Mathematics

Advanced GCE A2 7890-2
Advanced Subsidiary GCE AS 3890-2

Mark Schemes for the Units

January 2009

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2009
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890)
 Advanced GCE Pure Mathematics (7891) Advanced GCE Further Mathematics (7892)
 Advanced Subsidiary GCE Mathematics (3890)
 Advanced Subsidiary GCE Pure Mathematics (3891)
 Advanced Subsidiary GCE Further Mathematics (3892)

 MARK SCHEMES FOR THE UNITS

 MARK SCHEMES FOR THE UNITS}
Unit/Content Page
4721 Core Mathematics 1 1
4722 Core Mathematics 2 5
4723 Core Mathematics 3 8
4724 Core Mathematics 4 11
4725 Further Pure Mathematics 1 15
4726 Further Pure Mathematics 2 18
4727 Further Pure Mathematics 3 21
4728 Mechanics 1 25
4729 Mechanics 2 28
4730 Mechanics 3 30
4732 Probability \& Statistics 1 34
4733 Probability \& Statistics 2 38
4734 Probability \& Statistics 3 40
4736 Decision Mathematics 1 43
4737 Decision Mathematics 2 47
Grade Thresholds 53

4721 Core Mathematics 1

4722 Core Mathematics 2

1 (i) $\int\left(x^{3}+8 x-5\right) \mathrm{d} x=\frac{1}{4} x^{4}+4 x^{2}-5 x+c$
(ii) $\int 12 x^{\frac{1}{2}} \mathrm{~d} x=8 x^{\frac{3}{2}}+c$

M1 Attempt integration - increase in power for at least 2 terms
A1 Obtain at least 2 correct terms
A1 3 Obtain $\frac{1}{4} x^{4}+4 x^{2}-5 x+c$ (and no integral sign or $\mathrm{d} x$)
B1 State or imply $\sqrt{x}=x^{\frac{1}{2}}$
M1 Obtain $k x^{\frac{3}{2}}$
A1 3 Obtain $8 x^{\frac{3}{2}}+c$ (and no integral sign or $\mathrm{d} x$)
(only penalise lack of $+c$, or integral sign or $\mathrm{d} x$ once)

6

$$
\begin{aligned}
& =\left(32-\frac{32}{5}\right)-\left(-32-\frac{-32}{5}\right) \\
& =51 \frac{1}{5}
\end{aligned}
$$

M1
A1
A1

Use limits - correct order / subtraction
Obtain $\pm 51 \frac{1}{5}$
Obtain $51 \frac{1}{5}$ only, no wrong working

5 (i) $\frac{T A}{\sin 107}=\frac{50}{\sin 3}$
$T A=914 \mathrm{~m}$
(iii) dist from $A=914 \times \cos 70=313 \mathrm{~m}$ beyond C, hence 874 m is shortest dist
OR
perp dist $=914 \times \sin 70=859 \mathrm{~m}$
(ii) $T C=\sqrt{914^{2}+150^{2}-2 \times 914 \times 150 \times \cos 70}$
$=874 \mathrm{~m}$

M1 Attempt use of correct sine rule to find $T A$, or equiv
A1 2 Obtain 914, or better

M1 Attempt use of correct cosine rule, or equiv, to find TC
A1 $\sqrt{ } \quad$ Correct unsimplified expression for $T C$, following their (i)
A1 3 Obtain 874, or better
M1 Attempt to locate point of closest approach
A1 2 Convincing argument that the point is beyond C, or obtain 859 , or better
SR B1 for 874 stated with no method shown

6 (i) $\quad S_{\infty}=\frac{20}{1-0.9}$
$=200$

M1 Attempt use of $S_{\infty}=\frac{a}{1-r}$
A1 2 Obtain 200
(ii) $\quad S_{30}=\frac{20\left(1-0.9^{30}\right)}{1-0.9}$

$$
=192
$$

M1 Attempt use of correct sum formula for a GP, with $n=30$
A1 2 Obtain 192, or better

(iii) \begin{tabular}{lll}
$20 \times 0.9^{p-1}<0.4$ \& B1 \& Correct $20 \times 0.9^{p-1}$ seen or implied

$0.9^{p-1}<0.02$ \& \&

$(p-1) \log 0.9<\log 0.02$ \& M1 \& Link to 0.4, rearrange to $0.9^{k}=c($ or $>,<)$, introduce

$p-1>\frac{\log 0.02}{\log 0.9}$ \& \& logarithms, and drop power, or equiv correct method

$p>38.1$ \& M1 \& | Correct method for solving their (in)equation |
| :--- |

hence $p=39$ \& A1 \& 4

State 39 (not inequality), no wrong working seen
\end{tabular}

8

(iii) $4 \times 4 \times\left(\frac{1}{2}\right)^{3}=2$

State or imply coeff of x is $4 k^{3} a$
Equate to 128 and attempt to eliminate a or k
Obtain $k=4$
4 Obtain $a=1 / 2$
SR B1 for $k= \pm 4, a= \pm \frac{1}{2}$

M1 Attempt $4 \times k \times a^{3}$, following their a and k (allow if still in terms of a, k)
A1 2 Obtain 2 (allow $2 x^{3}$)
8 (a)(i) $\log _{a} x y=p+q$
B1 $1 \quad$ State $p+q$ cwo
(ii) $\log _{a}\left(\frac{a^{2} x^{3}}{y}\right)=2+3 p-q$

M1 Use $\log a^{b}=b \log a$ correctly at least once
M1 Use $\log \frac{a}{b}=\log a-\log b$ correctly
A1 3 Obtain $2+3 p-q$
(b)(i) $\log _{10} \frac{x^{2}-10}{x}$

B1 $1 \quad$ State $\log _{10} \frac{x^{2}-10}{x}$ (with or without base 10)
(ii) $\log _{10} \frac{x^{2}-10}{x}=\log _{10} 9$
$\frac{x^{2}-10}{x}=9$
$x^{2}-9 x-10=0$
$(x-10)(x+1)=0$
$x=10$

