced Mathematics

Section A

1	$[v=][\pm] \sqrt{\frac{2 E}{m}} \mathrm{www}$	3	M2 for $v^{2}=\frac{2 E}{m}$ or for $[v=][\pm] \sqrt{\frac{E}{\frac{1}{2} m}}$ or M1 for a correct constructive first step and M 1 for $v=[\pm] \sqrt{k} \mathrm{ft}$ their $v^{2}=k$; if M0 then SC1 for $\sqrt{ } E / 1 / 2 m$ or $\sqrt{ } 2 E / m$ etc	3
2	$\frac{3 x-4}{x+1}$ or $3-\frac{7}{x+1} \mathrm{www}$ as final answer	3	$\begin{aligned} & \text { M1 for }(3 x-4)(x-1) \\ & \text { and M1 for }(x+1)(x-1) \end{aligned}$	3
3	(i) 1 (ii) $1 / 64 \mathrm{www}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	M1 for dealing correctly with each of reciprocal, square root and cubing (allow 3 only for $1 / 64$) eg M2 for 64 or -64 or $1 / \sqrt{ } 4096$ or $1 / 4^{3}$ or M1 for $1 / 16^{3 / 2}$ or 4^{3} or -4^{3} or 4^{-3} etc	4
4	$\begin{aligned} & 6 x+2(2 x-5)=7 \\ & 10 x=17 \\ & \\ & x=1.7 \text { o.e. isw } \\ & y=-1.6 \text { o.e .isw } \end{aligned}$	M1 M1 A1 A1	for subst or multn of eqns so one pair of coeffts equal (condone one error) simplification (condone one error) or appropriate addn/subtn to eliminate variable allow as separate or coordinates as requested graphical soln: M0	4
5	(i) $-4 / 5$ or -0.8 o.e. (ii) $(15,0)$ or 15 found www	2 3	M1 for $4 / 5$ or $4 /-5$ or 0.8 or $-4.8 / 6$ or correct method using two points on the line (at least one correct) (may be graphical) or for $-0.8 \times$ o.e. M1 for $y=$ their (i) $x+12$ o.e. or $4 x+5 y$ $=k$ and $(0,12)$ subst and M1 for using y $=0$ eg $-12=-0.8 x$ or $f t$ their eqn or M1 for given line goes through (0 , 4.8) and $(6,0)$ and M1 for $6 \times 12 / 4.8$ graphical soln: allow M1 for correct required line drawn and M1 for answer within 2 mm of $(15,0)$	5

6	$\mathrm{f}(2)$ used $\begin{aligned} & 2^{3}+2 k+7=3 \\ & k=-6 \end{aligned}$	M1 M1 A1	or division by $x-2$ as far as $x^{2}+2 x$ obtained correctly or remainder $3=2(4+k)+7$ o.e. 2 nd M1 dep on first	3
7	(i) 56 (ii) -7 or ft from -their (i)/8	2 2	M1 for $\frac{8 \times 7 \times 6}{3 \times 2 \times 1}$ or more simplified M1 for 7 or ft their (i)/8 or for $56 \times(-1 / 2)^{3}$ o.e. or ft ; condone x^{3} in answer or in M1 expression; 0 in qn for just Pascal's triangle seen	4
8	(i) $5 \sqrt{ } 3$ (ii) common denominator $=$ $\begin{aligned} & (5-\sqrt{ } 2)(5+\sqrt{ } 2) \\ & =23 \\ & \text { numerator }=10 \end{aligned}$	2 M1 A1 B1	M1 for $\sqrt{48}=4 \sqrt{ } 3$ allow M1A1 for $\frac{5-\sqrt{2}}{23}+\frac{5+\sqrt{2}}{23}$ allow 3 only for 10/23	5
9	(i) $n=2 m$ $\begin{aligned} & 3 n^{2}+6 n=12 m^{2}+12 m \text { or } \\ & =12 m(m+1) \end{aligned}$ (ii) showing false when n is odd e.g. $3 n^{2}+6 n=\text { odd }+ \text { even }=\text { odd }$	M1 M2 B2	or any attempt at generalising; M0 for just trying numbers or M 1 for $3 n^{2}+6 n=3 n(n+2)=3 \times$ even \times even and M1 for explaining that 4 is a factor of even \times even or M1 for 12 is a factor of $6 n$ when n is even and M1 for 4 is a factor of n^{2} so 12 is a factor of $3 n^{2}$ or $3 n(n+2)=3 \times$ odd \times odd $=$ odd or counterexample showing not always true; M1 for false with partial explanation or incorrect calculation	5

Section B

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 10 \& ii \& \begin{tabular}{l}
correct graph with clear asymptote \(x=2\) (though need not be marked) \\
(\(0,-1 / 2\)) shown \\
\(11 / 5\) or 2.2 o.e. isw
\[
x=\frac{1}{x-2}
\] \\
\(x(x-2)=1\) o.e. \\
\(x^{2}-2 x-1\) [\(\left.=0\right]\); ft their equiv eqn attempt at quadratic formula \(1 \pm \sqrt{2}\) cao position of points shown
\end{tabular} \& \begin{tabular}{l}
G2 \\
G1 \\
2 \\
M1 \\
M1 \\
M1 \\
M1 \\
A1 \\
B1
\end{tabular} \& \begin{tabular}{l}
G1 for one branch correct; condone (\(0,-1 / 2\)) not shown SC1 for both sections of graph shifted two to left allow seen calculated M1 for correct first step or equivs with \(y s\) \\
or \((x-1)^{2}-1=1\) o.e. or \((x-1)= \pm \sqrt{ } 2\) (condone one error) \\
on their curve with \(y=x\) (line drawn or \(y=x\) indicated by both coords); condone intent of diagonal line with gradient approx 1through origin as \(y\) \(=x\) if unlabelled
\end{tabular} \& 3
2

6 \& 11

\hline 11 \& ii \& | $\begin{aligned} & (x-2.5)^{2} \text { o.e. } \\ & -2.5^{2}+8 \\ & (x-2.5)^{2}+7 / 4 \text { o.e. } \end{aligned}$ |
| :--- |
| $\min y=7 / 4$ o.e. [so above x axis] or commenting $(x-2.5)^{2} \geq 0$ |
| correct symmetrical quadratic shape |
| 8 marked as intercept on y axis tp ($5 / 2,7 / 4$) o.e. or ft from (i) |
| $x^{2}-5 x-6$ seen or used -1 and 6 obtained $x<-1$ and $x>6$ isw or ft their solns |
| $\min =(2.5,-8.25)$ or ft from (i) so yes, crosses | \& | M1 |
| :--- |
| M1 |
| A1 |
| B1 |
| G1 |
| G1 |
| G1 |
| M1 |
| M1 |
| M1 |
| M1 |
| A1 | \& | for clear attempt at -2.5^{2} |
| :--- |
| allow M2A0 for $(x-2.5)+7 / 4$ o.e. with no $(x-2.5)^{2}$ seen |
| ft , dep on $(x-a)^{2}+b$ with b positive; condone starting again, showing $b^{2}-$ $4 a c<0$ or using calculus |
| or $(0,8)$ seen in table |
| or $(x-2.5)^{2}$ [> or $\left.=\right] 12.25$ or ft $14-b$ also implies first M1 |
| if M0, allow B1 for one of $x<-1$ and $x>6$ |
| or M1 for other clear comment re translated 10 down and A1 for referring to min in (i) or graph in (ii); or M1 for correct method for solving $x^{2}-5 x-2=0$ or using $b^{2}-4 a c$ with this and A1 for showing real solns eg $b^{2}-4 a c=33$; allow M1A0 for valid comment but error in -8.25 ft ; allow M1 for showing y can be neg eg (0 , -2) found and A1 for correct | \& 4

3
3
3

2 \& 12

\hline
\end{tabular}

4752 (C2) Concepts for Advanced Mathematics

Section A

1	$40 x^{3}$	2	-1 if extra term	2
2	(i) 3 (ii) 141	1 2	M1 for $9 \times(1+2+3+4+5)+1+2+3$	3
3	right angled triangle with 1 and 2 on correct sides Pythagoras used to obtain hyp $=\sqrt{ } 5$ $\cos \theta=\frac{a}{h}=\frac{2}{\sqrt{5}}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	or M1 for $\sin \theta=1 / 2 \cos \theta$ and M1 for substituting in $\sin ^{2} \theta+\cos ^{2} \theta=1$ E1 for sufficient working	3
4	$\begin{aligned} & \text { (i)line along } y=6 \text { with } \\ & \mathrm{V}(1,6),(2,2),(3,6) \\ & \text { (ii) line along } y=3 \text { with } \\ & \mathrm{V}(-2,3),(-1,1),(0,3) \\ & \hline \end{aligned}$	2 2	1 for two points correct 1 for two points correct	4
5	$2 x^{6}+\frac{3}{4} x^{\frac{4}{3}}+7 x+c$	5	1 for $2 x^{6} ; 2$ for $\frac{3}{4} x^{\frac{4}{3}}$ or 1 for other $k x^{\frac{4}{3}} ; 1$ for $7 x$; 1 for $+c$	5
6	(i) correct sine shape through O amplitude of 1 and period 2π shown (ii) $7 \pi / 6$ and $11 \pi / 6$	$\begin{aligned} & 1 \\ & 1 \\ & 3 \end{aligned}$	B2 for one of these; 1 for $-\pi / 6$ found	5
7	(i) 60 (ii) -6 (iii)	2 1 1 1	M 1 for $2^{2}+2^{3}+2^{4}+2^{5}$ o.e. Correct in both quadrants Through $(0,1)$ shown dep.	5
8	$\begin{aligned} & r=1 / 3 \text { s.o.i. } \\ & a=54 \text { or } \mathrm{ft} 18 \div \text { their } r \\ & \mathrm{~S}=\frac{a}{1-r} \text { used with }-1<\mathrm{r}<1 \\ & \mathrm{~S}=81 \text { c.a.o. } \end{aligned}$	$\begin{aligned} & 2 \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	1 mark for $\mathrm{ar}=18$ and $\mathrm{ar}^{3}=2$ s.o.i.	5
9	(i) 0.23 c.a.o. (ii) 0.1 or $1 / 10$ (iii) $4(3 x+2)$ or $12 x+8$ (iv) $[y=] 10^{3 x+2}$ o.e.	1 1 1 1	10^{-1} not sufficient	4

Section B

\begin{tabular}{|c|c|c|c|c|c|}
\hline 10 \& ii
iii \& \begin{tabular}{l}
\[
\begin{aligned}
\& h=120 / x^{2} \\
\& A=2 x^{2}+4 x h \text { o.e. }
\end{aligned}
\] \\
completion to given answer
\[
\begin{aligned}
\& A^{\prime}=4 x-480 / x^{2} \text { o.e. } \\
\& A^{\prime \prime}=4+960 / x^{3}
\end{aligned}
\] \\
use of \(A^{\prime}=0\)
\[
x=\sqrt[3]{120} \text { or } 4.9(3 . .)
\] \\
Test using \(A^{\prime}\) or \(A^{\prime \prime}\) to confirm minimum \\
Substitution of their x in A
\[
A=145.9 \text { to } 146
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
2 \\
M1 \\
A1 \\
T1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
at least one interim step shown \\
1 for \(k x^{-2}\) o.e. included ft their \(A^{\prime}\) only if \(k x^{-2}\) seen ; 1 if one error \\
Dependent on previous M1
\end{tabular} \& 3
4

5

\hline 11 \& iA
iB

ii \& \[
$$
\begin{aligned}
& \mathrm{BC}^{2}=348^{2}+302^{2}-2 \times 348 \times \\
& 302 \times \cos 72^{\circ} \\
& \mathrm{BC}=383.86 \ldots \\
& 1033.86 \ldots[\mathrm{~m}] \text { or ft } 650+\text { their } \mathrm{BC} \\
& \\
& \frac{\sin B}{302}=\frac{\sin 72}{\text { their } B C} \\
& \mathrm{~B}=48.4 . . \\
& 355-\text { their } \mathrm{B} \text { o.e. } \\
& \text { answer in range } 306 \text { to } 307 \\
& \\
& \text { Arc length } \mathrm{PQ}=\frac{224}{360} \times 2 \pi \times 120 \\
& \text { o.e. or } 469.1 \ldots \text { to } 3 \mathrm{sf} \text { or more } \\
& \mathrm{QP}=222.5 \ldots . . \text { to } 3 \mathrm{sf} \text { or more } \\
& \text { answer in range } 690 \text { to } 692[\mathrm{~m}]
\end{aligned}
$$

\] \& | M2 |
| :--- |
| A1 |
| 1 |
| M1 |
| A1 |
| M1 |
| A1 |
| M2 |
| B1 |
| A1 | \& | M1 for recognisable attempt at Cosine Rule to 3 sf or more accept to 3 sf or more |
| :--- |
| Cosine Rule acceptable or Sine Rule to find C |
| or $247+$ their C |
| M1 for $\frac{136}{360} \times 2 \pi \times 120$ | \& 4

4
4
4

\hline 12 \& iA \& | $x^{4}=8 x$ |
| :--- |
| $(2,16)$ c.a.o. |
| $\mathrm{PQ}=16$ and completion to show $1 / 2 \times 2 \times 16=16$ |
| $x^{5} / 5$ |
| evaluating their integral at their co-ord of P and zero [or $32 / 5$ o.e.] 9.6 o.e. | \& | M1 |
| :--- |
| A1 |
| A1 |
| M1 |
| M1 |
| A1 | \& | NB answer 16 given |
| :--- |
| ft only if integral attempted, not for x^{4} or differentiation c.a.o. | \& 3

3

\hline \& iiA iiB iiC iid \& \[
$$
\begin{aligned}
& 6 x^{2} h^{2}+4 x h^{3}+h^{4} \\
& 4 x^{3}+6 x^{2} h+4 x h^{2}+h^{3} \\
& 4 x^{3} \\
& \text { gradient of [tangent to] curve }
\end{aligned}
$$

\] \& | 2 |
| :--- |
| 2 |
| 1 |
| 1 | \& | B1 for two terms correct. |
| :--- |
| B1 for three terms correct | \& 2

2
1
1

\hline
\end{tabular}

4753 (C3) Methods for Advanced Mathematics

Section A

$\begin{aligned} & 1 \\ & \Rightarrow \quad \begin{aligned} y & =\left(1+6 x^{2}\right)^{1 / 3} \\ \Rightarrow & \frac{d y}{d x} \end{aligned}=\frac{1}{3}\left(1+6 x^{2}\right)^{-2 / 3} \cdot 12 x \\ & \\ & \\ & \end{aligned}$	M1 B1 A1 A1 [4]	chain rule used $\frac{1}{3} u^{-2 / 3}$ $\times 12 x$ cao (must resolve $1 / 3 \times 12$) Mark final answer
$\begin{aligned} 2(\mathrm{i}) \mathrm{fg}(x) & =\mathrm{f}(x-2) \\ & =(x-2)^{2} \\ \mathrm{gf}(x) & =\mathrm{g}\left(x^{2}\right)=x^{2}-2 . \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	forming a composite function mark final answer If fg and gf the wrong way round, M1A0A0
(ii)	B1ft B1ft	fg - must have (2, 0)labelled (or inferable from scale). Condone no y-intercept, unless wrong $\mathrm{gf}-$ must have $(0,-2)$ labelled (or inferable from scale) Condone no x-intercepts, unless wrong Allow ft only if fg and gf are correct but wrong way round.
	B1 B1 M1 E1 B1 B1 [6]	soi soi eliminating A (do not allow verification) SCB2 if initial 'B's are missing, and ratio of years $=1.6$ $=e^{b}$ In 1.6 or 0.47 or better (mark final answer) cao - allow recovery from inexact b's
(ii) When $n=20$, $\begin{aligned} P & =6250 \times e^{0.470 \times 20} \\ & =£ 75,550,000 \end{aligned}$	M1 A1 [2]	substituting $n=20$ into their equation with their A and b Allow answers from $£ 75000000$ to $£ 76000000$.
4 (i) $5=k / 100 \Rightarrow k=500^{*}$	$\begin{aligned} & \text { E1 } \\ & {[1]} \end{aligned}$	NB answer given
(ii) $\frac{d P}{d V}=-500 V^{-2}=-\frac{500}{V^{2}}$	M1 A1 [2]	$\begin{aligned} & (-1) V^{-2} \\ & \text { o.e. }- \text { allow }-k / V^{2} \end{aligned}$
$\text { (iii) } \frac{d P}{d t}=\frac{d P}{d V} \cdot \frac{d V}{d t}$ $\begin{aligned} & \text { When } V=100, \mathrm{~d} P / d V=-500 / 10000= \\ & -0.05 \\ & \qquad \mathrm{~d} V / \mathrm{d} t=10 \\ & \Rightarrow \quad \mathrm{~d} P / \mathrm{d} t=-0.05 \times 10=-0.5 \end{aligned}$ So P is decreasing at $0.5 \mathrm{Atm} / \mathrm{s}$	M1 B1ft B1 A1 [4]	chain rule (any correct version) (soi) (soi) - 0.5 cao

