RECOGNISING ACHIEVEMENT

ADVANCED GCE

MATHEMATICS

Further Pure Mathematics 3
THURSDAY 24 JANUARY 2008

Morning
Time: 1 hour 30 minutes

Additional materials: Answer Booklet (8 pages) List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- You are reminded of the need for clear presentation in your answers.

1 (a) A group G of order 6 has the combination table shown below.

	e	a	b	p	q	r
e	e	a	b	p	q	r
a	a	b	e	r	p	q
b	b	e	a	q	r	p
p	p	q	r	e	a	b
q	q	r	p	b	e	a
r	r	p	q	a	b	e

(i) State, with a reason, whether or not G is commutative.
(ii) State the number of subgroups of G which are of order 2 .
(iii) List the elements of the subgroup of G which is of order 3 .
(b) A multiplicative group H of order 6 has elements $e, c, c^{2}, c^{3}, c^{4}, c^{5}$, where e is the identity. Write down the order of each of the elements c^{3}, c^{4} and c^{5}.

2 Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-8 \frac{\mathrm{~d} y}{\mathrm{~d} x}+16 y=4 x \tag{7}
\end{equation*}
$$

3 Two fixed points, A and B, have position vectors \mathbf{a} and \mathbf{b} relative to the origin O, and a variable point P has position vector \mathbf{r}.
(i) Give a geometrical description of the locus of P when \mathbf{r} satisfies the equation $\mathbf{r}=\lambda \mathbf{a}$, where $0 \leqslant \lambda \leqslant 1$.
(ii) Given that P is a point on the line $A B$, use a property of the vector product to explain why $(\mathbf{r}-\mathbf{a}) \times(\mathbf{r}-\mathbf{b})=\mathbf{0}$.
(iii) Give a geometrical description of the locus of P when \mathbf{r} satisfies the equation $\mathbf{r} \times(\mathbf{a}-\mathbf{b})=\mathbf{0}$.

4 The integrals C and S are defined by

$$
C=\int_{0}^{\frac{1}{2} \pi} \mathrm{e}^{2 x} \cos 3 x \mathrm{~d} x \quad \text { and } \quad S=\int_{0}^{\frac{1}{2} \pi} \mathrm{e}^{2 x} \sin 3 x \mathrm{~d} x
$$

By considering $C+\mathrm{i} S$ as a single integral, show that

$$
\begin{equation*}
C=-\frac{1}{13}\left(2+3 \mathrm{e}^{\pi}\right), \tag{8}
\end{equation*}
$$

and obtain a similar expression for S.
(You may assume that the standard result for $\int \mathrm{e}^{k x} \mathrm{~d} x$ remains true when k is a complex constant, so that $\int \mathrm{e}^{(a+\mathrm{i} b) x} \mathrm{~d} x=\frac{1}{a+\mathrm{i} b} \mathrm{e}^{(a+\mathrm{i} b) x}$.)
(i) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{y}{x}=\sin 2 x, \tag{6}
\end{equation*}
$$

expressing y in terms of x in your answer.
In a particular case, it is given that $y=\frac{2}{\pi}$ when $x=\frac{1}{4} \pi$.
(ii) Find the solution of the differential equation in this case.
(iii) Write down a function to which y approximates when x is large and positive.

6 A tetrahedron $A B C D$ is such that $A B$ is perpendicular to the base $B C D$. The coordinates of the points A, C and D are $(-1,-7,2),(5,0,3)$ and $(-1,3,3)$ respectively, and the equation of the plane $B C D$ is $x+2 y-2 z=-1$.
(i) Find, in either order, the coordinates of B and the length of $A B$.
(ii) Find the acute angle between the planes $A C D$ and $B C D$.
(i) (a) Verify, without using a calculator, that $\theta=\frac{1}{8} \pi$ is a solution of the equation $\sin 6 \theta=\sin 2 \theta$.
(b) By sketching the graphs of $y=\sin 6 \theta$ and $y=\sin 2 \theta$ for $0 \leqslant \theta \leqslant \frac{1}{2} \pi$, or otherwise, find the other solution of the equation $\sin 6 \theta=\sin 2 \theta$ in the interval $0<\theta<\frac{1}{2} \pi$.
(ii) Use de Moivre's theorem to prove that

$$
\begin{equation*}
\sin 6 \theta \equiv \sin 2 \theta\left(16 \cos ^{4} \theta-16 \cos ^{2} \theta+3\right) \tag{5}
\end{equation*}
$$

(iii) Hence show that one of the solutions obtained in part (i) satisfies $\cos ^{2} \theta=\frac{1}{4}(2-\sqrt{2})$, and justify which solution it is.

8 Groups A, B, C and D are defined as follows:
A: the set of numbers $\{2,4,6,8\}$ under multiplication modulo 10 ,
$B: \quad$ the set of numbers $\{1,5,7,11\}$ under multiplication modulo 12 ,
C : the set of numbers $\left\{2^{0}, 2^{1}, 2^{2}, 2^{3}\right\}$ under multiplication modulo 15 ,
D : the set of numbers $\left\{\frac{1+2 m}{1+2 n}\right.$, where m and n are integers $\}$ under multiplication.
(i) Write down the identity element for each of groups A, B, C and D.
(ii) Determine in each case whether the groups

$$
\begin{aligned}
& A \text { and } B, \\
& B \text { and } C, \\
& A \text { and } C
\end{aligned}
$$

are isomorphic or non-isomorphic. Give sufficient reasons for your answers.
(iii) Prove the closure property for group D.
(iv) Elements of the set $\left\{\frac{1+2 m}{1+2 n}\right.$, where m and n are integers $\}$ are combined under addition. State which of the four basic group properties are not satisfied. (Justification is not required.)