B1 State or imply that $2 \log _{10} 3=\log _{10} 3^{2}$

M1

Attempt correct method to remove logs
Obtain correct $x^{2}-9 x-10=0$ aef, no fractions
Attempt to solve three term quadratic
5 Obtain $x=10$ only

9 (i) $\quad \mathrm{f}(1)=1-1-3+3=0 \quad$ A.G.
$\mathrm{f}(x)=(x-1)\left(x^{2}-3\right)$
$x^{2}=3$
$x= \pm \sqrt{3}$

B1 Confirm $\mathrm{f}(1)=0$, or division with no remainder shown, or matching coeffs with $R=0$
M1 Attempt complete division by $(x-1)$, or equiv
A1 Obtain $x^{2}+k$
A1 Obtain completely correct quotient (allow $x^{2}+0 x-3$)
M1
A1 6 Obtain $x= \pm \sqrt{3}$ only
(ii) $\tan x=1, \sqrt{3},-\sqrt{3}$
$\tan x=\sqrt{3} \Rightarrow x=\pi / 3,4 \pi / 3$
$\tan x=-\sqrt{3} \Rightarrow x=2 \pi / 3,5 \pi / 3$
$\tan x=1 \Rightarrow x=\pi / 4,5 \pi / 4$
$B 1 \sqrt{ }$

M1
A1
A1
B1
B1

State or imply $\tan x=1$ or $\tan x=$ at least one of their roots from (i)
Attempt to solve $\tan x=k$ at least once
Obtain at least 2 of $\pi / 3,2 \pi / 3,4 \pi / 3,5 \pi / 3$ (allow degs/decimals)
Obtain all 4 of $\pi / 3,2 \pi / 3,4 \pi / 3,5 \pi / 3$ (exact radians only)
Obtain $\pi / 4$ (allow degs / decimals)
6 Obtain $5 \pi / 4$ (exact radians only)
SR answer only is B1 per root, max of B4 if degs / decimals

4723 Core Mathematics 3

1 (i)	Obtain integral of form $k \mathrm{e}^{-2 x}$ Obtain $-4 \mathrm{e}^{-2 x}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	any constant k different from 8 or (unsimplified) equiv
(ii)	Obtain integral of form $k(4 x+5)^{7}$ Obtain $\frac{1}{28}(4 x+5)^{7}$ Include $\ldots+c$ at least once	M1 A1 B1	any constant k in simplified form in either part
2 (i)	Form expression involving attempts at y values and addition Obtain $k(\ln 4+4 \ln 6+2 \ln 8+4 \ln 10+\ln 12)$ Use value of k as $\frac{1}{3} \times 2$ Obtain 16.27	M1 A1 A1 A1 4	with coeffs 1,4 and 2 present at least once any constant k or unsimplified equiv or 16.3 or greater accuracy (16.27164...)
(ii)	State 162.7 or 163	$\begin{array}{r} \mathrm{B} 1 \sqrt{ } 1 \\ \quad 5 \end{array}$	llowing their answer to (i), maybe rounded
3 (i)	Attempt use of identity for $\tan ^{2} \theta$ Replace $\frac{1}{\cos \theta}$ by $\sec \theta$ Obtain 2($\left.\sec ^{2} \theta-1\right)-\sec \theta$	M1 B1 A1 3	using $\pm \sec ^{2} \theta \pm 1$; or equiv or equiv
(ii)	Attempt soln of quadratic in $\sec \theta$ or $\cos \theta$ Relate $\sec \theta$ to $\cos \theta$ and attempt at least one value of θ Obtain $60^{\circ}, 131.8^{\circ}$ Obtain $60^{\circ}, 131.8^{\circ}, 228.2^{\circ}, 300^{\circ}$	$\begin{array}{lr} \text { M1 } & \\ & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 4 \\ & 7 \end{array}$	as far as factorisation or substitution in correct formula may be implied allow 132 or greater accuracy allow 132, 228 or greater accuracy; and no others between 0° and 360°
4 (i)	Obtain derivative of form $k x\left(4 x^{2}+1\right)^{4}$ Obtain $40 x\left(4 x^{2}+1\right)^{4}$ State $x=0$	M1 A1 $A 1 \sqrt{ } 3$	any constant k or (unsimplified) equiv and no other; following their derivative of form $k x\left(4 x^{2}+1\right)^{4}$
(ii)	Attempt use of quotient rule Obtain $\frac{2 x \ln x-x^{2} \cdot \frac{1}{x}}{(\ln x)^{2}}$ Equate to zero and attempt solution Obtain $\mathrm{e}^{\frac{1}{2}}$	M1 A1 M1 A1 4	or equiv or equiv as far as solution involving e or exact equiv; and no other; allow from \pm (correct numerator of derivative)