5(i) $\begin{aligned} & p=2,2^{p}-1=3, \text { prime } \\ & p=3,2^{p}-1=7, \text { prime } \\ & p=5,2^{p}-1=31, \text { prime } \\ & p=7,2^{p}-1=127, \text { prime } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \\ & {[2]} \end{aligned}$	Testing at least one prime testing all 4 primes (correctly) Must comment on answers being prime (allow ticks) Testing $p=1$ is E0
(ii) $23 \times 89=2047=2^{11}-1$ 11 is prime, 2047 is not So statement is false.	M1 E1 [2]	$2^{11}-1$ must state or imply that 11 is prime ($p=11$ is sufficient)
$\begin{array}{ll} 6 \text { (i) } & \mathrm{e}^{2 y}=x^{2}+y \\ \Rightarrow & 2 e^{2 y} \frac{d y}{d x}=2 x+\frac{d y}{d x} \\ \Rightarrow & \left(2 e^{2 y}-1\right) \frac{d y}{d x}=2 x \\ \Rightarrow & \frac{d y}{d x}=\frac{2 x}{2 e^{2 y}-1} * \end{array}$	M1 A1 M1 E1 [4]	Implicit differentiation - allow one slip (but with $\mathrm{d} y / \mathrm{d} x$ both sides) collecting terms
(ii) Gradient is infinite when $2 \mathrm{e}^{2 y}-1=$ 0 $\begin{array}{ll} \Rightarrow & \mathrm{e}^{2 y}=1 / 2 \\ \Rightarrow & 2 y=\ln 1 / 2 \\ \Rightarrow & y=1 / 2 \ln 1 / 2=-0.347 \text { (3 s.f.) } \\ & x^{2}=\mathrm{e}^{2 y}-y=1 / 2-(-0.347) \\ & \quad x=0.920 \end{array}$	M1 A1 M1 A1 [4]	must be to 3 s.f. substituting their y and solving for x cao - must be to 3 s.f., but penalise accuracy once only.

Section B

$\begin{array}{ll} \text { 7(i) } & y=2 x \ln (1+x) \\ \Rightarrow & \frac{d y}{d x}=\frac{2 x}{1+x}+2 \ln (1+x) \end{array}$ When $x=0, \mathrm{~d} y / \mathrm{d} x=0+2 \ln 1=0$ \Rightarrow origin is a stationary point.	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \text { E1 } \\ & {[4]} \end{aligned}$	product rule $\mathrm{d} / \mathrm{d} x(\ln (1+x))=1 /(1+x)$ soi www (i.e. from correct derivative)
	M1 A1ft A1 M1 E1 [5]	Quotient or product rule on their $2 x /(1+x)$ correctly applied to their $2 x /(1+x)$ o.e., e.g. $\frac{4+2 x}{(1+x)^{2}}$ cao substituting $x=0$ into their $\mathrm{d}^{2} y / \mathrm{d} x^{2}$ www - dep previous A1
(iii) Let $u=1+x \Rightarrow \mathrm{~d} u=\mathrm{d} x$ $\begin{aligned} \Rightarrow \quad \int \frac{x^{2}}{1+x} d x & =\int \frac{(u-1)^{2}}{u} d u \\ & =\int \frac{\left(u^{2}-2 u+1\right)}{u} d u \\ & =\int\left(u-2+\frac{1}{u}\right) d u * \\ \Rightarrow \quad \int_{0}^{1} \frac{x^{2}}{1+x} d x & =\int_{1}^{2}\left(u-2+\frac{1}{u}\right) d u \\ & =\left[\frac{1}{2} u^{2}-2 u+\ln u\right]_{1}^{2} \\ & =2-4+\ln 2-(1 / 2-2+\ln 1) \\ & =\ln 2-1 / 2 \end{aligned}$	M1 E1 B1 B1 M1 A1 [6]	$\frac{(u-1)^{2}}{u}$ www (but condone $\mathrm{d} u$ omitted except in final answer) changing limits (or substituting back for x and using 0 and 1) $\left[\frac{1}{2} u^{2}-2 u+\ln u\right]$ substituting limits (consistent with u or x) cao
$\text { (iv) } \begin{aligned} & A==\int_{0}^{1} 2 x \ln (1+x) d x \\ & \text { Parts: } u=\ln (1+x), \mathrm{d} u / \mathrm{d} x=1 /(1+x) \\ & \mathrm{d} v / \mathrm{d} x=2 x \Rightarrow v=x^{2} \\ &=\left[x^{2} \ln (1+x)\right]_{0}^{1}-\int_{0}^{1} \frac{x^{2}}{1+x} d x \\ &=\ln 2-\ln 2+1 / 2=1 / 2 \end{aligned}$	M1 A1 M1 A1 [4]	soi substituting their $\ln 2-1 / 2$ for $\int_{0}^{1} \frac{x^{2}}{1+x} d x$ cao

$8 \text { (i) }$	Stretch in x-direction s.f. $1 / 2$ translation in y-direction 1 unit up	M1 A1 M1 A1 [4]	$\begin{aligned} & \text { (in either order) - allow 'contraction' } \\ & \text { dep 'stretch' } \\ & \text { allow 'move', 'shift', etc - direction can be inferred from } \\ & \binom{0}{1} \\ & \text { or }\binom{0}{1} \text { dep 'translation'. }\binom{0}{1} \text { alone is M1 A0 } \end{aligned}$
(ii)	$\begin{aligned} & A=\int_{-\pi / 4}^{\pi / 4}(1+\sin 2 x) d x \\ & =\left[x-\frac{1}{2} \cos 2 x\right]_{-\pi / 4}^{\pi / 4} \\ & =\pi / 4-1 / 2 \cos \pi / 2+\pi / 4+1 / 2 \cos (-\pi / 2) \\ & =\pi / 2 \end{aligned}$	M1 B1 M1 A1 [4]	correct integral and limits. Condone $\mathrm{d} x$ missing; limits may be implied from subsequent working. substituting their limits (if zero lower limit used, must show evidence of substitution) or 1.57 or better - cao (www)
$\begin{array}{r} \quad \begin{array}{c} \text { (iii) } \\ \Rightarrow \\ \Rightarrow \end{array} \\ \hline \end{array}$	$\begin{aligned} & y=1+\sin 2 x \\ & \mathrm{~d} y / \mathrm{d} x=2 \cos 2 x \end{aligned}$ When $x=0, \mathrm{~d} y / \mathrm{d} x=2$ So gradient at $(0,1)$ on $\mathrm{f}(x)$ is 2 gradient at $(1,0)$ on $\mathrm{f}^{-1}(x)=1 / 2$	M1 A1 A1ft B1ft [4]	differentiating - allow 1 error (but not $x+2 \cos 2 x$) If 1 , then must show evidence of using reciprocal, e.g. $1 / 1$
(iv)	Domain is $0 \leq x \leq 2$.	B1 M1 A1 [3]	Allow 0 to 2, but not $0<x<2$ or y instead of x clear attempt to reflect in $y=x$ correct domain indicated (0 to 2), and reasonable shape
(v) $\begin{aligned} & \Rightarrow \\ & \Rightarrow \\ & \Rightarrow \\ & \Rightarrow \end{aligned}$	$\begin{aligned} & y=1+\sin 2 x \quad x \leftrightarrow y \\ & x=1+\sin 2 y \\ & \sin 2 y=x-1 \\ & 2 y=\arcsin (x-1) \\ & y=1 / 2 \arcsin (x-1) \end{aligned}$	M1 A1 [2]	$\text { or } \sin 2 x=y-1$ cao

4754 (C4) Applications of Advanced Mathematics

Section A

$13 \cos \theta+4 \sin \theta=R \cos (\theta-\alpha)$
$=R(\cos \theta \cos \alpha+\sin \theta \sin \alpha)$
$\Rightarrow R \cos \alpha=3, R \sin \alpha=4$
$\Rightarrow R^{2}=3^{2}+4^{2}=25 \Rightarrow R=5$
$\tan \alpha=4 / 3 \Rightarrow \alpha=0.9273$
$5 \cos (\theta-0.9273)=2$
$\Rightarrow \cos (\theta-0.9273)=2 / 5$
$\theta-0.9273=1.1593,-1.1593$
$\Rightarrow \quad \theta=2.087,-0.232$

2(i) $(1-2 x)^{-\frac{1}{2}}=1-\frac{1}{2}(-2 x)+\frac{\left(-\frac{1}{2}\right) \cdot\left(-\frac{3}{2}\right)}{2!}(-2 x)^{2}+\ldots$

$$
=1+x+\frac{3}{2} x^{2}+\ldots
$$

Valid for $-1<-2 x<1 \Rightarrow-1 / 2<x<1 / 2$

$\text { (ii) } \begin{aligned} & \frac{1+2 x}{\sqrt{1-2 x}}=(1+2 x)\left(1+x+\frac{3}{2} x^{2}+\ldots\right) \\ & =1+x+\frac{3}{2} x^{2}+2 x+2 x^{2}+\ldots \\ & =1+3 x+\frac{7}{2} x^{2}+\ldots \end{aligned}$	M1 A1ft A1 [3]	substitituting their $1+x+\frac{3}{2} x^{2}+\ldots$ and expanding cao
$3 \begin{aligned} V & =\int_{1}^{2} \pi x^{2} d y \\ y & =1+x^{2} \Rightarrow x^{2}=y-1 \\ \Rightarrow V & =\int_{1}^{2} \pi(y-1) d y \\ & =\pi\left[\frac{1}{2} y^{2}-y\right]_{1}^{2} \\ & =\pi(2-2-1 / 2+1) \\ & =1 / 2 \pi \end{aligned}$	B1 M1 B1 M1 A1 [5]	$\left[\frac{1}{2} y^{2}-y\right]$ substituting limits into integrand

$\begin{aligned} & \text { 4(i) } \sin \left(\theta+45^{\circ}\right)=\cos \theta \\ & \Rightarrow \quad \sin \theta \cos 45+\cos \theta \sin 45=\cos \theta \\ & \Rightarrow \quad(1 / \sqrt{ } 2) \sin \theta+(1 / \sqrt{ } 2) \cos \theta=\cos \theta \\ & \Rightarrow \quad \\ & \Rightarrow \quad \sin \theta+\cos \theta=\sqrt{ } 2 \cos \theta \\ & \Rightarrow \quad \\ & \Rightarrow \quad \sin \theta=(\sqrt{ } 2-1) \cos \theta \\ & \Rightarrow \quad \\ & \quad \frac{\sin \theta}{\cos \theta}=\tan \theta=\sqrt{ } 2-1 * \end{aligned}$	M1 B1 A1 M1 E1 [5]	compound angle formula $\sin 45=1 / \sqrt{ } 2, \cos 45=1 / \sqrt{ } 2$ collecting terms
(ii) $\begin{aligned} & \tan \theta=\sqrt{ } 2-1 \\ & \Rightarrow \quad \theta=22.5^{\circ}, \\ & 202.5^{\circ}\end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	and no others in the range
$\begin{aligned} & 5 \quad \begin{aligned} & \frac{4}{x\left(x^{2}+4\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+4} \\ &=\frac{A\left(x^{2}+4\right)+(B x+C) x}{x\left(x^{2}+4\right)} \\ & \Rightarrow \quad 4=A\left(x^{2}+4\right)+(B x+C) x \end{aligned} \\ & x=0 \Rightarrow 4=4 A \Rightarrow A=1 \\ & \text { coefft of } x^{2}: 0=A+B \Rightarrow B=-1 \\ & \text { coeffts of } x: 0=C \\ & \Rightarrow \quad \frac{4}{x\left(x^{2}+4\right)}=\frac{1}{x}-\frac{x}{x^{2}+4} \end{aligned}$	M1 M1 B1 DM1 A1 A1 $[6]$	correct partial fractions $A=1$ Substitution or equating coeffts $\begin{aligned} & B=-1 \\ & C=0 \end{aligned}$
$6 \quad \begin{aligned} & \operatorname{cosec} \theta=3 \\ & \Rightarrow \sin \theta=1 / 3 \\ & \Rightarrow \theta=19.47^{\circ} \\ & 160.53^{\circ} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	and no others in the range

Section B

7(i) $\overrightarrow{\mathrm{CD}}=\left(\begin{array}{l}-6 \\ 6 \\ 24\end{array}\right) \overrightarrow{\mathrm{CB}}=\left(\begin{array}{l}0 \\ 20 \\ 0\end{array}\right)$.	$\begin{aligned} & \text { B1 B1 } \\ & \text { [2] } \end{aligned}$	
$\text { (ii) } \begin{aligned} & \sqrt{(-6)^{2}+6^{2}+24^{2}} \\ & =25.46 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	
(iii) $\begin{aligned} & \overrightarrow{\mathrm{CD}} \cdot\left(\begin{array}{l} 4 \\ 0 \\ 1 \end{array}\right)=\left(\begin{array}{l} -6 \\ 6 \\ 24 \end{array}\right) \cdot\left(\begin{array}{l} 4 \\ 0 \\ 1 \end{array}\right)=-24+0+24=0 \\ & \overrightarrow{\mathrm{CB}} \cdot\left(\begin{array}{l} 4 \\ 0 \\ 1 \end{array}\right)=\left(\begin{array}{l} 0 \\ 20 \\ 0 \end{array}\right) \cdot\left(\begin{array}{l} 4 \\ 0 \\ 1 \end{array}\right)=0+0+0=0 \end{aligned}$ \Rightarrow plane BCDE is $4 x+z=c$ At C (say) $4 \times 15+0=c \Rightarrow c=60$ \Rightarrow plane BCDE is $4 x+z=60$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[5]} \end{aligned}$	using scalar product or other equivalent methods
(iv) $\begin{aligned} & \text { OG: } \mathbf{r}=\left(\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right)+\lambda\left(\begin{array}{l} 3 \\ 6 \\ 24 \end{array}\right) \\ & \text { AF: } \mathbf{r}=\left(\begin{array}{l} 0 \\ 20 \\ 0 \end{array}\right)+\mu\left(\begin{array}{l} 3 \\ -6 \\ 24 \end{array}\right) \end{aligned}$ At $(5,10,40), 3 \lambda=5 \Rightarrow \lambda=5 / 3$ $\Rightarrow 6 \lambda=10,24 \lambda=40$, so consistent. $\operatorname{At}(5,10,40), 3 \mu=5 \Rightarrow \mu=5 / 3$ $\Rightarrow 20-6 \mu=10,24 \mu=40$, so consistent. So lines meet at ($5,10,40$)*	B1 B1 M1 E1 E1 [5]	evaluating parameter and checking consistency. [or other methods, e.g. solving]
$\begin{aligned} & \text { (v) } \begin{aligned} & \mathrm{h}=40 \\ & \text { POABC: } V=1 / 3 \times 20 \times 15 \times 40 \\ &=4000 \mathrm{~cm}^{3} . \\ & \text { PDEFG: } V=1 / 3 \times 8 \times 6 \times(40-24) \\ &=256 \mathrm{~cm}^{3} \end{aligned} \\ & \Rightarrow \text { vol of ornament } \end{aligned}=4000-256=3744 \mathrm{~cm}^{3} .$	B1 M1 A1 A1 [4]	soi $1 / 3 \times \mathrm{w} \mathrm{x} \mathrm{d} \mathrm{x} \mathrm{h} \mathrm{used} \mathrm{for} \mathrm{either} \mathrm{-condone} \mathrm{one}$ error both volumes correct cao

