RECOGNISING ACHIEVEMENT

ADVANCED GCE

MATHEMATICS

Mechanics 3
THURSDAY 17 JANUARY 2008

Time: 1 hour 30 minutes

Additional materials: Answer Booklet (8 pages) List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- The acceleration due to gravity is denoted by $\mathrm{gm} \mathrm{s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use $g=9.8$.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are reminded of the need for clear presentation in your answers.

1 A smooth horizontal surface lies in the $x-y$ plane. A particle P of mass 0.5 kg is moving on the surface with speed $5 \mathrm{~m} \mathrm{~s}^{-1}$ in the x-direction when it is struck by a horizontal blow whose impulse has components -3.5 Ns and 2.4 Ns in the x-direction and y-direction respectively.
(i) Find the components in the x-direction and the y-direction of the velocity of P immediately after the blow. Hence show that the speed of P immediately after the blow is $5.2 \mathrm{~m} \mathrm{~s}^{-1}$.
P is struck by a second horizontal blow whose impulse is \mathbf{I}.
(ii) Given that P 's direction of motion immediately after this blow is parallel to the x-axis, write down the component of \mathbf{I} in the y-direction.

Two uniform rods $A B$ and $B C$, each of length 2 m , are freely jointed at B. The weights of the rods are $W \mathrm{~N}$ and 50 N respectively. The end A of $A B$ is hinged at a fixed point. The rods $A B$ and $B C$ make angles $\tan ^{-1}\left(\frac{3}{4}\right)$ and β respectively with the downward vertical, and are held in equilibrium in a vertical plane by a horizontal force of magnitude 75 N acting at C (see diagram).
(i) By taking moments about B for $B C$, show that $\tan \beta=3$.
(ii) Write down the horizontal and vertical components of the force acting on $A B$ at B.
(iii) Find the value of W.

Two uniform smooth spheres A and B, of equal radius, have masses 6 kg and 3 kg respectively. They are moving on a horizontal surface when they collide. Immediately before the collision the velocity of A has components $4 \mathrm{~m} \mathrm{~s}^{-1}$ along the line of centres towards B, and $v \mathrm{~m} \mathrm{~s}^{-1}$ perpendicular to the line of centres. B is moving with speed $8 \mathrm{~m} \mathrm{~s}^{-1}$ along the line of centres towards A (see diagram). The coefficient of restitution between the spheres is e.
(i) Find, in terms of e, the component of the velocity of A along the line of centres immediately after the collision.
(ii) Given that the speeds of A and B are the same immediately after the collision, and that $3 e^{2}=1$, find v.

4 A particle of mass $m \mathrm{~kg}$ is released from rest at a fixed point O and falls vertically. The particle is subject to an upward resisting force of magnitude $0.49 m v \mathrm{~N}$ where $v \mathrm{~m} \mathrm{~s}^{-1}$ is the velocity of the particle when it has fallen a distance of $x \mathrm{~m}$ from O.
(i) Write down a differential equation for the motion of the particle, and show that the equation can be written as $\left(\frac{20}{20-v}-1\right) \frac{\mathrm{d} v}{\mathrm{~d} x}=0.49$.
(ii) Hence find an expression for x in terms of v.

5 A particle P of mass $m \mathrm{~kg}$ is attached to one end of a light elastic string of natural length 1.2 m and modulus of elasticity 0.75 mg N . The other end of the string is attached to a fixed point O of a smooth plane inclined at 30° to the horizontal. P is released from rest at O and moves down the plane.
(i) Show that the maximum speed of P is reached when the extension of the string is 0.8 m .
(ii) Find the maximum speed of P.
(iii) Find the maximum displacement of P from O.

[Questions 6 and 7 are printed overleaf.]

A particle P of mass 0.4 kg is attached to one end of a light inextensible string of length 2 m . The other end of the string is attached to a fixed point O. With the string taut the particle is travelling in a circular path in a vertical plane. The angle between the string and the downward vertical is θ° (see diagram). When $\theta=0$ the speed of P is $7 \mathrm{~m} \mathrm{~s}^{-1}$.
(i) At the instant when the string is horizontal, find the speed of P and the tension in the string.
(ii) At the instant when the string becomes slack, find the value of θ.

7 A particle P, of mass $m \mathrm{~kg}$, is attached to one end of a light elastic string of natural length 3.2 m and modulus of elasticity $4 m g \mathrm{~N}$. The other end of the string is attached to a fixed point A. The particle is released from rest at a point 4.8 m vertically below A. At time $t \mathrm{~s}$ after P 's release P is $(4+x) \mathrm{m}$ below A.
(i) Show that $4 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=-49 x$.
P 's motion is simple harmonic.
(ii) Write down the amplitude of P 's motion and show that the string becomes slack instantaneously at intervals of approximately 1.8 s .

A particle Q is attached to one end of a light inextensible string of length $L \mathrm{~m}$. The other end of the string is attached to a fixed point B. The particle is released from rest with the string taut and inclined at a small angle with the downward vertical. At time $t \mathrm{~s}$ after Q 's release $B Q$ makes an angle of θ radians with the downward vertical.
(iii) Show that $\frac{\mathrm{d}^{2} \theta}{\mathrm{~d} t^{2}} \approx-\frac{g}{L} \theta$.

The period of the simple harmonic motion to which Q 's motion approximates is the same as the period of P 's motion.
(iv) Given that $\theta=0.08$ when $t=0$, find the speed of Q when $t=0.25$.