5 (i)	State 40 Attempt value of k using 21 and 80 Obtain $40 \mathrm{e}^{21 k}=80$ and hence 0.033 Attempt value of M for $t=63$ Obtain 320	B1 M1 A1 M1 A1 5	or equiv or equiv such as $\frac{1}{21} \ln 2$ using established formula or using exponential property or value rounding to this
(ii)	Differentiate to obtain $c \mathrm{e}^{0.033 t}$ or $40 \mathrm{ke}^{k t}$ Obtain $40 \times 0.033 \mathrm{e}^{0.033 t}$ Obtain 2.64	M1 A1 $\sqrt{ }$ A1 3 8	any constant c different from 40 following their value of k allow 2.6 or 2.64 ± 0.01 or greater accuracy (2.64056...)
6 (i)	Attempt correct process for finding inverse Obtain $2 x^{3}-4$ State $\sqrt[3]{2}$ or 1.26	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ \text { B1 } & 3 \end{array}$	maybe in terms of y so far or equiv; in terms of x now
(ii)	State reflection in $y=x$ Refer to intersection of $y=x$ and $y=\mathrm{f}(x)$ and hence confirm $x=\sqrt[3]{\frac{1}{2} x+2}$	B1 $\text { B1 } 2$	or clear equiv AG; or equiv
(iii)	Obtain correct first iterate Show correct process for iteration Obtain at least 3 correct iterates in all Obtain 1.39 $\begin{array}{r} {[0 \rightarrow 1.259921 \rightarrow 1.380330 \rightarrow 1.3} \\ 1 \rightarrow 1.357209 \rightarrow 1.388789 \rightarrow 1.3 \\ 1.26 \rightarrow 1.380337 \rightarrow 1.390784 \rightarrow 1 \\ 1.5 \rightarrow 1.401020 \rightarrow 1.392564 \rightarrow 1 . \\ 2 \rightarrow 1.442250 \rightarrow 1.396099 \rightarrow 1.3 \end{array}$	B1 M1 A1 A1 4 90784 91512 1.39168 .391837 92141	with at least one more step allowing recovery after error following at least 3 steps; answer required to exactly $2 \mathrm{~d} . \mathrm{p}$. $\rightarrow 1.391684$ $\rightarrow 1.391747$ $4 \rightarrow 1.391761$ $\rightarrow 1.391775$ $\rightarrow 1.391801]$
7 (i)	Refer to stretch and translation State stretch, factor $\frac{1}{k}$, in x direction State translation in negative y direction by a [SC: If M0 but one transformation complete	M1 A1 A1 3 ly corre	in either order; allow here informal terms or equiv; now with correct terminology or equiv; now with correct terminology - $-\mathrm{B} 1]$
(ii)	Show attempt to reflect negative part in x-axis Show correct sketch	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	ignoring curvature with correct curvature, no pronounced 'rounding' at x-axis and no obvious maximum point
(iii)	Attempt method with $x=0$ to find value of Obtain $a=14$ Attempt to solve for k Obtain $k=3$	$a \mathrm{M} 1$ A1 M1 $\begin{array}{ll}\text { A1 } & 4 \\ & 9\end{array}$... other than (or in addition to) value -12 and nothing else using any numerical a with sound process

8 (i) Attempt to express x or x^{2} in terms of y
Obtain $x^{2}=\frac{1296}{(y+3)^{4}}$
Obtain integral of form $k(y+3)^{-3}$
Obtain $-432 \pi(y+3)^{-3}$ or $-432(y+3)^{-3}$
Attempt evaluation using limits 0 and p

Confirm $16 \pi\left(1-\frac{27}{(p+3)^{3}}\right)$

M1

A1 or (unsimplified) equiv
M1 any constant k
A1 or (unsimplified) equiv
M1 for expression of form $k(y+3)^{-n}$ obtained from integration attempt; subtraction correct way round

A1 6 AG; necessary detail required, including appearance of π prior to final line
(ii) State or obtain $\frac{\mathrm{d} V}{\mathrm{~d} p}=1296 \pi(p+3)^{-4} \quad$ B1 \quad or equiv; perhaps involving y

Multiply $\frac{\mathrm{d} p}{\mathrm{~d} t}$ and attempt at $\frac{\mathrm{d} V}{\mathrm{~d} p} \quad * \mathrm{M} 1 \quad$ algebraic or numerical
Substitute $p=9$ and attempt evaluation
Obtain $\frac{1}{4} \pi$ or 0.785

M1 \quad dep *M
A1 $\mathbf{4}$ or greater accuracy
10

9 (i) State $\cos 2 \theta \cos \theta-\sin 2 \theta \sin \theta$

B1

Use at least one of $\cos 2 \theta=2 \cos ^{2} \theta-1$
and $\sin 2 \theta=2 \sin \theta \cos \theta$
B1
Attempt to express in terms of $\cos \theta$ only
M1 using correct identities for $\cos 2 \theta, \sin 2 \theta$ and $\sin ^{2} \theta$
Obtain $4 \cos ^{3} \theta-3 \cos \theta$
A1 4 AG; necessary detail required
(ii) Either: State or imply $\cos 6 \theta=2 \cos ^{2} 3 \theta-1$ B1 Use expression for $\cos 3 \theta$ and
attempt expansion M1
Obtain $32 c^{6}-48 c^{4}+18 c^{2}-1$
Or: \quad State $\cos 6 \theta=4 \cos ^{3} 2 \theta-3 \cos 2 \theta$
Express $\cos 2 \theta$ in terms of $\cos \theta$
and attempt expansion
Obtain $32 c^{6}-48 c^{4}+18 c^{2}-1$
for expression of form $\pm 2 \cos ^{2} 3 \theta \pm 1$
3 AG; necessary detail required
maybe implied
for expression of form $\pm 2 \cos ^{2} \theta \pm 1$
A1 (3) AG; necessary detail required
(iii) Substitute for $\cos 6 \theta$

Obtain $32 c^{6}-48 c^{4}=0$
*M1 with simplification attempted

Attempt solution for c of equation
Obtain $c^{2}=\frac{3}{2}$ and observe no solutions A1 or equiv
M1 dep *M
A1 or equiv; correct work only
Obtain $c=0$, give at least three specific angles and conclude odd multiples of 90

A1 5 AG; or equiv; necessary detail required; correct work only

4724 Core Mathematics 4

1 Attempt to factorise numerator and denominator

Any (part) factorisation of both num and denom
Final answer $=-\frac{5}{6 x}, \frac{-5}{6 x}, \frac{5}{-6 x},-\frac{5}{6} x^{-1}$ Not $-\frac{\frac{5}{6}}{x}$
M1 $\frac{A}{\mathrm{f}(x)}+\frac{B}{\mathrm{~g}(x)} ; \mathrm{fg}=6 x^{2}-24 x$
A1 Corres identity/cover-up

A1
3

2 Use parts with $u=x, \mathrm{~d} v=\sec ^{2} x$
M1 result $\mathrm{f}(x)+/-\int \mathrm{g}(x) \mathrm{d} x$
Obtain correct result $x \tan x-\int \tan x \mathrm{~d} x$
A1
$\int \tan x \mathrm{~d} x=k \ln \sec x$ or $k \ln \cos x$, where $k=1$ or -1
B1 or $k \ln |\sec x|$ or $k \ln |\cos x|$

Final answer $=x \tan x-\ln |\sec x|+c$ or $x \tan x+\ln |\cos x|+c \mathrm{~A} 1$