$\begin{array}{ll} \text { 8(i) } & \cos \theta=\frac{x}{k}, \sin \theta=\frac{2 y}{k} \\ & \cos ^{2} \theta+\sin ^{2} \theta=1 \\ \Rightarrow & \left(\frac{x}{k}\right)^{2}+\left(\frac{2 y}{k}\right)^{2}=1 \\ \Rightarrow & \frac{x^{2}}{k^{2}}+\frac{4 y^{2}}{k^{2}}=1 \\ \Rightarrow & x^{2}+4 y^{2}=k^{2} * \end{array}$	M1 M1 E1 [3]	Used substitution
$\begin{gathered} \text { (ii) } \frac{d x}{d \theta}=-k \sin \theta, \frac{d y}{d \theta}=\frac{1}{2} k \cos \theta \\ \frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=-\frac{\frac{1}{2} k \cos \theta}{k \sin \theta} \\ =-1 / 2 \cot \theta \\ -\frac{x}{4 y}=-\frac{2 k \cos \theta}{4 k \sin \theta}=-\frac{1}{2} \cot \theta=\frac{d y}{d x} \end{gathered}$	M1 A1 E1	oe
or, by differentiating implicitly $\begin{aligned} & 2 x+8 y \mathrm{~d} y / \mathrm{d} x=0 \\ & \Rightarrow \quad \mathrm{~d} y / \mathrm{d} x=-2 x / 8 y=-x / 4 y^{*} \end{aligned}$	M1 A1 E1 [3]	
(iii) $k=2$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	
(iv)	B1 B1 B1 [3]	1 correct curve -shape and position 2 or more curves correct shape- in concentric form all 3 curves correct
(v) grad of stream path $=-1 /$ grad of contour $\Rightarrow \quad \frac{d y}{d x}=-\frac{1}{(-x / 4 y)}=\frac{4 y}{x} *$	M1 E1 [2]	
$\begin{aligned} & \text { (vi) } \frac{d y}{d x}=\frac{4 y}{x} \Rightarrow \int \frac{d y}{y}=\int \frac{4 d x}{x} \\ & \Rightarrow \quad \ln y=4 \ln x+c=\ln \mathrm{e}^{c} x^{4} \\ & \Rightarrow \quad y=A x^{4} \text { where } A=\mathrm{e}^{c} . \end{aligned}$ When $x=2, y=1 \Rightarrow 1=16 A \Rightarrow A=1 / 16$ $\Rightarrow \quad y=x^{4} / 16^{*}$	M1 A1 M1 M1 A1 E1 [6]	Separating variables $\ln y=4 \ln x(+c)$ antilogging correctly (at any stage) substituting $x=2, y=1$ evaluating a correct constant www

Paper B Comprehension 4754 (C4)

1	4, 1, 5, 6, 11, 17	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \hline \end{aligned}$	for 11 and 17 for 1 and 4
2	Even, odd, odd, even, odd, odd recurs $100^{\text {th }}$ term is therefore even	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	for reason www
3	$\phi^{6}=(3 \phi+2)+(5 \phi+3)=8 \phi+5$	B1	
4	$\begin{aligned} & 1-E H=1-C G=1-(\phi-1) \\ & =2-\phi=2-\left(\frac{1+\sqrt{5}}{2}\right) \\ & =\frac{3-\sqrt{5}}{2} \end{aligned}$	M1 A1 A1	oe
5	(i)Gradients $-\frac{1}{\phi}$ and $\frac{1}{\phi-1}$ (ii) Product of gradients: $\begin{gathered} -\frac{1}{\phi} \times \frac{1}{\phi-1}=-\frac{1}{\phi^{2}-\phi} \\ =-\frac{1}{1}=-1 \end{gathered}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { E1 } \end{aligned}$	
6	$\begin{aligned} & \frac{\phi+1}{2 \phi-1}=\frac{\frac{1+\sqrt{5}}{2}+1}{1+\sqrt{5}-1} \\ & =\frac{3+\sqrt{5}}{2 \sqrt{5}} \\ & =\frac{(3+\sqrt{5}) \sqrt{5}}{2 \sqrt{5} \times \sqrt{5}}=\frac{3 \sqrt{5}+5}{10} \end{aligned}$	M1 A1 E1	
7	$\begin{aligned} & a+(a+d)=a+2 d \Rightarrow a=d \\ & (a+d)+(a+2 d)=a+3 d \Rightarrow a=0 \\ & a=d=0^{*} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { E1 } \\ & \text { [18] } \end{aligned}$	

4755 (FP1) Further Concepts for Advanced Mathematics

Qu	Answer	Mark	Comment
Section A			
1(i)	$\mathbf{B A}=\left(\begin{array}{cc} 3 & 1 \\ -2 & 4 \end{array}\right)\left(\begin{array}{cc} 2 & -1 \\ 0 & 3 \end{array}\right)=\left(\begin{array}{cc} 6 & 0 \\ -4 & 14 \end{array}\right)$	M1 A1 [2]	Attempt to multiply c.a.o.
1(ii)	$\operatorname{det} \mathbf{B} \mathbf{A}=(6 \times 14)-(-4 \times 0)=84$ $3 \times 84=252$ square units	M1 A1 A1 (ft) [3]	Attempt to calculate any determinant c.a.o. Correct area
2(ii)	$\alpha^{2}=(-3+4 \mathrm{j})(-3+4 \mathrm{j})=(-7-24 \mathrm{j})$	M1 A1 [2]	Attempt to multiply with use of $\mathrm{j}^{2}=-1$ c.a.o.
	$\|\alpha\|=5$ $\arg \alpha=\pi-\arctan \frac{4}{3}=2.21$ (2d.p.) (or 126.87°) $\alpha=5(\cos 2.21+\mathrm{j} \sin 2.21)$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Accept 2.2 or 127°
		$\mathrm{B} 1(\mathrm{ft})$ [3]	Accept degrees and (r, θ) form s.c. lose 1 mark only if α^{2} used throughout (ii)
3(i)	$\begin{aligned} & 3^{3}+3^{2}-7 \times 3-15=0 \\ & z^{3}+z^{2}-7 z-15=(z-3)\left(z^{2}+4 z+5\right) \end{aligned}$	B1 M1 A1	Showing 3 satisfies the equation (may be implied) Valid attempt to factorise Correct quadratic factor
	$z=\frac{-4 \pm \sqrt{16-20}}{2}=-2 \pm \mathrm{j}$	M1	Use of quadratic formula, or other valid method
	So other roots are $-2+\mathrm{j}$ and $-2-\mathrm{j}$	A1 [5]	One mark for both c.a.o.
3(ii)		B2 [2]	Minus 1 for each error ft provided conjugate imaginary roots

4	$\begin{aligned} & \sum_{r=1}^{n}[(r+1)(r-2)]=\sum_{r=1}^{n} r^{2}-\sum_{r=1}^{n} r-2 n \\ & =\frac{1}{6} n(n+1)(2 n+1)-\frac{1}{2} n(n+1)-2 n \\ & =\frac{1}{6} n[(n+1)(2 n+1)-3(n+1)-12] \\ & =\frac{1}{6} n\left(2 n^{2}+3 n+1-3 n-3-12\right) \\ & =\frac{1}{6} n\left(2 n^{2}-14\right) \\ & =\frac{1}{3} n\left(n^{2}-7\right) \end{aligned}$	M1 A2 M1 M1 A1 [6]	Attempt to split sum up Minus one each error Attempt to factorise Collecting terms All correct
	$p=-3, r=7$ $q=\alpha \beta+\alpha \gamma+\beta \gamma$ $\begin{aligned} & \alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma) \\ & =(\alpha+\beta+\gamma)^{2}-2 q \\ & \Rightarrow 13=3^{2}-2 q \\ & \Rightarrow q=-2 \end{aligned}$	B2 [2] B1 M1 A1 [3]	One mark for each s.c. B1 if b and d used instead of p and r Attempt to find q using $\alpha^{2}+\beta^{2}+\gamma^{2}$ and $\alpha+\beta+\gamma$, but not $\alpha \beta \gamma$ c.a.o.
6(i)	$\begin{aligned} & a_{2}=7 \times 7-3=46 \\ & a_{3}=7 \times 46-3=319 \end{aligned}$	M1 A1 [2]	Use of inductive definition c.a.o.
6(ii)	When $n=1, \frac{13 \times 7^{0}+1}{2}=7$, so true for $n=1$ Assume true for $n=k$ $\begin{aligned} & a_{k}=\frac{13 \times 7^{k-1}+1}{2} \\ & \Rightarrow a_{k+1}=7 \times \frac{13 \times 7^{k-1}+1}{2}-3 \\ & =\frac{13 \times 7^{k}+7}{2}-3 \\ & =\frac{13 \times 7^{k}+7-6}{2} \\ & =\frac{13 \times 7^{k}+1}{2} \end{aligned}$ But this is the given result with $k+1$ replacing k. Therefore if it is true for k it is true for $k+1$. Since it is true for $k=1$, it is true for $k=1,2,3$ and so true for all positive integers.	B1 E1 M1 A1 E1 E1 [6]	Correct use of part (i) (may be implied) Assuming true for k Attempt to use $a_{k+1}=7 a_{k}-3$ Correct simplification Dependent on A1 and previous E1 Dependent on B1 and previous E1

9(i)	$(-3,-3)$	B1 [1]	
9(ii)	(x, x)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	
		[2]	
9(iii)	$\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$	B3 [3]	Minus 1 each error to min of 0
9(iv)	Rotation through $\frac{\pi}{2}$ anticlockwise about the origin	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ [2]	Rotation and angle (accept 90°) Centre and sense
9(v)	$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \times\left(\begin{array}{ll} 1 & 0 \\ 1 & 0 \end{array}\right)=\left(\begin{array}{cc} -1 & 0 \\ 1 & 0 \end{array}\right)$	M1 A1	Attempt to multiply using their \mathbf{T} in correct order c.a.o.
9(vi)	$\left(\begin{array}{cc} -1 & 0 \\ 1 & 0 \end{array}\right)\binom{x}{y}=\binom{-x}{x}$	$\begin{gathered} \text { M1 } \\ \mathrm{A} 1(\mathrm{ft}) \end{gathered}$	May be implied
	So (-x, x)		
	Line $y=-x$	A1	c.a.o. from correct matrix
		[3]	

1(a)	$\begin{aligned} \text { Area is } & \int_{0}^{\pi} \frac{1}{2} a^{2}(1-\cos 2 \theta)^{2} \mathrm{~d} \theta \\ & =\int_{0}^{\pi} \frac{1}{2} a^{2}\left(1-2 \cos 2 \theta+\frac{1}{2}(1+\cos 4 \theta)\right) \mathrm{d} \theta \\ & =\frac{1}{2} a^{2}\left[\frac{3}{2} \theta-\sin 2 \theta+\frac{1}{8} \sin 4 \theta\right]_{0}^{\pi} \\ & =\frac{3}{4} \pi a^{2} \end{aligned}$	M1 A1 B1 B1B1B1 ft A1 7	For $\int(1-\cos 2 \theta)^{2} \mathrm{~d} \theta$ Correct integral expression including limits (may be implied by later work) For $\cos ^{2} 2 \theta=\frac{1}{2}(1+\cos 4 \theta)$ Integrating $a+b \cos 2 \theta+c \cos 4 \theta$ [Max B2 if answer incorrect and no mark has previously been lost]
(b)(i)	$\begin{aligned} & \mathrm{f}^{\prime}(x)=\frac{1}{1+(\sqrt{3}+x)^{2}} \\ & \mathrm{f}^{\prime \prime}(x)=\frac{-2(\sqrt{3}+x)}{\left(1+(\sqrt{3}+x)^{2}\right)^{2}} \end{aligned}$	M1 A1 M1 A1 4	Applying $\frac{\mathrm{d}}{\mathrm{d} u} \arctan u=\frac{1}{1+u^{2}}$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sec ^{2} y}$ Applying chain (or quotient) rule
(ii)	$\begin{aligned} & \mathrm{f}(0)=\frac{1}{3} \pi \\ & \mathrm{f}^{\prime}(0)=\frac{1}{4}, \quad \mathrm{f}^{\prime \prime}(0)=-\frac{1}{8} \sqrt{3} \\ & \arctan (\sqrt{3}+x)=\frac{1}{3} \pi+\frac{1}{4} x-\frac{1}{16} \sqrt{3} x^{2}+\ldots \end{aligned}$	B1 M1 A1A1 ft 4	Stated; or appearing in series Accept 1.05 Evaluating $\mathrm{f}^{\prime}(0)$ or $\mathrm{f}^{\prime \prime}(0)$ For $\frac{1}{4} x$ and $-\frac{1}{16} \sqrt{3} x^{2}$ non-zero
(iii)	$\begin{aligned} & \int_{-h}^{h}\left(\frac{1}{3} \pi x+\frac{1}{4} x^{2}-\frac{1}{16} \sqrt{3} x^{3}+\ldots\right) \mathrm{d} x \\ & \quad=\left[\frac{1}{6} \pi x^{2}+\frac{1}{12} x^{3}-\frac{1}{64} \sqrt{3} x^{4}+\ldots\right]_{-h}^{h} \\ & \approx\left(\frac{1}{6} \pi h^{2}+\frac{1}{12} h^{3}-\frac{1}{64} \sqrt{3} h^{4}\right) \\ & \quad \begin{array}{l} \quad-\left(\frac{1}{6} \pi h^{2}-\frac{1}{12} h^{3}-\frac{1}{64} \sqrt{3} h^{4}\right) \end{array} \\ & \quad \frac{1}{6} h^{3} \quad \end{aligned}$	M1 A1 ft A1 ag	Integrating (award if x is missed) $\text { for } \frac{1}{12} x^{3}$ Allow ft from $a+\frac{1}{4} x+c x^{2}$ provided that $a \neq 0$ Condone a proof which neglects h^{4}

2(a)	4th roots of $16 \mathrm{j}=16 \mathrm{e}^{\frac{1}{2} \pi \mathrm{j}}$ are $r \mathrm{e}^{\mathrm{j} \theta}$ where $\begin{aligned} & r=2 \\ & \theta=\frac{1}{8} \pi \\ & \theta=\frac{\pi}{8}+\frac{2 k \pi}{4} \\ & \theta=-\frac{7}{8} \pi, \quad-\frac{3}{8} \pi, \quad \frac{5}{8} \pi \end{aligned}$	B1 B1 M1 A1 M1 A1 6	Accept $16^{\frac{1}{4}}$ Implied by at least two correct (ft) further values or stating $k=-2,-1,(0), 1$ Points at vertices of a square centre O or 3 correct points (ft) or 1 point in each quadrant
(b)(i)	$\begin{aligned} \left(1-2 \mathrm{e}^{\mathrm{j} \theta}\right)\left(1-2 \mathrm{e}^{-\mathrm{j} \theta}\right)= & 1-2 \mathrm{e}^{\mathrm{j} \theta}-2 \mathrm{e}^{-\mathrm{j} \theta}+4 \\ & =5-2\left(\mathrm{e}^{\mathrm{j} \theta}+\mathrm{e}^{-\mathrm{j} \theta}\right) \\ & =5-4 \cos \theta \end{aligned}$	M1 A1 A1 ag 3	For $\mathrm{e}^{\mathrm{j} \theta} \mathrm{e}^{-\mathrm{j} \theta}=1$
	OR $\begin{aligned} &(1-2 \cos \theta-2 \mathrm{j} \sin \theta)(1-2 \cos \theta+2 \mathrm{j} \sin \theta) \\ &=(1-2 \cos \theta)^{2}+4 \sin ^{2} \theta \\ &= 1-4 \cos \theta+4\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\ &=5-4 \cos \theta \end{aligned}$		
(ii)	$\begin{aligned} C+\mathrm{j} S & =2 \mathrm{e}^{\mathrm{j} \theta}+4 \mathrm{e}^{2 \mathrm{j} \theta}+8 \mathrm{e}^{3 \mathrm{j} \theta}+\ldots+2^{n} \mathrm{e}^{n \mathrm{j} \theta} \\ & =\frac{2 \mathrm{e}^{\mathrm{j} \theta}\left(1-\left(2 \mathrm{e}^{\mathrm{j} \theta}\right)^{n}\right)}{1-2 \mathrm{e}^{\mathrm{j} \theta}} \\ & =\frac{2 \mathrm{e}^{\mathrm{j} \theta}\left(1-2^{n} \mathrm{e}^{n j \theta}\right)\left(1-2 \mathrm{e}^{-\mathrm{j} \theta}\right)}{\left(1-2 \mathrm{e}^{\mathrm{j} \theta}\right)\left(1-2 \mathrm{e}^{-\mathrm{j} \theta}\right)} \\ & =\frac{2 \mathrm{e}^{\mathrm{j} \theta}-4-2^{n+1} \mathrm{e}^{(n+1) \mathrm{j} \theta}+2^{n+2} \mathrm{e}^{n \mathrm{j} \theta}}{5-4 \cos \theta} \\ C= & \frac{2 \cos \theta-4-2^{n+1} \cos (n+1) \theta+2^{n+2} \cos n \theta}{5-4 \cos \theta} \\ S= & \frac{2 \sin \theta-2^{n+1} \sin (n+1) \theta+2^{n+2} \sin n \theta}{5-4 \cos \theta} \end{aligned}$	M1 M1 A1 M1 A2 M1 A1 ag A1	Obtaining a geometric series Summing (M0 for sum to infinity) Give A1 for two correct terms in numerator Equating real (or imaginary) parts

3 (i)	Characteristic equation is $\begin{aligned} (7-\lambda)(-1-\lambda)+12 & =0 \\ \lambda^{2}-6 \lambda+5 & =0 \\ \lambda & =1,5 \end{aligned}$ When $\lambda=1,\left(\begin{array}{cc}7 & 3 \\ -4 & -1\end{array}\right)\binom{x}{y}=\binom{x}{y}$ $\begin{aligned} & 7 x+3 y=x \\ & -4 x-y=y \end{aligned}$ $y=-2 x$, eigenvector is $\binom{1}{-2}$ When $\lambda=5,\left(\begin{array}{cc}7 & 3 \\ -4 & -1\end{array}\right)\binom{x}{y}=5\binom{x}{y}$ $\begin{gathered} 7 x+3 y=5 x \\ -4 x-y=5 y \\ y=-\frac{2}{3} x, \text { eigenvector is }\binom{3}{-2} \end{gathered}$	M1 A1A1 M1 M1 A1 M1 A1	or $\left(\begin{array}{cc}6 & 3 \\ -4 & -2\end{array}\right)\binom{x}{y}=\binom{0}{0}$ can be awarded for either eigenvalue Equation relating x and y or any (non-zero) multiple SR $\quad(\mathbf{M}-\lambda \mathbf{I}) \mathbf{x}=\lambda \mathbf{x}$ can earn M1A1A1M0M1A0M1A0
(ii)	$\begin{aligned} & \mathbf{P}=\left(\begin{array}{cc} 1 & 3 \\ -2 & -2 \end{array}\right) \\ & \mathbf{D}=\left(\begin{array}{ll} 1 & 0 \\ 0 & 5 \end{array}\right) \end{aligned}$	B1 ft B1 ft	$B 0$ if \mathbf{P} is singular For B2, the order must be consistent

(iii)	$\begin{aligned} & \mathbf{M}=\mathbf{P} \mathbf{D} \mathbf{P}^{-1} \\ & \mathbf{M}^{n}=\mathbf{P} \mathbf{D}^{n} \mathbf{P}^{-1} \\ &=\mathbf{P}\left(\begin{array}{cc} 1 & 0 \\ 0 & 5^{n} \end{array}\right) \mathbf{P}^{-1} \\ &=\left(\begin{array}{cc} 1 & 3 \\ -2 & -2 \end{array}\right)\left(\begin{array}{cc} 1 & 0 \\ 0 & 5^{n} \end{array}\right) \frac{1}{4}\left(\begin{array}{cc} -2 & -3 \\ 2 & 1 \end{array}\right) \\ &=\left(\begin{array}{cc} 1 & 3 \times 5^{n} \\ -2 & -2 \times 5^{n} \end{array}\right) \frac{1}{4}\left(\begin{array}{cc} -2 & -3 \\ 2 & 1 \end{array}\right) \\ &=\frac{1}{4}\left(\begin{array}{cc} -2+6 \times 5^{n} & -3+3 \times 5^{n} \\ 4-4 \times 5^{n} & 6-2 \times 5^{n} \end{array}\right) \\ & a=-\frac{1}{2}+\frac{3}{2} \times 5^{n} \\ & c=1-5^{n} \quad b=-\frac{3}{4}+\frac{3}{4} \times 5^{n} \\ & d=\frac{3}{2}-\frac{1}{2} \times 5^{n} \end{aligned}$	M1 M1 A1 ft B1 ft M1 A1 ag A2	May be implied Dependent on M1M1 For \mathbf{P}^{-1} or $\left(\begin{array}{cc}1 & 3 \\ -2 & -2\end{array}\right) \frac{1}{4}\left(\begin{array}{cc}-2 & -3 \\ 2 \times 5^{n} & 5^{n}\end{array}\right)$ Obtaining at least one element in a product of three matrices Give A1 for one of b, c, d correct SR If $\mathbf{M}^{n}=\mathbf{P}^{-1} \mathbf{D}^{n} \mathbf{P}$ is used, max marks are M0M1A0B1M1A0A1 (d should be correct) $S R$ If their \mathbf{P} is singular, max marks are M1M1A1B0M0

4 (i)	$\begin{gathered} \frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)=k \\ \mathrm{e}^{2 x}-2 k \mathrm{e}^{x}+1=0 \\ \mathrm{e}^{x}=\frac{2 k \pm \sqrt{4 k^{2}-4}}{2}=k \pm \sqrt{k^{2}-1} \\ x=\ln \left(k+\sqrt{k^{2}-1}\right) \text { or } \ln \left(k-\sqrt{k^{2}-1}\right) \\ \left(k+\sqrt{k^{2}-1}\right)\left(k-\sqrt{k^{2}-1}\right)=k^{2}-\left(k^{2}-1\right)=1 \\ \ln \left(k-\sqrt{k^{2}-1}\right)=\ln \left(\frac{1}{k+\sqrt{k^{2}-1}}\right)=-\ln \left(k+\sqrt{k^{2}-1}\right) \\ x= \pm \ln \left(k+\sqrt{k^{2}-1}\right) \end{gathered}$	M1 M1 A1 M1 A1 ag 5	or $\cosh x+\sinh x=\mathrm{e}^{x}$ or $k \pm \sqrt{k^{2}-1}=\mathrm{e}^{x}$ One value sufficient or $\cosh x$ is an even function (or equivalent)
(ii)	$\begin{aligned} \int_{1}^{2} \frac{1}{\sqrt{4 x^{2}-1}} \mathrm{~d} x & =\left[\frac{1}{2} \operatorname{arcosh} 2 x\right]_{1}^{2} \\ & =\frac{1}{2}(\operatorname{arcosh} 4-\operatorname{arcosh} 2) \\ & =\frac{1}{2}(\ln (4+\sqrt{15})-\ln (2+\sqrt{3})) \end{aligned}$	M1 A1 A1 M1 A1 5	For arcosh or $\ln \left(\lambda x+\sqrt{\lambda^{2} x^{2}-\ldots}\right)$ or any cosh substitution For arcosh $2 x$ or $2 x=\cosh u$ or $\ln \left(2 x+\sqrt{4 x^{2}-1}\right)$ or $\ln \left(x+\sqrt{x^{2}-\frac{1}{4}}\right)$ For $\frac{1}{2}$ or $\int \frac{1}{2} \mathrm{~d} u$ Exact numerical logarithmic form
(iii)	$\begin{aligned} 6 \sinh x & -2 \sinh x \cosh x=0 \\ \cosh x & =3 \quad(\text { or } \sinh x=0) \\ x & =0 \\ x & = \pm \ln (3+\sqrt{8}) \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { M1 } & \\ \text { B1 } & \\ \text { A1 } & \\ \hline \end{array}$	Obtaining a value for $\cosh x$ or $x=\ln (3 \pm \sqrt{8})$
	$\begin{aligned} \text { OR } & \mathrm{e}^{4 x}-6 \mathrm{e}^{3 x}+6 \mathrm{e}^{x}-1=0 \\ & \left(\mathrm{e}^{2 x}-1\right)\left(\mathrm{e}^{2 x}-6 \mathrm{e}^{x}+1\right)=0 \\ & x=0 \\ & x=\ln (3 \pm \sqrt{8}) \end{aligned}$		or $\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)\left(\mathrm{e}^{x}+\mathrm{e}^{-x}-6\right)=0$
(iv)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=6 \cosh x-2 \cosh 2 x$ If $\frac{\mathrm{d} y}{\mathrm{~d} x}=5$ then $6 \cosh x-2\left(2 \cosh ^{2} x-1\right)=5$ $4 \cosh ^{2} x-6 \cosh x+3=0$ Discriminant $D=6^{2}-4 \times 4 \times 3=-12$ Since $D<0$ there are no solutions	B1 M1 M1 A1 4	Using $\cosh 2 x=2 \cosh ^{2} x-1$ Considering D, or completing square, or considering turning point

$|$| OR Gradient $g=6 \cosh x-2 \cosh 2 x$ B1
 $g^{\prime}=6 \sinh x-4 \sinh 2 x=2 \sinh x(3-4 \cosh x)$
 $=0$ when $x=0$ (only) M1
 $g^{\prime \prime}=6 \cosh x-8 \cosh 2 x=-2$ when $x=0$
 Max value $g=4$ when $x=0$ A1
 So g is never equal to 5 A1$\quad\left[\begin{array}{l}\text { Final A1 requires a complete } \\ \text { proof showing this is the only } \\ \text { turning point }\end{array}\right.$ |
| :---: | :---: |

5 (i)	$\lambda=-1$ $\lambda=0$ $\lambda=1$ cusp loop	B1B1B1 B1B1 5	Two different features (cusp, loop, asymptote) correctly identified
(ii)	$x=1$	B1	
(iii)	Intersects itself when $y=0$ $\begin{aligned} & t=(\pm) \sqrt{\lambda} \\ & \left(\frac{\lambda}{1+\lambda}, 0\right) \end{aligned}$	M1 A1 A1 3	
(iv)	$\begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} t} & =3 t^{2}-\lambda=0 \\ t & = \pm \sqrt{\frac{\lambda}{3}} \\ x & =\frac{\lambda / 3}{1+\lambda / 3}=\frac{\lambda}{3+\lambda} \\ y & = \pm\left(\left(\frac{\lambda}{3}\right)^{\frac{3}{2}}-\lambda\left(\frac{\lambda}{3}\right)^{\frac{1}{2}}\right) \\ & = \pm \lambda^{\frac{3}{2}}\left(\frac{1}{3 \sqrt{3}}-\frac{1}{\sqrt{3}}\right)= \pm \lambda^{\frac{3}{2}}\left(-\frac{2}{3 \sqrt{3}}\right) \\ & = \pm \sqrt{\frac{4 \lambda^{3}}{27}} \end{aligned}$	M1 A1 ag M1 A1 ag	One value sufficient
(v)	From asymptote, $a=8$ From intersection point, $\frac{a \lambda}{1+\lambda}=2$ $\lambda=\frac{1}{3}$ From maximum point, $b \sqrt{\frac{4 \lambda^{3}}{27}}=2$ $b=27$	B1 M1 A1 M1 A1 5	

1(i) $\alpha^{2}+2 \alpha+1=0$	M1	Auxiliary equation
$\alpha=-1$ (repeated)	A1	
CF $y=(A+B t) \mathrm{e}^{-t}$	F1	CF for their roots
PI $y=a$	B1	Constant PI
in DE $\Rightarrow y=2$	B1	Pl correct
$y=2+(A+B t) \mathrm{e}^{-t}$	F1	Their PI + CF (with two arbitrary constants)
$t=0, y=0 \Rightarrow 0=2+A \Rightarrow A=-2$	M1	Condition on y
$\dot{y}=(B-A-B t) \mathrm{e}^{-t}$	M1	Differentiate (product rule)
$t=0, \dot{y}=0 \Rightarrow 0=B-A \Rightarrow B=-2$	M1	Condition on \dot{y}
$y=2-(2+2 t) \mathrm{e}^{-t}$	A1	

(ii) Both terms in CF hence will give zero if substituted in

LHS
PI $y=b t^{2} \mathrm{e}^{-t}$
$\dot{y}=\left(2 b t-b t^{2}\right) \mathrm{e}^{-t}, \ddot{y}=\left(2 b-4 b t+b t^{2}\right) \mathrm{e}^{-t}$
in $\mathrm{DE} \Rightarrow\left(2 b-4 b t+b t^{2}+2\left(2 b t-b t^{2}\right)+b t^{2}\right) \mathrm{e}^{-t}=\mathrm{e}^{-t}$
$\Rightarrow b=\frac{1}{2}$
$y=\left(C+D t+\frac{1}{2} t^{2}\right) \mathrm{e}^{-t}$
$t=0, y=0 \Rightarrow 0=C$
$\dot{y}=\left(D+t-C-D t-\frac{1}{2} t^{2}\right) \mathrm{e}^{-t}$
$t=0, \dot{y}=0 \Rightarrow 0=D-C \Rightarrow D=0$
$y=\frac{1}{2} t^{2} \mathrm{e}^{-t}$
(iii) $t>0 \Rightarrow \frac{1}{2} t^{2}>0$ and $\mathrm{e}^{-t}>0 \Rightarrow y>0$
$\dot{y}=\left(t-\frac{1}{2} t^{2}\right) \mathrm{e}^{-t}$ so $\dot{y}=0 \Leftrightarrow t-\frac{1}{2} t^{2}=0 \Leftrightarrow t=0$ or 2
Maximum at $t=2, y=2 \mathrm{e}^{-2}$
Cls,

E1
B1

A1

M1
A1
F1 Their PI + CF (with two arbitrary constants)
M1 Condition on y

M1 Condition on \dot{y}
Differentiate twice and substitute
1 Pl correct

E1

M1 Solve $\dot{y}=0$
A1 Maximum value of y
B1 Starts at origin
B1 Maximum at their value of y
B1 $y>0$

$$
\begin{aligned}
& { }^{\mathbf{2}(\mathbf{i}} \frac{\mathrm{d} v}{\mathrm{~d} t}+\frac{3}{1+t} v=g-\frac{3}{1+t} \quad \text { M1 Rearrange } \\
& I=\exp \left(\int \frac{3}{1+t} \mathrm{~d} t\right)=\mathrm{e}^{3 \ln (1+t)}=(1+t)^{3} \\
& \text { M1 Attempt integrating factor } \\
& \text { A1 Correct } \\
& \text { A1 Simplified } \\
& (1+t)^{3} \frac{\mathrm{~d} v}{\mathrm{~d} t}+3(1+t)^{2} v=g(1+t)^{3}-3(1+t)^{2} \quad \text { F1 Multiply DE by their } / \\
& \frac{\mathrm{d}}{\mathrm{~d} t}\left((1+t)^{3} v\right)=g(1+t)^{3}-3(1+t)^{2} \\
& (1+t)^{3} v=\int\left(g(1+t)^{3}-3(1+t)^{2}\right) \mathrm{d} x \\
& =\frac{1}{4} g(1+t)^{4}-(1+t)^{3}+A \\
& v=\frac{1}{4} g(1+t)-1+A(1+t)^{-3} \\
& t=0, v=0 \Rightarrow 0=\frac{1}{4} g-1+A \\
& v=\frac{1}{4} g(1+t)-1+\left(1-\frac{1}{4} g\right)(1+t)^{-3} \\
& \text { M1 Integrate } \\
& \text { A1 RHS } \\
& \text { F1 Divide by their I (must also divide constant) } \\
& \text { M1 Use condition } \\
& \text { E1 Convincingly shown }
\end{aligned}
$$