3 (i) $1+\frac{1}{2} \cdot 2 x+\frac{\frac{1}{2} \cdot-\frac{1}{2}}{2}\left(4 x^{2}\right.$ or $\left.2 x^{2}\right)+\frac{\frac{1}{2} \cdot-\frac{1}{2} \cdot-\frac{3}{2}}{6}\left(8 x^{3}\right.$ or $\left.2 x^{3}\right) \quad$ M1
$=1+x$
B1
$\ldots-\frac{1}{2} x^{2}+\frac{1}{2} x^{3} \quad$ (AE fract coeffs)
A1 (3) For both terms
(ii) $(1+x)^{-3}=1-3 x+6 x^{2}-10 x^{3}$ Either attempt at their (i) multiplied by $(1+x)^{-3}$

B1 or $(1+x)^{3}=1+3 x+3 x^{2}+x^{3}$
$1-2 x \ldots$
$\sqrt{ } 1+(a-3) x$
M1 or (i) long div by $(1+x)^{3}$
$\sqrt{ }(-3 a+b+6) x^{2}$
$\sqrt{ }(6 a-3 b+c-10) x^{3}$
$\ldots-2 x^{3}$
A1 (5) (AE fract.coeffs)
(iii) $-\frac{1}{2}<x<\frac{1}{2}, \quad$ or $|x|<\frac{1}{2}$

B1 (1)
$4 \quad$ Attempt to expand $(1+\sin x)^{2}$ and integrate it
Attempt to change $\sin ^{2} x$ into $\mathrm{f}(\cos 2 x)$
Use $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$
Use $\int \cos 2 x \mathrm{~d} x=\frac{1}{2} \sin 2 x$
Use limits correctly on an attempt at integration $\frac{3}{8} \pi-\sqrt{2}+\frac{7}{4} \quad \mathrm{AE}(3$-term $) \mathrm{F}$
*M1 Minimum of $1+\sin ^{2} x$
M1

A1 $\quad \operatorname{dep} \mathrm{M} 1+\mathrm{M} 1$

A1 $\quad \operatorname{dep} \mathrm{M} 1+\mathrm{M} 1$
dep* M1 Tolerate $g\left(\frac{1}{4} \pi\right)-0$
A1 WW $1.51 \ldots \rightarrow$ M1 A0

6

5 (i) Attempt to connect $\mathrm{d} u$ and $\mathrm{d} x$, find $\frac{\mathrm{d} u}{\mathrm{~d} x}$ or $\frac{\mathrm{d} x}{\mathrm{~d} u}$
M1 But not e.g. $\mathrm{d} u=\mathrm{d} x$
Any correct relationship, however used, such as $\mathrm{d} x=2 u \mathrm{~d} u \mathrm{~A} 1 \quad$ or $\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{2} x^{-1 / 2}$
Subst with clear reduction (≥ 1 inter step) to AG
A1 (3) WWW
(ii) Attempt partial fractions

M1
$\frac{2}{u}-\frac{2}{1+u}$
A1
$\sqrt{ } A \ln u+B \ln (1+u)$
Attempt integ, change limits \& use on $\mathrm{f}(u)$
$\ln \frac{9}{4} \quad$ AEexactF $\quad($ e.g. $2 \ln 3-2 \ln 4+2 \ln 2)$
$\sqrt{ } \mathrm{A} 1 \quad$ Based on $\frac{A}{u}+\frac{B}{1+u}$
M1 or re-subst \& use $1 \& 9$
A1 (5) Not involving $\ln 1$

6 (i) Solve $0=t-3$ \& subst into $x=t^{2}-6 t+4$
Obtain $x=-5$
N.B. If (ii) completed first, subst $y=0$ into their cartesian eqn (M1) \& find x (no f.t.) (A1)
(ii) Attempt to eliminate t

Simplify to $x=y^{2}-5 \quad$ ISW
M1
A1 (2)
(iii) Attempt to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or $\frac{\mathrm{d} x}{\mathrm{~d} y}$ from cartes or para form

M1 Award anywhere in Que

Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2 t-6}$ or $\frac{1}{2 y}$ or $(-) \frac{1}{2}(x+5)^{-\frac{1}{2}}$
A1

If $t=2, x=-4$ and $y=-1$
B1 Awarded anywhere in (iii)
Using their num $(x, y) \&$ their num $\frac{\mathrm{d} y}{\mathrm{~d} x}$, find tgt eqn M1
$x+2 y+6=0 \quad$ AEF (without fractions) \quad ISW A1 (5)

7 (i) Attempt direction vector between the 2 given points
M1
State eqn of line using format $(\mathbf{r})=($ either end $)+s($ dir vec $) \mathrm{M}$
Produce $2 / 3$ eqns containing t and s
M1 2 different parameters
Solve giving $t=3, s=-2$ or 2 or -1 or 1
A1
Show consistency
Point of intersection $=(5,9,-1)$
B1
A1 (6)
(ii) Correct method for scalar product of 'any' 2 vectors

Correct method for magnitude of 'any' vector
Use $\cos \theta=\frac{\mathbf{a} . \mathbf{b}}{|\mathbf{a}| \mathbf{b} \mid}$ for the correct 2 vectors $\left(\begin{array}{l}1 \\ 4 \\ -2\end{array}\right) \&\left(\begin{array}{l}2 \\ -1 \\ 3\end{array}\right)$
62.2 (62.188157...) $1.09(1.0853881)$

A1 (4)

10

8 (i) $\frac{\mathrm{d}}{\mathrm{d} x}\left(y^{3}\right)=3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$
B1
Consider $\frac{\mathrm{d}}{\mathrm{d} x}(x y)$ as a product
M1
$=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y$
A1 Tolerate omission of ' 6 '
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 y-3 x^{2}}{3 y^{2}-6 x} \quad$ ISW AEF
A1 (4)
(ii) $x^{3}=2^{4}$ or 16 and $y^{3}=2^{5}$ or 32
*B1
Satisfactory conclusion
dep* B1 AG