(ii) $\quad(1+t) \frac{\mathrm{d} v}{\mathrm{~d} t}+5 v=(1+t) g$

M1 Rearrange
$\frac{\mathrm{d} v}{\mathrm{~d} t}+\frac{5}{1+t} v=g$
$I=\exp \left(\int \frac{5}{1+t} \mathrm{~d} t\right)=\mathrm{e}^{5 \ln (1+t)}=(1+t)^{5}$
M1 Attempt integrating factor
$(1+t)^{5} \frac{\mathrm{~d} v}{\mathrm{~d} t}+5(1+t)^{4} v=g(1+t)^{5}$
A1 Simplified
$\frac{\mathrm{d}}{\mathrm{d} t}\left((1+t)^{5} v\right)=g(1+t)^{5}$
$(1+t)^{5} v=\int g(1+t)^{5} \mathrm{~d} x$
$=\frac{1}{6} g(1+t)^{6}+B$
$v=\frac{1}{6} g(1+t)+B(1+t)^{-5}$
F1 Multiply DE by their /
$t=0, v=0 \Rightarrow 0=\frac{1}{6} g+B$
M1 Use condition
$v=\frac{1}{6} g\left(1+t-(1+t)^{-5}\right)$
F1 Follow a non-trivial GS
(iii) First model: $\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{1}{4} g-3\left(1-\frac{1}{4} g\right)(1+t)^{-4}$

As $t \rightarrow \infty,(1+t)^{-4} \rightarrow 0$
Hence acceleration tends to $\frac{1}{4} g$
Second model $\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{1}{6} g\left(1+5(1+t)^{-6}\right)$
Hence acceleration tends to $\frac{1}{6} g$
M1 Find acceleration
B1
A1
M1 Find acceleration
A1

3(i)	$\begin{aligned} & P=A \mathrm{e}^{0.5 t} \\ & t=0, P=2000 \Rightarrow A=2000 \\ & P=2000 \mathrm{e}^{0.5 t} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Any valid method Use condition
(ii)	$\begin{aligned} & \text { CF } P=A \mathrm{e}^{0.5 t} \\ & \text { PI } P=a \cos 2 t+b \sin 2 t \\ & \dot{P}=-2 a \sin 2 t+2 b \cos 2 t \\ & -2 a \sin 2 t+2 b \cos 2 t=0.5(a \cos 2 t+b \sin 2 t)+170 \sin 2 t \\ & -2 a=0.5 b+170 \\ & 2 b=0.5 a \\ & \text { solving } \Rightarrow a=-80, b=-20 \\ & \text { GS } P=A \mathrm{e}^{0.5 t}-80 \cos 2 t-20 \sin 2 t \end{aligned}$	$\begin{aligned} & \mathrm{F} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~F} 1 \end{aligned}$	Correct or follows (i) Differentiate Substitute Compare coefficients Solve Their PI + CF (with one arbitrary constant)
(iii)	$\begin{aligned} t & =0, P=2000 \Rightarrow A=2080 \\ P & =2080 \mathrm{e}^{0.5 t}-80 \cos 2 t-20 \sin 2 t \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { F1 } \end{aligned}$	Use condition Follow a non-trivial GS
(iv)	t P \dot{P} 0 2000 1000 0.1 2100 1082.58 0.2 2208	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { Use of algorithm } \\ & 2100 \\ & 1082.5 \ldots \\ & 2208 \end{aligned}$
	(A) Limiting value $\Rightarrow \dot{P}=0$ $\Rightarrow P\left(1-\frac{P}{12000}\right)^{\frac{1}{2}}=0$ (as limit non-zero) limiting value $=12000$	M1 M1 A1	Set $\dot{P}=0$ Solve
	(B) Growth rate max when $\begin{aligned} & \mathrm{f}(P)=P\left(1-\frac{P}{12000}\right)^{\frac{1}{2}} \max \\ & \mathrm{f}^{\prime}(P)=\left(1-\frac{P}{12000}\right)^{\frac{1}{2}}-\frac{1}{2 \times 12000} P\left(1-\frac{P}{12000}\right)^{-\frac{1}{2}} \\ & \mathrm{f}^{\prime}(P)=0 \Leftrightarrow\left(1-\frac{P}{12000}\right)-\frac{1}{2 \times 12000} P=0 \\ & \Leftrightarrow P=8000 \end{aligned}$	M1 M1 M1 A1	Recognise expression to maximise Reasonable attempt at derivative Set derivative to zero

Mechanics 1

Q 1		Mark	Comment	Sub
(i)		B1	Acc and dec shown as straight lines	

Q 3		Mark	Comment	Sub
(i)	$\begin{aligned} & m \times 9.8=58.8 \\ & \text { so } m=6 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$	$T=m g$. Condone sign error. cao. CWO.	2
(ii)	$\begin{aligned} & \text { Resolve } \rightarrow 58.8 \cos 40-F=0 \\ & F=45.043 \ldots \text { so } 45.0 \mathrm{~N} \text { (3 s. f.) } \end{aligned}$	M1 B1 A1	Resolving their tension. Accept $s \leftrightarrow c$. Condone sign errors but not extra forces. (their T) $\times \cos 40$ (or equivalent) seen Accept ± 45 only.	3
(iii)	Resolve $\uparrow \quad R+58.8 \sin 40-15 \times 9.8=0$ $R=109.204 \ldots \text { so } 109 \mathrm{~N}(3 \mathrm{s.} \text { f. })$	M1 A1 A1	Resolving their tension. All forces present. No extra forces. Accept $s \leftrightarrow c$. Condone errors in sign. All correct cao	3
		8		
Q 4		Mark	Comment	Sub
(i)	Resultant is $\left(\begin{array}{l}4 \\ 1 \\ 2\end{array}\right)+\left(\begin{array}{c}-6 \\ 2 \\ 4\end{array}\right)=\left(\begin{array}{c}-2 \\ 3 \\ 6\end{array}\right)$ Magnitude is $\sqrt{(-2)^{2}+3^{2}+6^{2}}=\sqrt{49}=7 \mathrm{~N}$	M1 A1 M1 F1	Adding the vectors. Condone spurious notation. Vector must be in proper form (penalise only once in the paper). Accept clear components. Pythagoras on their 3 component vector. Allow e.g. -2^{2} for $(-2)^{2}$ even if evaluated as - 4 . FT their resultant.	
(ii)	$\mathbf{F}+2 \mathrm{G}+\mathbf{H}=\mathbf{0}$	M1	Either $\mathbf{F}+\mathbf{2 G}+\mathbf{H}=\mathbf{0}$ or $\mathbf{F}+\mathbf{2 G}=\mathbf{H}$	
	$\begin{aligned} & \text { So } \mathbf{H}=-2 \mathbf{G}-\mathbf{F}=-\left(\begin{array}{c} -12 \\ 4 \\ 8 \end{array}\right)-\left(\begin{array}{l} 4 \\ 1 \\ 2 \end{array}\right) \\ & =\left(\begin{array}{c} 8 \\ -5 \\ -10 \end{array}\right) \end{aligned}$	A1 A1	Must see attempt at $\mathbf{H}=-2 \mathbf{G}-\mathbf{F}$ cao. Vector must be in proper form (penalise only once in the paper).	
		7		

Q 5		Mark	Comment	Sub
	$\begin{aligned} & a=12-6 t \\ & a=0 \text { gives } t=2 \\ & x=\int\left(2+12 t-3 t^{2}\right) \mathrm{d} x \\ & 2 t+6 t^{2}-t^{3}+C \\ & x=3 \text { when } t=0 \\ & \text { so } 3=C \text { and } \\ & x=2 t+6 t^{2}-t^{3}+3 \\ & x(2)=4+24-8+3=23 \mathrm{~m} \end{aligned}$	M1 A1 F1 M1 A1 M1 A1 B1	Differentiation, at least one term correct. Follow their a Integration indefinite or definite, at least one term correct. Correct. Need not be simplified. Allow as definite integral. Ignore C or limits Allow $x= \pm 3$ or argue it is \int_{0}^{2} from A then ± 3 Award if seen WWW or $x=2 t+6 t^{2}-t^{3}$ seen with +3 added later. FT their t and their x if obtained by integration but not if -3 obtained instead of +3 . [If 20 m seen WWW for displacement award SC6] [Award SC1 for position if constant acceleration used for displacement and then +3 applied]	8
		8		

\begin{tabular}{|c|c|c|c|c|}
\hline Q 6 \& \& Mark \& Comment \& Sub \\
\hline (i) \& \[
\begin{aligned}
\& 3.5=0.5+1.5 T \\
\& \text { so } T=2 \mathrm{so} 2 \mathrm{~s} \\
\& s=\frac{3.5+0.5}{2} \times 2 \\
\& \text { so } s=4 \text { so } 4 \mathrm{~m}
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline \text { M1 } \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { F1 }
\end{aligned}
\] \& \begin{tabular}{l}
Suitable uvast, condone sign errors. cao \\
Suitable uvast, condone sign errors. \\
FT their \(T\). \\
[If \(s\) found first then it is cao. In this case when finding \(T\), FT their \(s\), if used.]
\end{tabular} \& \\
\hline \begin{tabular}{l}
(ii) \\
(A) \\
(B)
\end{tabular} \& \[
\begin{aligned}
\& \text { N2L } \downarrow: 80 \times 9.8-T=80 \times 1.5 \\
\& T=664 \text { so } 664 \mathrm{~N} \\
\& \text { N2L } \downarrow: 80 \times 9.8-T=80 \times(-1.5) \\
\& T=904 \text { so } 904 \mathrm{~N}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
B1 \\
A1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Use of N2L. Allow weight omitted and use of \(F=m g a\) Condone errors in sign but do not allow extra forces. weight correct (seen in (A) or (B)) cao \\
N2L with all forces and using \(F=m a\). Condone errors in sign but do not allow extra forces. \\
cao [Accept 904 N seen for M1 A1]
\end{tabular} \& 5 \\
\hline (iii) \& N2L \(\uparrow: 2500-80 \times 9.8-116=80 a\)
\[
a=20 \text { so } 20 \mathrm{~m} \mathrm{~s}^{-2} \text { upwards. }
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 } \\
\& \text { A1 }
\end{aligned}
\] \& \begin{tabular}{l}
Use of N2L with F = ma. Allow 1 force missing. No extra forces. Condone errors in sign. \\
\(\pm 20\), accept direction wrong or omitted upwards made clear (accept diagram)
\end{tabular} \& \\
\hline (iv) \& \begin{tabular}{l}
N2L \(\uparrow\) on equipment: \(80-10 \times 9.8=10 a\)
\[
a=-1.8
\] \\
N2L \(\uparrow\) \\
either \\
all: \(T-(80+10) \times 9.8-116=90 \times(-1.8)\) \\
or \\
on man: \(T-(80 \times 9.8)-116-80\) \\
\(=80 \times(-1.8)\) \\
\(T=836\) so 836 N
\end{tabular} \& M1
A1
M1

A1 \& | Use of N2L on equipment. All forces. $F=m a$. |
| :--- |
| No extra forces. Allow sign errors. |
| Allow ± 1.8 |
| N2L for system or for man alone. Forces correct (with no extras); accept sign errors; their ± 1.8 used |
| cao |
| [NB The answer 836 N is independent of the value taken for g and hence may be obtained if all weights are omitted.] | \&

\hline \& \& 17 \& \&

\hline
\end{tabular}

Q 7		Mark	Comment	Sub
(i)	Horiz $21 t=60$ $\text { so } \frac{20}{7} \text { s }(2.8571 \ldots)$ either $0=u-9.8 \times \frac{20}{7}$ or $-u=u-9.8 \times\left(\frac{40}{7}\right)$ or $40=u \times \frac{20}{7}-4.9\left(\frac{20}{7}\right)^{2}$ so $u=28$ so $28 \mathrm{~m} \mathrm{~s}^{-1}$	M1 A1 M1 E1	Use of horizontal components and $a=0$ or $s=v t-0.5 a t^{2}$ with $v=0$. Any form acceptable. Allow M1 A1 for answer seen WW. [If $s=u t+0.5 a t^{2}$ and $u=0$ used without justification award M1 A0] [If $u=28$ assumed to find time then award SC1] Use of $v=u+a t$ (or $v^{2}=u^{2}+2 a s$) with $v=0$. or Use of $v=u+$ at with $v=-u$ and appropriate t. or Use of $s=u t+0.5 a t^{2}$ with $s=40$ and appropriate t Condone sign errors and, where appropriate, $u \leftrightarrow v$. Accept signs not clear but not errors. Enough working must be given for 28 to be properly shown. [$\mathrm{NB} u=28$ may be found first and used to find time]	
(ii)	$y=28 t-0.5 \times 9.8 t^{2}$	E1	Clear \& convincing use of $g=-9.8$ in $s=u t+0.5 a t^{2}$ or $s=v t-0.5 a t^{2}$ NB: AG	
(iii)	Start from same height with same (zero) vertical speed at same time, same acceleration Distance apart is $0.75 \times 21 t=15.75 t$	$\begin{aligned} & \text { E1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	For two of these reasons $0.75 \times 21 t$ seen or $21 t$ and $5.25 t$ both seen with intention to subtract. Need simplification - LHS alone insufficient. CWO.	
(iv) (A)	either Time is $\frac{20}{7} \mathbf{s}$ by symmetry so $15.75 \times \frac{20}{7}=45$ so 45 m or Hit ground at same time. By symmetry one travels 60 m so the other travels 15 m in this time ($\frac{1}{4}$ speed) so 45 m .	B1 B1 B1 B1	Symmetry or uvast FT their (iii) with $t=\frac{20}{7}$ [SC1 if 90 m seen]	2
(B)	see next page			

Q7	continued			
(B)	either Time to fall is $40-10=0.5 \times 9.8 \times t^{2}$ $t=2.47435 \ldots$ need 15.75×2.47435.. $=38.971$.. so 39.0 (3sf) or Need time so $10=28 t-4.9 t^{2}$ $4.9 t^{2}-28 t+10=0$ so $t=\frac{28 \pm \sqrt{28^{2}-4 \times 4.9 \times 10}}{9.8}$ so $0.382784 \ldots$ or $5.33150 \ldots$ Time required is $5.33150 \ldots-\frac{20}{7}=$ 2.47435.. need 15.75×2.47435.. $=38.971$.. so 39.0 (3sf)	M1 A1 A1 A1 F1 M1 M1* A1 M1 F1	[SC1 if either and or methods mixed to give $\pm 30=28 t-4.9 t^{2}$ or $\left.\pm 10=4.9 t^{2}\right]$ Considering time from explosion with $u=0$. Condone sign errors. LHS. Allow ± 30 All correct cao FT their (iii) only. Equating $28 t-4.9 t^{2}= \pm 10$ Dep. Attempt to solve quadratic by a method that could give two roots. Larger root correct to at least 2 s . f. Both method marks may be implied from two correct roots alone (to at least 1 s . f.). [SC1 for either root seen WW] FT their (iii) only.	5
(v)	Horiz ($x=$) 21t Elim t between $x=21 t$ and $y=28 t-4.9 t^{2}$ so $y=28\left(\frac{x}{21}\right)-4.9\left(\frac{x}{21}\right)^{2}$ so $y=\frac{4 x}{3}-\frac{0.1 x^{2}}{9}=\frac{1}{90}\left(120 x-x^{2}\right)$	B1 M1 A1 E1	Intention must be clear, with some attempt made. t completely and correctly eliminated from their expression for x and correct y. Only accept wrong notation if subsequently explicitly given correct value e.g. $\frac{x^{2}}{21}$ seen as $\frac{x^{2}}{441}$. Some simplification must be shown. [SC2 for 3 points shown to be on the curve. Award more only if it is made clear that (a) trajectory is a parabola (b) 3 points define a parabola]	4
		19		