Substitute $\left(2^{\frac{4}{3}}, 2^{\frac{5}{3}}\right)$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$
M1 or the numerator of $\frac{\mathrm{d} y}{\mathrm{~d} x}$
Show or use calc to demo that num $=0$, ignore denom AG A1 (4)
(iii) Substitute (a, a) into eqn of curve
$a=3$ only with clear ref to $a \neq 0$
Substitute $(3,3)$ or (their a, their a) into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$
-1 only WWW

9 (i) $\frac{\mathrm{d} \theta}{\mathrm{d} t}=\ldots$
$k(160-\theta)$
B1 (2) The 2 @ 'B1' are indep
(ii) Separate variables with $(160-\theta)$ in denom; or invert

Indication that LHS $=\ln \mathrm{f}(\theta)$
*M1 $\quad \int \frac{1}{160-\theta} \mathrm{d} \theta=\int k, \frac{1}{k}, 1 \mathrm{~d} t$

RHS $=k t$ or $\frac{1}{k} t$ or $t \quad(+c)$
A1 If wrong ln, final $3 @ A=0$

Subst. $t=0, \theta=20$ into equation containing 'c' dep*M1
Subst $t=5, \theta=65$ into equation containing ' c ' \& ' k ' dep* M1
$c=-\ln 140 \quad(-4.94) \quad$ ISW A1
$k=\frac{1}{5} \ln \frac{140}{95} \quad(\approx 0.077$ or 0.078$) \quad$ ISW
A1
Using their 'c' \& ' k ', subst $t=10 \&$ evaluate $\theta \quad$ dep*M1
$\theta=96(95.535714) \quad\left(95 \frac{15}{28}\right)$
A1 (9)

4725 Further Pure Mathematics 1

\begin{tabular}{|c|c|c|c|c|}
\hline 1 \& \(\frac{7}{26}+\frac{17}{26} \mathrm{i}\). \& \[
\begin{aligned}
\& \hline \text { M1 } \\
\& \text { A1 A1 } \\
\& \text { A1 }
\end{aligned}
\] \& 4
4 \& Multiply by conjugate of denominator Obtain correct numerator Obtain correct denominator \\
\hline 2 \& \begin{tabular}{l}
(i) \(\frac{1}{10}\left(\begin{array}{cc}5 \& 0 \\ -a \& 2\end{array}\right)\) \\
(ii) \(\left(\begin{array}{cc}3 \& -2 \\ 2 a \& 6\end{array}\right)\)
\end{tabular} \& \[
\begin{aligned}
\& \hline \text { B1 } \\
\& \text { B1 } \\
\& \\
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& 2

2

4 \& | Both diagonals correct Divide by correct determinant |
| :--- |
| Two elements correct Remaining elements correct |

\hline 3 \& \[
$$
\begin{aligned}
& n^{2}(n+1)^{2}+n(n+1)(2 n+1)+n(n+1) \\
& n(n+1)^{2}(n+2)
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1 |
| M1 |
| A1ft |
| A1 | \& 6 \& Express as sum of 3 terms 2 correct unsimplified terms $3^{\text {rd }}$ correct unsimplified term Attempt to factorise Two factors found, ft their quartic Correct final answer a.e.f.

\hline 4 \& $$
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$ \& \[

$$
\begin{array}{|l|}
\hline \text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { A1 }
\end{array}
$$
\] \& 4 \& State or use correct result Combine matrix and its inverse Obtain \mathbf{I} or \mathbf{I}^{2} but not 1 Obtain zero matrix but not 0 S.C. If $\mathbf{0 / 4 , B 1}$ for $\mathbf{A A}^{-1}=\mathbf{I}$

\hline 5 \& | Either |
| :--- |
| $4 k-4$ $k=1$ |
| Or | \& M1

M1
A1
M1
A1ft
M1
A1
M1
A1
A1 \& 5
5

5 \& | Consider determinant of coefficients of LHS Sensible attempt at evaluating any 3×3 det Obtain correct answer a.e.f. unsimplified Equate det to 0 Obtain $k=1$, ft provided all M's awarded |
| :--- |
| Eliminate either x or y |
| Obtain correct equation |
| Eliminate $2^{\text {nd }}$ variable |
| Obtain correct linear equation |
| Deduce that $k=1$ |

\hline 6 \& | (i) Either Or |
| :--- |
| (ii) |
| (iii) $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ |
| (iv) | \& | B1 DB1 |
| :--- |
| B1 DB1 |
| B1 DB1 |
| B1 B1 |
| B1B1B1 | \& 2

2
2
2
3

9 \& | Reflection, in x-axis |
| :--- |
| Stretch parallel to y-axis, s.f. -1 |
| Reflection, in $y=-x$ |
| Each column correct |
| Rotation, 90°,clockwise about O S.C. If (iii) incorrect, B1 for identifying their transformation, B1 all details correct |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 7 \& \begin{tabular}{l}
(i) \(13^{n}+6^{n-1}+13^{n+1}+6^{n}\) \\
(ii)
\end{tabular} \& B1
M1
A1
B1
B1
B1
B1 \& 4
7 \& \begin{tabular}{l}
Correct expression seen \\
Attempt to factorise both terms in (i) \\
Obtain correct expression \\
Check that result is true for \(n=1\) (or 2) \\
Recognise that (i) is divisible by 7 \\
Deduce that \(u_{n+1}\) is divisible by 7 \\
Clear statement of Induction conclusion
\end{tabular} \\
\hline 8 \& \begin{tabular}{l}
(i) \\
(ii)
\[
\begin{aligned}
\& \alpha+\beta=6 k, \alpha \beta=k^{2} \\
\& \alpha-\beta=(4 \sqrt{2}) k
\end{aligned}
\] \\
(iii)
\[
\begin{aligned}
\& \sum \alpha^{\prime}=6 k \\
\& \alpha^{\prime} \beta^{\prime}=\alpha \beta-(\alpha-\beta)-1 \\
\& \alpha^{\prime} \beta^{\prime}=k^{2}-(4 \sqrt{2}) k-1 \\
\& x^{2}-6 k x+k^{2}-(4 \sqrt{2}) k-1=0
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
B1 B1 \\
M1 \\
A1 \\
B1ft \\
M1 \\
A1ft \\
B1ft
\end{tabular} \& \begin{tabular}{|c}
2 \\
\\
4 \\
4 \\
\\
\\
\\
4 \\
10
\end{tabular} \& \begin{tabular}{l}
Expand at least 1 of the brackets Derive given answer correctly \\
State or use correct values \\
Find value of \(\alpha-\beta\) using (i) \\
Obtain given value correctly (allow if \(-6 k\) used) \\
Sum of new roots stated or used \\
Express new product in terms of old roots \\
Obtain correct value for new product \\
Write down correct quadratic equation
\end{tabular} \\
\hline 9 \& \begin{tabular}{l}
(i) \\
(ii)
\[
1+\frac{1}{3}-\frac{1}{2 n-1}-\frac{1}{2 n+1}
\] \\
(iii) \(\frac{4}{3}\)
\end{tabular} \& M1
A1
M1
M1
A1
A1
M1
A1
B1ft \& 2

6
1

9 \& | Use correct denominator |
| :--- |
| Obtain given answer correctly |
| Express terms as differences using (i) |
| Do this for at least $1^{\text {st }} 3$ terms |
| First 3 terms all correct |
| Last 3 terms all correct (in terms or n or r) |
| Show pairs cancelling |
| Obtain correct answer, a.e.f.(in terms of n) |
| Given answer deduced correctly, ft their (ii) |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 10 \& \begin{tabular}{l}
(i)
\[
\begin{aligned}
\& x^{2}-y^{2}=2,2 x y=\sqrt{5} \\
\& 4 x^{4}-8 x^{2}-5=0 \\
\& x= \pm \frac{\sqrt{10}}{2}, y= \pm \frac{\sqrt{2}}{2} \\
\& \pm\left(\frac{\sqrt{10}}{2}+\mathrm{i} \frac{\sqrt{2}}{2}\right)
\end{aligned}
\] \\
(ii)
\[
\begin{aligned}
z^{2} \& =2 \pm \mathrm{i} \sqrt{5} \\
z \& = \pm\left(\frac{\sqrt{10}}{2} \pm \mathrm{i} \frac{\sqrt{2}}{2}\right)
\end{aligned}
\] \\
(iii) \\
(iv)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1ft \\
B1ft \\
B1 B1ft \\
B1ft
\end{tabular} \& 6

4
4

1

3

14 \& | Attempt to equate real and imaginary parts Obtain both results a.e.f. |
| :--- |
| Eliminate to obtain quadratic in x^{2} or y^{2} |
| Solve to obtain x (or y) values Correct values for both x \& y obtained a.e.f. |
| Correct answers as complex numbers |
| Solve quadratic in z^{2} |
| Obtain correct answers |
| Use results of (i) |
| Obtain correct answers, ft must include root from conjugate |
| Sketch showing roots correctly |
| Sketch of straight line, \perp to α |
| Bisector |

\hline
\end{tabular}

4726 Further Pure Mathematics 2

1 (i) Give $1+2 x+(2 x)^{2} / 2$
Get $1+2 x+2 x^{2}$
(ii) $\ln \left(\left(1+2 x+2 x^{2}\right)\right.$ $\left.+\left(1-2 x+2 x^{2}\right)\right)=$
$\ln \left(2+4 x^{2}\right)=$
$\ln 2+\ln \left(1+2 x^{2}\right)$
$\ln 2+2 x^{2}$

2 (i) $x_{2}=1.8913115$
$x_{3}=1.8915831$
$x_{4}=1.8915746$
(ii) $e_{3} / e_{2}=-0.031(1)$
$e_{4} / e_{3}=-0.036(5)$
State $\mathrm{f}^{\prime}(\alpha) \approx e_{3} / e_{2} \approx e_{4} / e_{3}$

3 (i) Diff. $\sin y=x$
Use $\sin ^{2}+\cos ^{2}=1$ to A.G.
Justify +
(ii) Get $2 /\left(\sqrt{ }\left(1-4 x^{2}\right)\right.$
$+1 /\left(\sqrt{ }\left(1-y^{2}\right) \mathrm{d} y / \mathrm{d} x=0\right.$
Find $y=\sqrt{ } 3 / 2$
Get $-2 \sqrt{ } 3 / 3$

M1 Reasonable 3 term attempt e.g. allow $2 x^{2} / 2$
A1 cao
SC Reasonable attempt at $\mathrm{f}^{\prime}(0)$ and $\mathrm{f}^{\prime \prime}(0)$ M1 Get $1+2 x+2 x^{2}$ cao A1

M1 Attempt to sub for $\mathrm{e}^{2 x}$ and $\mathrm{e}^{-2 x}$
A1 $\sqrt{ }$ On their part (i)
M1 Use of log law in reasonable expression
A1 cao
SC Use of Maclaurin for $\mathrm{f}^{\prime}(x)$ and $\mathrm{f}^{\prime \prime}(x)$ M1
One correct
Attempt $f(0), f^{\prime}(0)$ and $f^{\prime \prime}(0) \quad$ M1
Get cao

B1 $\quad x_{2}$ correct; allow answers which round
B1 $\sqrt{ }$ For any other from their working
B1 For all three correct
M1 Subtraction and division on their values; allow \pm
A1 Or answers which round to -0.031 and -0.037
$B 1 \sqrt{ }$ Using their values but only if approx. equal; allow differentiation if correct conclusion; allow gradient for f^{\prime}

M1 Implicit diff. to $\mathrm{d} y / \mathrm{d} x= \pm(1 / \cos y)$
A1 Clearly derived; ignore \pm
B1 e.g graph/ principal values
M1 Attempt implicit diff. and chain rule; allow e.g. $\left(1-2 x^{2}\right)$ or $a / \sqrt{ }\left(1-4 x^{2}\right)$

A1
M1 Method leading to y
A1 $\sqrt{ }$ AEEF; from their a above
SC Write $\sin \left(1 / 2 \pi-\sin ^{-1} 2 x\right)=\cos \left(\sin ^{-1} 2 x\right)$ B1
Attempt to diff. as above M1
Replace x in reasonable $\mathrm{d} y / \mathrm{d} x$ and attempt to tidy M1
Get result above A1