Mechanics 2

Q1		Mark	Comment	Sub
(a) (i)	either In direction of the force $I=F t=m v$ so $1500 \times 8=4000 \mathrm{v}$ giving $v=3$ so $3 \mathrm{~m} \mathrm{~s}^{-1}$ or N2L gives $a=\frac{1500}{4000}$ $v=0+\frac{1500}{4000} \times 8$ giving $v=3$ so $3 \mathrm{~m} \mathrm{~s}^{-1}$	M1 A1 A1 M1 A1 A1	Use of $F t=m v$ Appropriate use of N2L and uvast	3
(ii)	PCLM $12000=4000 V_{\mathrm{R}}+500 V_{\mathrm{S}}$ so $24=8 V_{\mathrm{R}}+V_{\mathrm{S}}$ NEL $\frac{V_{\mathrm{S}}-V_{\mathrm{R}}}{0-3}=-0.2$ so $V_{\mathrm{S}}-V_{\mathrm{R}}=0.6$ Solving $V_{\mathrm{R}}=2.6, \quad V_{\mathrm{S}}=3.2$ so ram $2.6 \mathrm{~m} \mathrm{~s}^{-1}$ and stone $3.2 \mathrm{~m} \mathrm{~s}^{-1}$	M1 A1 M1 A1 A1 F1	Appropriate use of PCLM Any form Appropriate use of NEL Any form Either value	6
(iii)	$\begin{aligned} & 0.5 \times 4000 \times 3^{2}-0.5 \times 4000 \times 2.6^{2}-0.5 \times 500 \times 3.2^{2} \\ & =1920 \mathrm{~J} \end{aligned}$	M1 B1 A1	Change in KE. Accept two terms Any relevant KE term correct (FT their speeds) cao	3
(b)	see over			

1		Mark	Comment	Sub
(b) (i)	$\begin{aligned} & 72 \mathbf{i} \mathbf{N ~ s} \\ & 8(9 \cos 60 \mathbf{i}+9 \sin 60 \mathbf{j}) \\ & =(36 \mathbf{i}+36 \sqrt{3} \mathbf{j}) \mathrm{Ns} \end{aligned}$	B1 E1	Neglect units but must include direction Evidence of use of $8 \mathrm{~kg}, 9 \mathrm{~m} \mathrm{~s}^{-1}$ and 60°	2
(ii)	$72 \mathbf{i}+(36 \mathbf{i}+36 \sqrt{3} \mathbf{j})=12(u \mathbf{i}+v \mathbf{j})$ Equating components $\begin{aligned} & 72+36=12 u \text { so } u=9 \\ & 36 \sqrt{3}=12 v \text { so } v=3 \sqrt{3} \end{aligned}$	M1 M1 A1	PCLM. Must be momenta both sides Both	3
(iii)	either $4 \times 18=8 \times 9$ so equal momenta so $60 / 2=30^{\circ}$ or $\arctan (3 \sqrt{3} / 9)=\arctan (1 / \sqrt{3})=30^{\circ}$	M1 A1 M1 A1	Must be clear statements cao FT their u and v. cao	2
		19		

Q 2		Mark	Comment	Sub
$\begin{aligned} & \text { (i) } \\ & \text { (A) } \end{aligned}$	$0.5 \times 80 \times 3^{2}=360 \mathrm{~J}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Use of KE	2
(B)	$\begin{aligned} & 360=F \times 12 \\ & \text { so } F=30 \text { so } 30 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~F} 1 \end{aligned}$	W = Fd attempted FT their WD	2
(ii)	Using the WE equation $\begin{aligned} & 0.5 \times 80 \times 10^{2}-0.5 \times 80 \times 4^{2} \\ & =80 \times 9.8 \times h-1600 \\ & h=6.32653 \ldots \text { so } 6.33(3 \mathrm{s.f.}) \end{aligned}$	M1 M1 B1 A1 A1	Attempt to use the WE equation. Condone one missing term $\Delta \mathrm{KE}$ attempted 1600 with correct sign All terms present and correct (neglect signs) cao	5
(iii) (A)	We have driving force $F=40$ so $200=40 v$ and $v=5$ so $5 \mathrm{~m} \mathrm{~s}^{-1}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	May be implied Use of $P=F v$	3
(B)	From N2L, force required to give accn is $\begin{aligned} & F-40=80 \times 2 \\ & \text { so } F=200 \\ & P=200 \times 0.5=100 \text { so } 100 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Use of N2L with all terms present (neglect signs) All terms correct correct use of $\mathrm{P}=\mathrm{Fv}$ cao	5
		17		

Q 3		Mark	Comment	Sub
(i)	$\begin{aligned} & \text { For } \bar{z} \\ & (2 \times 20 \times 100+2 \times 50 \times 120) \bar{z} \\ & =2 \times 2000 \times 50+2 \times 6000 \times 60 \\ & \text { so } \bar{z}=57.5 \\ & \text { and } \bar{y}=0 \end{aligned}$	M1 B1 B1 A1 B1	Method for c.m. Total mass of 16000 (or equivalent) At least one term correct NB This result is given below. NB This result is given below. Statement (or proof) required. N.B. If incorrect axes specified, award max 4/5	
(ii)	\bar{y} and \bar{z} are not changed with the folding For \bar{x} $100 \times 120 \times 0+2 \times 20 \times 100 \times 10=16000 \bar{x}$ so $\bar{x}=\frac{40000}{16000}=2.5$	E1 M1 B1 E1	A statement, calculation or diagram required. Method for the c.m. with the folding Use of the 10 Clearly shown	4
(iii)	Moments about AH. Normal reaction acts through this line c.w. $\begin{aligned} & P \times 120-72 \times(20-2.5)=0 \\ & \text { so } P=10.5 \end{aligned}$	M1 B1 B1 A1 A1	May be implied by diagram or statement 20-2.5 or equivalent All correct cao	5
(iv)	$\begin{aligned} & F_{\max }=\mu R \\ & \text { so } F_{\max }=72 \mu \end{aligned}$ For slipping before tipping we require $72 \mu<10.5$ so $\mu<0.1458333$... ($7 / 48$)	M1 A1 M1 A1	Allow $F=\mu R$ Must have clear indication that this is $\max \mathrm{F}$ Accept \leq. Accept their $F_{\text {max }}$ and R. cao	
		18		

Q 4		Mark	Comment	Sub
(i)	Centre of CE is 0.5 m from D a.c. moment about D $2200 \times 0.5=1100$ so 1100 N m c.w moments about D $R \times 2.75-1100=0$ $R=400 \text { so } 400 \mathrm{~N}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { E1 } \\ & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	Used below correctly Use of their 0.5 0.5 must be clearly established. Use of moments about D in an equation Use of 1100 and 2.75 or equiv	6
(ii)	c.w moments about D $\begin{aligned} & W \times 1.5-1100-440 \times 2.75=0 \\ & \text { so } W=1540 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { E1 } \end{aligned}$	Moments of all relevant forces attempted All correct Some working shown	3
$\begin{aligned} & \text { (iii) } \\ & (A) \end{aligned}$	c.w. moments about D $\begin{aligned} & 1.5 \times 1540 \cos 20-1.75 T \\ & -1100 \cos 20-400 \times 2.75 \cos 20=0 \end{aligned}$ $T=59.0663 \ldots \text { so } 59.1 \mathrm{~N}(3 \mathrm{s.} \text { f. })$	M1 M1 A1 B1 A1 A1	Moments equation. Allow one missing term; there must be some attempt at resolution. At least one res attempt with correct length Allow $\sin \leftrightarrow \cos$ Any two of the terms have cos 20 correctly used (or equiv) 1.75 T All correct cao Accept no direction given	6
$\begin{aligned} & \text { (iii) } \\ & (B) \end{aligned}$	either Angle required is at 70° to the normal to CE so $T_{1} \cos 70=59.0663$... so $T_{1}=172.698$... so 173 N (3 s.f.) or $400 \cos 20 \times 2.75+1100 \cos 20$ $=1540 \cos 20 \times 1.5-T \sin 20 \times 1.75$ $T=172.698 \ldots$ so 173 N (3s.f.)	B1 M1 A1 M1 A1 A1	FT (iii) (A) Moments attempted with all terms present All correct (neglect signs) $\mathrm{FT}(\mathrm{iii})(\mathrm{A})$	3
		18		

Mechanics 3

1(a)(i)	[Force] $=\mathrm{MLT}^{-2}$ [Density] $=\mathrm{ML}^{-3}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ 2	
(ii)	$\begin{aligned} {[E] } & =\frac{[F]\left[l_{0}\right]}{[A]\left[l-l_{0}\right]}=\frac{\left(\mathrm{MLT}^{-2}\right)(\mathrm{L})}{\left(\mathrm{L}^{2}\right)(\mathrm{L})} \\ & =\mathrm{ML}^{-1} \mathrm{~T}^{-2} \end{aligned}$	B1 M1 A1 3	for $[A]=\mathrm{L}^{2}$ Obtaining the dimensions of E
(iii)	$\begin{aligned} & \mathrm{T}=\mathrm{L}^{\alpha}\left(\mathrm{ML}^{-3}\right)^{\beta}\left(\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right)^{\gamma} \\ & -2 \gamma=1, \quad \beta+\gamma=0 \\ & \gamma=-\frac{1}{2} \\ & \beta=\frac{1}{2} \\ & \alpha-3 \beta-\gamma=0 \\ & \alpha=1 \end{aligned}$	$\begin{array}{\|lll} \text { B1 cao } & \\ \text { F1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ & 5 \end{array}$	Obtaining equation involving α, β, γ
(b)	$\begin{aligned} & A P=1.7 \mathrm{~m} \\ & F=T \cos \theta \\ & R+T \sin \theta=5 \times 9.8 \\ & \\ & T \cos \theta=0.4(49-T \sin \theta) \\ & \frac{8}{17} T=0.4\left(49-\frac{15}{17} T\right) \\ & T=23.8 \\ & T=k(1.7-1.5) \end{aligned}$ Stiffness is $119 \mathrm{~N} \mathrm{~m}^{-1}$	B1 M1 M1 M1 A1 A1 M1 A1 8	Resolving in any direction Resolving in another direction (M1 for resolving requires no force omitted, with attempt to resolve all appropriate forces) Using $F=0.4 R$ to obtain an equation involving just one force (or k) Correct equation Allow $T \cos 61.9$ etc or $R=28$ or $F=11.2$ May be implied Allow M1 for $T=\frac{\lambda}{1.5} \times 0.2$ If $R=49$ is assumed, max marks are B1M1M0M0A0A0M1A0

2(a)(i)	$\begin{aligned} & 0.1+0.01 \times 9.8=0.01 \times \frac{u^{2}}{0.55} \\ & \text { Speed is } 3.3 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	M1 A1 A1 3	Using acceleration $u^{2} / 0.55$
(ii)	$\begin{gathered} \frac{1}{2} m\left(v^{2}-u^{2}\right)=m g(2 \times 0.55-0.15) \\ \frac{1}{2}\left(v^{2}-3.3^{2}\right)=9.8 \times 0.95 \\ v^{2}=29.51 \\ R-m g \cos \theta=m \frac{v^{2}}{a} \\ R-0.01 \times 9.8 \times \frac{0.4}{0.55}=0.01 \times \frac{29.51}{0.55} \end{gathered}$ Normal reaction is 0.608 N	M1 A1 M1 A1 A1	Using conservation of energy $\text { (ft is } v^{2}=u^{2}+18.62 \text {) }$ Forces and acceleration towards centre $\left(\mathrm{ft} \text { is } \frac{u^{2}+22.54}{55}\right)$
(b)(i)	$\begin{aligned} & T=0.8 r \omega^{2} \\ & T=\frac{160}{2}(r-2) \\ & \omega^{2}=\frac{80(r-2)}{0.8 r}=\frac{100(r-2)}{r} \\ & \omega^{2}=100-\frac{200}{r}<100, \text { so } \omega<10 \end{aligned}$	B1 B1 E1 E1 4	
(ii)	$\begin{aligned} \mathrm{EE} & =\frac{1}{2} \times \frac{160}{2} \times(r-2)^{2}=40(r-2)^{2} \\ \mathrm{KE} & =\frac{1}{2} m(r \omega)^{2} \\ & =\frac{1}{2} \times 0.8 \times r^{2} \times \frac{100(r-2)}{r} \\ & =40 r(r-2) \end{aligned}$ Since $r>r-2, \quad 40 r(r-2)>40(r-2)^{2}$ i.e. $K E>E E$	B1 M1 A1 E1 4	Use of $\frac{1}{2} m v^{2}$ with $v=r \omega$ From fully correct working only
(iii)	$\begin{aligned} & \text { When } \omega=6, \quad 36=\frac{100(r-2)}{r} \\ & r=3.125 \\ & T=80(r-2)=80(3.125-2) \\ & \text { Tension is } 90 \mathrm{~N} \end{aligned}$	M1 M1 A1 cao 3	Obtaining r

3 (i)	$\begin{aligned} \frac{\mathrm{d} x}{\mathrm{~d} t} & =A \omega \cos \omega t-B \omega \sin \omega t \\ \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}} & =-A \omega^{2} \sin \omega t-B \omega^{2} \cos \omega t \\ & =-\omega^{2}(A \sin \omega t+B \cos \omega t)=-\omega^{2} x \end{aligned}$	B1 B1 ft E1 3	Must follow from their \dot{x} Fully correct completion SR For $\dot{x}=-A \omega \cos \omega t+B \omega \sin \omega t$ $\ddot{x}=-A \omega^{2} \sin \omega t-B \omega^{2} \cos \omega t$ award B0B1E0
(ii)	$\begin{aligned} & B=2 \\ & A \omega=-1.44 \\ & -B \omega^{2}=-0.18 \quad \text { or } \\ & -0.18=-\omega^{2}(2) \\ & \omega=0.3, \quad A=-4.8 \end{aligned}$	B1 M1 A1 cao M1 A1 cao A1 cao 6	Using $\frac{\mathrm{d} x}{\mathrm{~d} t}=-1.44$ when $t=0$ $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-0.18$ when $t=0 \quad($ or $x=2)$
(iii)	Period is $\frac{2 \pi}{\omega}=\frac{2 \pi}{0.3}=20.94=20.9 \mathrm{~s}$ (3 sf) Amplitude is $\begin{aligned} \sqrt{A^{2}+B^{2}} & =\sqrt{4.8^{2}+2^{2}} \\ & =5.2 \mathrm{~m} \end{aligned}$	E1 M1 A1 3	or $1.44^{2}=0.3^{2}\left(a^{2}-2^{2}\right)$
(iv)	$\begin{aligned} & x=-4.8 \sin 0.3 t+2 \cos 0.3 t \\ & v=-1.44 \cos 0.3 t-0.6 \sin 0.3 t \end{aligned}$ When $t=12, x=0.3306 \quad(v=1.56)$ When $t=24, x=-2.5929 \quad(v=-1.35)$ Distance travelled is $\begin{aligned} & (5.2-0.3306)+5.2+2.5929 \\ & =12.7 \mathrm{~m} \end{aligned}$	M1 A1 M1 M1 A1 5	Finding x when $t=12$ and $t=24$ Both displacements correct Considering change of direction Correct method for distance ft from their A, B, ω and amplitude: Third M1 requires the method to be comparable to the correct one A1A1 both require $\omega \approx 0.3, \quad A \neq 0, \quad B \neq 0$ Note ft from $A=+4.8$ is $x_{12}=-3.92 \quad(v<0) \quad x_{24}=5.03 \quad(v>0)$ Distance is $(5.2-3.92)+5.2+5.03$ $=11.5$