4 (i) Let $x=\cosh \theta$ such that
M1
$\mathrm{d} x=\sinh \theta \mathrm{d} \theta$
Clearly use $\cosh ^{2}-\sinh ^{2}=1$
(ii) Replace $\cosh ^{2} \theta$

Attempt to integrate their expression
Get $1 / 4 \sinh 2 \theta+1 / 2 \theta(+c)$
Clearly replace for x to A.G.
A1
B1

A1 Clearly derive A.G.
M1 Allow $a(\cosh 2 \theta \pm 1)$
M1 Allow $b \sinh 2 \theta \pm a \theta$

Condone no $+c$
SC Use expo. def ${ }^{\text {n }}$; three terms M1
Attempt to integrate M1
Get $1 / 8\left(\mathrm{e}^{2 \theta}-\mathrm{e}^{-2 \theta}\right)+1 / 2 \theta(+c) \quad \mathrm{A} 1$
Clearly replace for x to A.G. B1
5 (i) (a) State $(x=) \alpha$
B1
None of roots
B1
(b) Impossible to say All roots can be derived

B1
B1 Some discussion of values close to 1 or 2 or central leading to correct conclusion

B1 Correct x for $y=0$; allow $0.591,1.59,2.31$
B1 Turning at $(1,0.8)$ and/or $(1,-0.8)$
B1 Meets x-axis at 90°
B1 Symmetry in x-axis; allow

6 (i) Correct definitions used
Attempt at $\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)^{2} / 4+1$
Clearly derive A.G.
B1
M1
A1
(ii) Form a quadratic in $\sinh x$ M1
Attempt to solve
Get $\sinh x=-1 / 2$ or 3
Use correct \ln expression
Get $\ln (-1 / 2+\sqrt{5} / 2)$ and $\ln (3+\sqrt{ } 10)$
A1
M1 A1

7 (i) $\mathrm{O} P=3+2 \cos \alpha$
$\mathrm{O} Q=3+2 \cos (1 / 2 \pi+\alpha)$

$$
=3-2 \sin \alpha
$$

Similarly $\mathrm{O} R=3-2 \cos \alpha$

$$
\mathrm{OS}=3+2 \sin \alpha
$$

Sum $=12$

A1

(ii) Correct formula with attempt at r^{2}

Square r correctly A1
Attempt to replace $\cos ^{2} \theta$ with M1
$a(\cos 2 \theta \pm 1)$
Integrate their expression
Get ${ }^{11 \pi / 4}-1$

A1 $\sqrt{ }$ Need three terms
A1 cao

8 (i) Area $=\int 1 /(x+1) \mathrm{d} x$
Use limits to $\ln (n+1)$
Compare area under curve to areas
of rectangles
Sum of areas $=1 x(1 / 2+1 / 3+\ldots+\quad M$
$1 /(n+1))$
Clear detail to A.G.
(ii) Show or explain areas of rectangles above curve Areas of rectangles (as above) > area under curve
(iii) Add 1 to both sides in (i) to make $\sum\left({ }^{1} / r\right)$
Add ${ }^{1 /(n+1)}$ to both sides in (ii) to make $\sum\left({ }^{1} / r\right)$
(iv) State divergent

Explain e.g. $\ln (n+1) \rightarrow \infty$ as $n \rightarrow \infty$
B1

9 (i) Require denom. $=0$
Explain why denom. $\neq 0$
B1
B1
(ii) Set up quadratic in x

M1
Get $2 y x^{2}-4 x+\left(2 a^{2} y+3 a\right)=0$
Use $b^{2} \geq 4 a c$ for real x
Attempt to solve their inequality
Get $y>1 / 2 a$ and $y<-2 / a$
B1

B1

A1

B1 Include or imply correct limits
B1 Justify inequality
M1 Sum seen or implied as $1 \mathrm{x} y$ values
A1 Explanation required e.g. area of last rectangle at $x=n$, area under curve to $x=n$

A1 First and last heights seen or implied; A.G.

B1 Must be clear addition
B1 Must be clear addition; A.G.

B1 Allow not convergent

31 Attempt to solve, explain always >0 etc.

M1 Produce quadratic inequality in y from their quad.; allow use of $=$ or $<$
M1 Factors or formula
A1 Justified from graph
SC Attempt diff. by quot./product rule M1
Solve $\mathrm{d} y / \mathrm{d} x=0$ for two values of $x \quad$ M1
Get $x=2 a$ and $x=-a / 2$
A1
Attempt to find two y values M1
Get correct inequalities (graph used to justify them) A1
(iii) Split into two separate integrals

Get $k \ln \left(x^{2}+a^{2}\right)$
Get $k_{1} \tan ^{-1}(x / a)$
Use limits and attempt to simplify
M1

Get $\ln 2.5-1.5 \tan ^{-1} 2+3 \pi / 8$

Or $p \ln \left(2 x^{2}+2 a^{2}\right)$
k_{1} not involving a

A1 AEEF
SC Sub. $x=a \tan \theta$ and $\mathrm{d} x=a \sec ^{2} \theta \mathrm{~d} \theta \quad$ M1
Reduce to $\int p \tan \theta-p_{1} \mathrm{~d} \theta \quad \mathrm{~A} 1$
(ignore limits here)
Integrate to $p \ln (\sec \theta)-p_{1} \theta$ A1
Use limits (old or new) and attempt to simplify
Get answer above A1