4 (i)	$\begin{aligned} & V=\int_{1}^{8} \pi\left(x^{-\frac{1}{3}}\right)^{2} \mathrm{~d} x \\ &= \pi\left[3 x^{\frac{1}{3}}\right]_{1}^{8}=3 \pi \\ & V \bar{x}=\int_{1}^{8} \pi x\left(x^{-\frac{1}{3}}\right)^{2} \mathrm{~d} x \\ &= \pi\left[\frac{3}{4} x^{\frac{4}{3}}\right]_{1}^{8}=\frac{45}{4} \pi \\ & \bar{x}=\frac{\frac{45}{4} \pi}{3 \pi} \\ &=\frac{15}{4}=3.75 \end{aligned}$	M1 A1 M1 A1 A M1 A1	π may be omitted throughout Dependent on previous M1M1
(ii)	$\begin{aligned} A & =\int_{1}^{8} x^{-\frac{1}{3}} \mathrm{~d} x \\ & =\left[\frac{3}{2} x^{\frac{2}{3}}\right]_{1}^{8}=\frac{9}{2}=4.5 \\ A \bar{x} & =\int_{1}^{8} x\left(x^{-\frac{1}{3}}\right) \mathrm{d} x \\ & =\left[\frac{3}{5} x^{\frac{5}{3}}\right]_{1}^{8}=\frac{93}{5}=18.6 \\ & \bar{x}=\frac{18.6}{4.5}=\frac{62}{15} \quad(\approx 4.13) \\ A & =\int_{1}^{8} \frac{1}{2}\left(x^{-\frac{1}{3}}\right)^{2} \mathrm{~d} x \\ & =\left[\frac{3}{2} x^{\frac{1}{3}}\right]_{1}^{8}=\frac{3}{2}=1.5 \\ & \bar{y}=\frac{1.5}{4.5}=\frac{1}{3} \end{aligned}$	M1 A1 M1 A1 A1 A1 M1 A A1 A1	If $\frac{1}{2}$ omitted, award M1A0A0

(iii)	(1) $\binom{\bar{x}}{\bar{y}}+(3.5)\binom{4.5}{0.25}=(4.5)\binom{62 / 15}{1 / 3}=\binom{18.6}{1.5}$ $\begin{aligned} & \bar{x}=2.85 \\ & \bar{y}=0.625 \end{aligned}$	M1 M1 A1 A1		Attempt formula for CM of composite body (one coordinate sufficient) Formulae for both coordinates; signs must now be correct, but areas (1 and 3.5) may be wrong. ft only if $1<\bar{x}<8$ ft only if $0.5<\bar{y}<1$ Other methods: M1A1 for \bar{x} M1A1 for \bar{y} (In each case, M1 requires a complete and correct method leading to a numerical value)

4766
 Statistics 1

Q1 (i)	$\begin{aligned} & \text { Mode }=7 \\ & \text { Median }=12.5 \end{aligned}$	$\begin{aligned} & \hline \text { B1 cao } \\ & \text { B1 cao } \end{aligned}$	2
(ii)	Positive or positively skewed	E1	1
(iii)	(A) Median (B) There is a large outlier or possible outlier of 58 / figure of 58 . Just 'outlier' on its own without reference to either 58 or large scores E0 Accept the large outlier affects the mean (more) E1	E1 cao E1indep	2
(iv)	There are $14.75 \times 28=413$ messages So total cost $=413 \times 10$ pence $=£ 41.30$	M1 for 14.75×28 but 413 can also imply the mark A1cao	2
		TOTAL	7
$\begin{aligned} & \text { Q2 } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \binom{4}{3} \times 3!=4 \times 6=24 \text { codes or }{ }^{4} \mathrm{P}_{3}=24\left(\mathrm{M} 2 \text { for }{ }^{4} \mathrm{P}_{3}\right) \\ & \text { Or } \quad 4 \times 3 \times 2=24 \end{aligned}$	M1 for 4 M1 for $\times 6$ A1	3
(ii)	$4^{3}=64$ codes	$\begin{aligned} & \hline \text { M1 for } 4^{3} \\ & \text { A1 cao } \end{aligned}$	2
		TOTAL	5
Q3 (i)	Probability $=0.3 \times 0.8=0.24$	M1 for 0.8 from (1-0.2) A1	2
(ii)	$\text { Either: } \begin{aligned} \mathrm{P}(A \cup B) & =\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B) \\ & =0.3+0.2-0.3 \times 0.2 \\ & =0.5-0.06=0.44 \end{aligned}$ $\text { Or: } \begin{aligned} \mathrm{P}(A \cup B) & =0.7 \times 0.2+0.3 \times 0.8+0.3 \times 0.2 \\ & =0.14+0.24+0.06=0.44 \end{aligned}$ Or: $\mathrm{P}(A \cup B)=1-\mathrm{P}\left(A^{\prime} \cap B^{\prime}\right)$ $=1-0.7 \times 0.8=1-0.56=0.44$	M1 for adding 0.3 and 0.2 M1 for subtraction of (0.3×0.2) A1 cao M1 either of first terms M1 for last term A1 M1 for 0.7×0.8 or 0.56 M1 for complete method as seen A1	3
(iii)	$\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}=\frac{0.06}{0.44}=\frac{6}{44}=0.136$	M1 for numerator of their 0.06 only M1 for 'their 0.44 ' in denominator A1 FT (must be valid p)	3
		TOTAL	8

Q4 (i)	$\mathrm{E}(X)=1 \times 0.2+2 \times 0.16+3 \times 0.128+4 \times 0.512=2.952$ Division by 4 or other spurious value at end loses A mark $\begin{aligned} & E\left(X^{2}\right)=1 \times 0.2+4 \times 0.16+9 \times 0.128+16 \times 0.512=10.184 \\ & \operatorname{Var}(X)=10.184-2.952^{2}=1.47 \text { (to } 3 \text { s.f.) } \end{aligned}$	M1 for $\Sigma r p$ (at least 3 terms correct) A1 cao M1 for $\Sigma x^{2} p$ at least 3 terms correct M1 for $E\left(X^{2}\right)-E(X)^{2}$ Provided ans >0 A1 FT their $E(X)$ but not a wrong $\mathrm{E}\left(\mathrm{X}^{2}\right)$	5
(ii)	Expected cost $=2.952 \times £ 45000=£ 133000$ (3sf)	B1 FT (no extra multiples / divisors introduced at this stage)	1
(iii)		G1 labelled linear scales G1 height of lines	2
		TOTAL	8
$\begin{array}{\|l} \hline \text { Q5 } \\ \text { (i) } \end{array}$	Impossible because the competition would have finished as soon as Sophie had won the first 2 matches	E1	1
(ii)	SS, JSS, JSJSS	B1, B1, B1 (-1 each error or omission)	3
(iii)	$\begin{aligned} & 0.7^{2}+0.3 \times 0.7^{2}+0.7 \times 0.3 \times 0.7^{2}=0.7399 \text { or } 0.74(0) \\ & \{0.49+0.147+0.1029=0.7399\} \end{aligned}$	M1 for any correct term M1 for any other correct term M1 for sum of all three correct terms A1 cao	4
		TOTAL	8

\begin{tabular}{|c|c|c|c|}
\hline \& Section B \& \& \\
\hline \begin{tabular}{l}
Q6 \\
(i)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { Mean }=\frac{180.6}{12}=15.05 \text { or } 15.1 \\
\& S_{x x}=3107.56-\frac{180.6^{2}}{12} \text { or } 3107.56-12(\text { their } 15.05)^{2}= \\
\& (389.53) \\
\& s=\sqrt{\frac{389.53}{11}}=5.95 \text { or better }
\end{aligned}
\] \\
NB Accept answers seen without working (from calculator)
\end{tabular} \& \begin{tabular}{l}
B1 for mean \\
M1 for attempt at \(S_{x x}\) \\
A1 cao
\end{tabular} \& 3 \\
\hline (ii) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \bar{x}+2 s=15.05+2 \times 5.95=26.95 \\
\& \bar{x}-2 s=15.05-2 \times 5.95=3.15
\end{aligned}
\] \\
So no outliers
\end{tabular} \& M1 for attempt at either M1 for both A1 for limits and conclusion FT their mean and sd \& 3 \\
\hline (iii) \& \begin{tabular}{l}
New mean \(=1.8 \times 15.05+32=59.1\) \\
New \(s=1.8 \times 5.95=10.7\)
\end{tabular} \& \begin{tabular}{l}
B1FT \\
M1 A1FT
\end{tabular} \& 3 \\
\hline (iv) \& \begin{tabular}{l}
New York has a higher mean or ' is on average' higher (oe) \\
New York has greater spread /range /variation or SD (oe)
\end{tabular} \& \begin{tabular}{l}
E1FT using \({ }^{0} \mathrm{~F}\) (\(\bar{x}\) dep) \\
E1FT using \({ }^{0} \mathrm{~F}\) (\(\sigma\) dep)
\end{tabular} \& 2 \\
\hline (v)

(vi) \& \begin{tabular}{l}

Upper bound	(70)	100	110	120	150	170	190
Cumulative frequency	(0)	6	14	24	35	45	48

NB all G marks dep on attempt at cumulative frequencies.

NB All G marks dep on attempt at cumulative frequencies

Line on graph at cf $=43.2$ (soi) or used 90th percentile $=166$

 \&

B1 for all correct cumulative frequencies (may be implied from graph). Ignore cf of 0 at this stage

G1 for linear scales (linear from 70 to 190) ignore $\mathrm{x}<70$

vertical: 0 to 50 but not beyond 100 (no inequality scales)

G1 for labels

G1 for points plotted as (UCB, their cf). Ignore $(70,0)$ at this stage. No mid point or LCB plots.

G1 for joining all of 'their points'(line or smooth curve) AND now including $(\mathbf{7 0 , 0})$

M1 for use of 43.2 A1FT but dep on 3rd G mark earned

 \&

5

2
\end{tabular}

\hline
\end{tabular}

Q7 (i)	$X \sim B(12,0.05)$ (A) $\quad \mathrm{P}(\boldsymbol{X}=1)=\binom{12}{1} \times 0.05 \times 0.95^{11}=0.3413$ OR from tables $\quad 0.8816-0.5404=0.3412$ (B) $\mathrm{P}(\boldsymbol{X} \geq 2)=1-0.8816=0.1184$ (C) Expected number $\mathrm{E}(\boldsymbol{X})=\boldsymbol{n p}=12 \times 0.05=0.6$	M1 0.05×0.95^{11} M1 $\binom{12}{1} \times p q^{11}(p+q)=$ 1 A1 cao OR: M1 for 0.8816 seen and M1 for subtraction of 0.5404 A1 cao M1 for $1-P(X \leq 1)$ A1 cao M1 for 12×0.05 A1 cao (= 0.6 seen)	3 2 2
(ii)	Either. $1-0.95^{n} \leq 1 / 3$ $0.95^{n} \geq 2 / 3$ $n \leq \log 2 / 3 / \log 0.95$, so $n \leq 7.90$ Maximum $n=7$ Or: (using tables with $p=0.05$): $n=7$ leads to $\mathrm{P}(X \geq 1)=1-\mathrm{P}(X=0)=1-0.6983=0.3017(<1 / 3)$ or 0.6983 (>2/3) $n=8$ leads to $P(X \geq 1)=1-P(X=0)=1-0.6634=0.3366(>1 / 3) \text { or }$ 0.6634 (< 2/3) Maximum $n=7$ (total accuracy needed for tables) Or: (using trial and improvement): $\begin{aligned} & 1-0.95^{7}=0.3017(<1 / 3) \text { or } 0.95^{7}=0.6983(>2 / 3) \\ & 1-0.95^{8}=0.3366(>1 / 3) \text { or } 0.96^{8}=0.6634(<2 / 3) \end{aligned}$ Maximum $n=7$ (3 sf accuracy for calculations) NOTE: $n=7$ unsupported scores SC1 only Let $X \sim \mathrm{~B}(60, p)$ Let $p=$ probability of a bag being faulty $\mathrm{H}_{0}: p=0.05$ $\mathrm{H}_{1}: p<0.05$ $P(X \leq 1)=0.95^{60}+60 \times 0.05 \times 0.95^{59}=0.1916>10 \%$ So not enough evidence to reject H_{0} Conclude that there is not enough evidence to indicate that the new process reduces the failure rate or scientist incorrect/ wrong.	M1 for equation in n M1 for use of logs A1 cao M1 indep M1 indep A1 cao dep on both M's M1indep (as above) M1indep (as above) A1 cao dep on both M's B1 for definition of p B1 for H_{0} B1 for H_{1} M1 A1 for probability M1 for comparison A1 E1	3 8
		TOTA	18

Question 1

(i)	x is independent, y is dependent since the values of x are chosen by the student but the values of y are dependent on x	B1 E1 dep E1 dep	3
(ii)	$\begin{aligned} & \bar{x}=2.5, \bar{y}=80.63 \\ & b=\frac{S x y}{S x x}=\frac{2530.3-30 \times 967.6 / 12}{90-30^{2} / 12}=\frac{111.3}{15}=7.42 \\ & \text { OR } b=\frac{2530.3 / 12-2.50 \times 80.63}{90 / 12-2.50^{2}}=\frac{9.275}{1.25}=7.42 \end{aligned}$ Hence least squares regression line is: $\begin{aligned} & y-\bar{y}=b(x-\bar{x}) \\ \Rightarrow & y-80.63=7.42(x-2.5) \\ \Rightarrow & y=7.42 x+62.08 \end{aligned}$	B1 for \bar{x} and \bar{y} used (SOI) M1 for attempt at gradient (b) A1 for 7.42 cao M1 for equation of line A1 FT ($b>0$) for complete equation	5
(iii)	(A) For $x=1.2$, predicted growth $=7.42 \times 1.2+62.08=71.0$ (B) For $x=4.3$, predicted growth $=7.42 \times 4.3+62.08=94.0$ Valid relevant comments relating to the predictions such as: Comment re interpolation/extrapolation Comment relating to the fact that $x=4.3$ is only just beyond the existing data. Comment relating to size of residuals near each predicted value (need not use word 'residual')	M1 for at least one prediction attempted. A1 for both answers (FT their equation if $b>0$) E1 (first comment) E1 (second comment)	4
(iv)	$\begin{aligned} & x=3 \Rightarrow \\ & \text { predicted } y=7.42 \times 3+62.08=84.3 \\ & \text { Residual }=80-84.3=-4.3 \end{aligned}$	M1 for prediction M1 for subtraction A1 FT ($b>0$)	3
(v)	This point is a long way from the regression line. The line may be valid for the range used in the experiment but then the relationship may break down for higher concentrations, or the relationship may be non linear.	E1 E1 for valid in range E1 for either 'may break down' or 'could be non linear' or other relevant comment	3
			18

Question 2

(i)	Binomial (94,0.1)	B1 for binomial B1 dep for parameters	2
(ii)	n is large and p is small	B1, B1 Allow appropriate numerical ranges	2
(iii)	$\lambda=94 \times 0.1=9.4$ (A) $\mathrm{P}(\mathrm{X}=4)=\mathrm{e}^{-9.4} \frac{9.4^{4}}{4!}=0.0269(3 \text { s.f. })$ $\text { or from tables }=0.0429-0.0160=0.0269 \text { cao }$ (B) Using tables: $\mathrm{P}(X \geq 4)=1-\mathrm{P}(X \leq 3)$ $=1-0.0160=0.9840 \text { cao }$	B1 for mean M1 for calculation or use of tables A1 M1 for attempt to find $\mathrm{P}(X \geq 4)$ A1 cao	5
(iv)	P (sufficient rooms throughout August) $=0.9840^{31}=0.6065$	$\begin{aligned} & \text { M1 } \\ & \text { A1 FT } \end{aligned}$	2
(v)	(A) $31 \times 94=2914$ Binomial $(2914,0.1)$ (B)Use Normal approx with $\begin{aligned} & \mu=n p=2914 \times 0.1=291.4 \\ & \sigma^{2}=n p q=2914 \times 0.1 \times 0.9=262.26 \\ & \mathrm{P}(X \leq 300.5)=\mathrm{P}\left(Z \leq \frac{300.5-291.4}{\sqrt{262.26}}\right) \\ & =\mathrm{P}(Z \leq 0.5619)=\Phi(0.5619)=0.7130 \end{aligned}$	B1 for binomial B1 dep, for parameters B1 B1 B1 for continuity corr. M1 for probability using correct tail A1 cao, (but FT wrong or omitted CC)	2
			18

Question 3

(i)	$\begin{aligned} & X \sim \mathrm{~N}\left(56,6.5^{2}\right) \\ & \mathrm{P}(52.5<X<57.5)=\mathrm{P}\left(\frac{52.5-56}{6.5}<Z<\frac{57.5-56}{6.5}\right) \\ & =\mathrm{P}(-0.538<Z<0.231) \\ & =\Phi(0.231)-(1-\Phi(0.538)) \\ & =0.5914-(1-0.7046) \\ & =0.5914-0.2954 \\ & =0.2960 \text { (4 s.f.) or } 0.296 \text { (to } 3 \text { s.f. }) \end{aligned}$	M1 for standardizing A1 for -0.538 and 0.231 M1 for prob. with tables and correct structure A1 CAO (min 3 s.f., to include use of difference column)	4
(ii)	$\begin{aligned} & \mathrm{P}(5 \text {-year-old }<62)=\mathrm{P}\left(Z<\frac{62-56}{6.5}\right) \\ & =\Phi(0.923)=0.8220 \\ & \mathrm{P}(\text { young adult }<62)=\mathrm{P}\left(Z<\frac{62-68}{10}\right) \\ & =\Phi(-0.6)=1-0.7257=0.2743 \\ & \mathrm{P}(\text { One over, one under }) \\ & =0.8220 \times 0.7257+0.1780 \times 0.2743 \\ & =0.645 \end{aligned}$	B1 for 0.8220 or 0.1780 B1 for 0.2743 or 0.7257 M1 for either product M1 for sum of both products A1 CAO	5
(iii)		G1 for shape G1 for means, shown explicitly or by scale G1 for lower max height in young adults G1 for greater variance in young adults	4
(iv)	$Y \sim N\left(82, \sigma^{2}\right)$ From tables $\Phi^{-1}(0.88)=1.175$ $\begin{aligned} & \frac{62-82}{\sigma}=-1.175 \\ & -20=-1.175 \sigma \\ & \sigma=17.0 \end{aligned}$	B1 for 1.175 seen M1 for equation in σ with z-value M1 for correct handling of LH tail A1 cao	4
			17

Question 4

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Q1 \\
(a)
\end{tabular} \& \(\mathrm{P}(T>t)=\frac{k}{t^{2}}, \quad t \geq 1\), \& \& \& \\
\hline (i) \& \[
\begin{aligned}
\& \mathrm{F}(t)=\mathrm{P}(T<t)=1-\mathrm{P}(T>t) \\
\& \therefore \mathrm{F}(t)=1-\frac{k}{t^{2}} \\
\& \mathrm{~F}(1)=0 \\
\& \therefore 1-\frac{k}{1^{2}}=0 \\
\& \therefore k=1
\end{aligned}
\] \& M1
M1
A1 \& \begin{tabular}{l}
Use of \(1-P(\ldots)\). \\
Beware: answer given.
\end{tabular} \& 3 \\
\hline (ii) \& \[
\begin{aligned}
\mathrm{f}(t) \& =\frac{\mathrm{d} \mathrm{~F}(t)}{\mathrm{d} t} \\
\& =\frac{2}{t^{3}}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Attempt to differentiate c's cdf. \\
(For \(t \geq 1\), but condone absence of this.) Ft c's cdf provided answer sensible.
\end{tabular} \& 2 \\
\hline (iii) \& \[
\begin{aligned}
\mu \& =\int_{1}^{\infty} t \mathrm{f}(t) \mathrm{d} t=\int_{1}^{\infty} \frac{2}{t^{2}} \mathrm{~d} t \\
\& =\left[\frac{-2}{t}\right]_{1}^{\infty} \\
\& =0-(-2)=2
\end{aligned}
\] \& M1 \& \begin{tabular}{l}
Correct form of integral for the mean, with correct limits. Ft c's pdf. \\
Correctly integrated. Ft c's pdf. \\
Correct use of limits leading to correct value. Ft c's pdf provided answer sensible.
\end{tabular} \& 3 \\
\hline (b) \& \begin{tabular}{l}
\(\mathrm{H}_{0}: m=5.4\) \\
\(\mathrm{H}_{1}: m \neq 5.4\) \\
where \(m\) is the population median time for the task.
\[
\begin{aligned}
\& W_{-}=1+2+4=7 \text { (or } W_{+}= \\
\& 3+5+6+7+8+9+10=48)
\end{aligned}
\] \\
Refer to tables of Wilcoxon single sample (/paired) statistic for \(n=10\). \\
Lower (or upper if 48 used) double-tailed \(5 \%\) point is 8 (or 47 if 48 used). \\
Result is significant. \\
Seems that the median time is no longer as previously thought.
\end{tabular} \& B1
B1

M1

M1
A1

B1

M1
A1
A1

A1 \& | Both hypotheses. Hypotheses in words only must include "population". |
| :--- |
| For adequate verbal definition. |
| for subtracting 5.4. |
| for ranks. |
| FT if ranks wrong. |
| No ft from here if wrong. |
| i.e. a 2-tail test. No ft from here if wrong. |
| ft only c's test statistic. |
| ft only c's test statistic. | \& 10

\hline
\end{tabular}

Q2	$X \sim \mathrm{~N}(260, \sigma=24)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	$\begin{aligned} & \mathrm{P}(X<300)=\mathrm{P}\left(Z<\frac{300-260}{24}=1.6667\right) \\ & =0.9522 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For standardising. Award once, here or elsewhere.	3
(ii)	$\begin{aligned} & Y \sim \mathrm{~N}(260 \times 0.6=156, \\ & 24^{2} \times 0.6^{2}=207.36 \\ & \mathrm{P}(Y>175)=\mathrm{P}\left(Z>\frac{175-156}{14.4}=1.3194\right) \\ & =1-0.9063=0.0937 \end{aligned}$	B1 B1 A1	Mean. Variance. Accept sd (= 14.4). c.a.o.	3
(iii)	$Y_{1}+Y_{2}+Y_{3}+Y_{4} \sim N(624$ 829.44) $\begin{aligned} & \mathrm{P}(\text { this }<600)=\mathrm{P}\left(Z<\frac{600-624}{28.8}=-0.8333\right) \\ & =1-0.7976=0.2024 \end{aligned}$	B1 B1 A1	Mean. Ft mean of (ii). Variance. Accept sd (= 28.8). Ft variance of (ii). c.a.o.	3
(iv)	Require w such that $\begin{aligned} & 0.975=\mathrm{P}(\text { above }>w)=\mathrm{P}\left(Z>\frac{w-624}{28.8}\right) \\ & =\mathrm{P}(Z>-1.96) \\ & \therefore w-624=28.8 \times-1.96 \Rightarrow w=567.5(52) \end{aligned}$	M1 B1 A1	Formulation of requirement. -1.96 Ft parameters of (iii).	3
(v)	$\begin{aligned} & \text { On } \sim \mathrm{N}(150, \sigma=18) \\ & X_{1}+X_{2}+X_{3}+O n_{1}+O n_{2} \sim \mathrm{~N}(1080, \\ & \mathrm{P}(\text { this }>1000)=\mathrm{P}\left(Z>\frac{1000-1080}{48.744}=-1.6412\right) \\ & =0.9496 \end{aligned}$	B1 B1 A1	Mean. Variance. Accept sd (= 48.744). c.a.o.	3
(vi)	Given $\quad \bar{x}=252.4 \quad s_{n-1}=24.6$ Cl is given by $\quad 252.4 \pm 2.576 \times \frac{24.6}{\sqrt{100}}$ $=252.4 \pm 6.33(6)=(246.0(63), 258.7(36))$	M1 B1 A1	Correct use of 252.4 and $24.6 / \sqrt{100}$. For 2.576. c.a.o. Must be expressed as an interval.	3
				18

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Q4 \& \& \& \& \& \& \& \& \& \\
\hline \[
\begin{array}{|l}
\hline \text { (a) } \\
\text { (i) }
\end{array}
\] \& \multicolumn{4}{|l|}{\begin{tabular}{l}
\[
\bar{x}=\frac{1125}{500}=2.25
\] \\
For binomial \(\mathrm{E}(X)=n \times p\)
\[
\therefore \hat{p}=\frac{2.25}{5}=0.45
\]
\end{tabular}} \& B1
M1

A1 \& \& f mean ution. re: answ \& nomial be implicit. iven. \& 3

\hline (ii) \& \multicolumn{4}{|l|}{| $\begin{aligned} X^{2} & =1.8571+0.4836+1.2404+1.1938+ \\ & 0.7763+4.9737 \\ & =10.52(49) \end{aligned}$ |
| :--- |
| Refer to χ_{4}^{2}. |
| Upper 5\% point is 9.488 . |
| Significant. |
| Suggests binomial model does not fit. |
| The model appears to overestimate in the middle and to underestimate at the tails. The biggest discrepancy is at $X=5$. |
| A binomial model assumes all trials are independent with a constant probability of "success". It seems unlikely that there will be independence within families and/or that p will be the same for all families. |} \& 125

137
137
M1
A1
M1

A1
M1

M \& \multicolumn{3}{|l|}{| Calculation of expected frequencies. |
| :--- |
| All correct. |
| Or using tables: $1.8657+0.4828+1.2396+$ $1.1978+0.7848+4.9257$ |
| c.a.o. Or using tables: 10.49 (64) |
| Allow correct df (= cells - 2) from wrongly grouped or ungrouped table, and FT. Otherwise, no FT if wrong. |
| No ft from here if wrong. |
| ft only c's test statistic. |
| ft only c's test statistic. |
| Accept also any other sensible comment e.g. at 2.5\% significance, the result would NOT have been significant. |
| (E2, 1, 0) Any sensible comment which addresses independence and constant p. |} \& 12

\hline (b) \& \multicolumn{4}{|l|}{| She should try to choose a simple random sample |
| :--- |
| which would involve establishing a sampling frame and using some form of random number generator. |} \& \[

$$
\begin{aligned}
& \mathrm{E} 1 \\
& \text { E1 } \\
& \mathrm{E} 1
\end{aligned}
$$

\] \& \multicolumn{3}{|l|}{| Allow sensible discussion of practical limitations of choosing a random sample. |
| :--- |
| Allow other sensible suggestions. E.g systematic sample - choosing every tenth family; stratified sample - by the number of girls in a family. |} \& 3

\hline \& \multicolumn{4}{|l|}{} \& \& \& \& \& 18

\hline
\end{tabular}

1

2. y

3.

```
\(y=2008\)
\(c=2008 / 100=20\)
\(n=2008-19 \times(2008 / 19)=2008-19 \times(105)=13\)
\(k=3 / 25=0\)
\(i=20-5-20 / 3+19 \times 13+15=271\)
\(i=1\)
\(i=1-0=1\)
\(j=2008+502+1+2-20+5=2498\)
j \(=6\)
\(p=-5\)
\(\mathrm{m}=3\)
\(d=23\)
So \(23^{\text {rd }}\) March
```

B1
B1
B1
B1
B1
B1
B1
B1
4.
(i) e.g. $0-3 \rightarrow$ brown
$4-7 \rightarrow$ blue
$8-9 \rightarrow$ green
(ii) e.g. $0-1 \rightarrow$ brown
$2-5 \rightarrow$ blue
$6-7 \rightarrow$ green
$8-9 \rightarrow$ reject
(iii) e.g.

Eye colours

Parent 1	brow n	brow n	brow n	blue
Parent 2	brow n	blue	brow n	blue
Offspring	brow n	brow n	brow n	brow n

brow n	gree n	blue	gree n	brow n	brow n
brow n	blue	brow	n	gree	brow
n	n	green			
brow n	blue	brow n	gree n	brow n	blue

M1
A1 proportions OK
A1 efficient
M1 some rejected
A2 proportions OK
(-1 each error)
A1 efficient

B1 br/br \rightarrow br (4 times)
B1 $\mathrm{br} / \mathrm{gr} \rightarrow \mathrm{bl}$
B1 $\mathrm{gr} / \mathrm{gr} \rightarrow \mathrm{gr}$
M1 br/bl rule
A1 application
A1 application
B1 bl/bl application
M1 gr/bl rule
A1 application
5.

6.

4776 Numerical Methods

1

x	2	3
$f(x)$	0.24	0.03

$$
\begin{aligned}
\text { root } & =(2 \times 0.03-3 \times 0.24) /(0.03-0.24) \\
& =3.142857
\end{aligned}
$$

[M1A1]

Eg: graph showing turning point at $x=3$ with root some way

2

x	$\mathrm{f}(\mathrm{x})$		
0	1		
1	0.333333	$\mathrm{~T} 1=$	0.666667
0.5	0.477592	$\mathrm{M}=$	0.477592
		hence	$\mathrm{T} 2=(\mathrm{T} 1+\mathrm{M}) / 2=$
		and	$\mathrm{S}=\left(\mathrm{T} 1+2^{*} \mathrm{M}\right) / 3=$
		0.572129	

4

\mathbf{x}	1.5	2	
$\mathbf{x}^{3}(\mathbf{2 - x})-\mathbf{1}$	0.6875	-1	change of sign, so root (may be implied)

\mathbf{a}	\mathbf{b}	\mathbf{x}	$\mathbf{x}^{\mathbf{3}} \mathbf{(2 - x} \mathbf{- \mathbf { - 1 }}$	$\mathbf{m p e}$
1.5	2	1.75	0.339844	0.25
1.75	2	1.875	-0.17603	0.125
1.75	1.875	$\mathbf{1 . 8 1 2 5}$		0.0625

4 further iterations reqd: mpe $0.0325,0.015625,0.0078125,0.00390625$

5 Sketch showing curve, tangent, chord, h. Makes clear that tangent and chord have substantially different gradients.

h	0	0.1	0.01	0.001
$g(2+h)$	3.61	3.849	3.633	3.612
est $g^{\prime}(2)$		2.39	2.3	2

Clear loss of significant figures as h is reduced

Grade Thresholds

Advanced GCE (Subject) (Aggregation Code(s)) January 2008 Examination Series

Unit Threshold Marks

Unit		Maximum	A	B	C	D	E	U
All units	UMS	100	80	70	60	50	40	0
4751	Raw	72	54	46	38	31	24	0
4752	Raw	72	55	48	41	34	28	0
4753	Raw	72	57	50	43	36	28	0
4753/02	Raw	18	15	13	11	9	8	0
4754	Raw	90	77	68	59	50	41	0
4755	Raw	72	55	47	39	32	25	0
4756	Raw	72	59	51	44	37	30	0
4758	Raw	72	62	54	46	38	30	0
4758/02	Raw	18	15	13	11	9	8	0
4761	Raw	72	60	52	44	37	30	0
4762	Raw	72	61	53	45	37	30	0
4763	Raw	72	58	51	44	37	30	0
$\begin{aligned} & 47661 \\ & \text { G241 } \end{aligned}$	Raw	72	56	49	42	35	28	0
4767	Raw	72	62	54	46	38	31	0
4768	Raw	72	54	47	40	33	27	0
4771	Raw	72	60	53	46	39	33	0
4776	Raw	72	58	50	42	35	27	0
4776/02	Raw	18	14	12	10	8	7	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{7 8 9 5 - 7 8 9 8}$	600	480	420	360	300	240	0
$\mathbf{3 8 9 5 - 3 8 9 8}$	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	\mathbf{U}	Total Number of Candidates
$\mathbf{7 8 9 5}$	25.5	50.0	75.5	85.9	95.3	100	106
$\mathbf{7 8 9 6}$	42.9	85.7	85.7	85.7	85.7	100	7
$\mathbf{7 8 9 7}$							0
$\mathbf{7 8 9 8}$							0
$\mathbf{3 8 9 5}$	22.7	40.7	59.3	77.8	94.8	100	383
$\mathbf{3 8 9 6}$	80	80	95	95	100	100	20
$\mathbf{3 8 9 7}$	0	100	100	100	100	100	1
$\mathbf{3 8 9 8}$	56.4	76.9	87.2	97.4	97.4	100	39

556 candidates aggregated this series

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
 1 Hills Road
 Cambridge
 CB1 2EU
 OCR Customer Contact Centre
 14-19 Qualifications (General)
 Telephone: 01223553998
 Facsimile: 01223552627
 Email: general.qualifications@ocr.org.uk
 www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