4727 Further Pure Mathematics 3

1 (i) (a)	($n=$) 3	B1 1	For correct n
(b)	$(n=) 6$	B1 1	For correct n
(c)	$(n=) 4$	B1 1	For correct n
(ii)	$(n=) 4,6$	B1	For either 4 or 6
		B1 2	For both 4 and 6 and no extras
			Ignore all $n \ldots 8$
			SR B0 B0 if more than 3 values given, even if they include 4 or 6
	5		
2 (i)	$\frac{\sqrt{3}+i}{\sqrt{3}-i} \times \frac{\sqrt{3}+i}{\sqrt{3}+i}=\frac{1}{2}+\frac{1}{2} \mathrm{i} \sqrt{3}$	M1	For multiplying top and bottom by complex conjugate
	$O R \frac{\sqrt{3}+\mathrm{i}}{\sqrt{3}-\mathrm{i}}=\frac{2 \mathrm{e}^{\frac{1}{6} \pi \mathrm{i}}}{2 \mathrm{e}^{-\frac{1}{6} \pi \mathrm{i}}}$		$O R$ for changing top and bottom to polar form
	$=(1) \mathrm{e}^{\frac{1}{3} \pi \mathrm{i}}$	A1	For ($r=$) 1 (may be implied)
		A1 3	For $(\theta=) \frac{1}{3} \pi$
			SR Award maximum A1 A0 if $\mathrm{e}^{\mathrm{i} \theta}$ form is not seen
(ii)	$\left(\mathrm{e}^{\frac{1}{3} \pi \mathrm{i}}\right)^{6}=\mathrm{e}^{2 \pi \mathrm{i}}=1 \Rightarrow \quad(n=) 6$	M1 A1 2	For use of $\mathrm{e}^{2 \pi \mathrm{i}}=1, \mathrm{e}^{\mathrm{i} \pi}=-1$, $\sin k \pi=0$ or $\cos k \pi= \pm 1$ (may be implied) For $(n=) 6$ SR For $(n=) 3$ only, award M1 A0
		5	
3 (i)	$\begin{aligned} \mathbf{n} & =[2,1,3] \times[3,1,5] \\ & =[2,-1,-1] \end{aligned}$	M1	For using direction vectors and attempt to find vector product For correct direction (allow multiples)
(ii)	$d=\frac{[5,2,1] \cdot[2,-1,-1]}{\sqrt{6}}$	B1	For $(\mathbf{A B}=)[5,2,1]$ or any vector joining lines
		M1	For attempt at evaluating AB.n
		M1	
	$=\frac{7}{\sqrt{6}}=\frac{7}{6} \sqrt{6}=2.8577$	A1 4	For correct distance
		6	

4	$m^{2}+4 m+5(=0) \Rightarrow m=\frac{-4 \pm \sqrt{16-20}}{2}$	M1	For attempt to solve correct auxiliary equation
	$=-2 \pm \mathrm{i}$	A1	For correct roots
	CF $=\mathrm{e}^{-2 x}(C \cos x+D \sin x)$	A1 $\sqrt{ }$	For correct CF (here or later). f.t. from m AEtrig but not forms including $\mathrm{e}^{\mathrm{i} x}$
	$\mathrm{PI}=p \sin 2 x+q \cos 2 x$	B1	For stating a trial PI of the correct form
	$\begin{aligned} & y^{\prime}=2 p \cos 2 x-2 q \sin 2 x \\ & y^{\prime \prime}=-4 p \sin 2 x-4 q \cos 2 x \end{aligned}$	M1	For differentiating PI twice and substituting into the DE
	$\begin{aligned} & \cos 2 x(-4 q+8 p+5 q) \\ & \quad+\sin 2 x(-4 p-8 q+5 p)=65 \sin 2 x \end{aligned}$	A1	For correct equation
	$\left.\begin{array}{rl} 8 p+q & =0 \\ p-8 q & =65 \end{array}\right\} \quad p=1, \quad q=-8$	M1	For equating coefficients of $\cos 2 x$ and $\sin 2 x$ and attempting to solve for p and/or q
	$\mathrm{PI}=\sin 2 x-8 \cos 2 x$	A1	For correct p and q
	$\begin{aligned} \Rightarrow & y= \\ & \mathrm{e}^{-2 x}(C \cos x+D \sin x)+\sin 2 x-8 \cos 2\end{aligned}$	B1V	For using GS $=\mathrm{CF}+\mathrm{PI}$, with 2 arbitrary constants in CF and none in PI

6 (i) METHOD 1
Use 2 of
$[-4,2,0],[0,0,3],[-4,2,3],[4,-2,3]$
M1 For finding vector product of 2 appropriate vectors in plane $A C G E$
$\mathbf{n}=k[1,2,0]$
or multiples

Use
$A[4,0,0], C[0,2,0], G[0,2,3]$ OR $E[4,0,3]$
r. $[1,2,0]=4$

A1 4 For correct equation. AEF in this form
METHOD 2
$\mathbf{r}=[4,0,0]+\lambda[-4,2,0]+\mu[0,0,3]$
M1 For writing plane in 2-parameter form
$\Rightarrow x=4-4 \lambda, y=2 \lambda, \quad z=3 \mu$
A1 For 3 correct equations
$x+2 y=4$
M1 For eliminating λ (and μ)
$\Rightarrow \mathbf{r} \cdot[1,2,0]=4 \ldots \ldots$
(ii) $\quad \theta=\cos ^{-1} \frac{|[3,0,-4] \cdot[1,2,0]|}{\sqrt{3^{2}+0^{2}+4^{2}} \sqrt{1^{2}+2^{2}+0^{2}}}$
$\mathrm{B} 1 \sqrt{ }$ For using correct vectors (allow multiples). f.t.
M1 from n
M1 For using scalar product
For multiplying both moduli in denominator
$\theta=\cos ^{-1} \frac{3}{5 \sqrt{5}}=74.4^{\circ}$
A1 4 For correct angle
(74.435..., 1.299...)
(iii) $A M:(\mathbf{r}=)[4,0,0]+t[-2,2,3] \quad$ M1 For obtaining parametric expression for $A M$
$($ or $[2,2,3]+t[-2,2,3]) \quad$ A1 For correct expression seen or implied
$3(4-2 t)-4(3 t)=0 \quad$ M1 For finding intersection of $A M$ with $A C G E$
(or $3(2-2 t)-4(3+3 t)=0)$
$t=\frac{2}{3}\left(\right.$ or $\left.t=-\frac{1}{3}\right) O R \mathbf{w}=\left[\frac{8}{3}, \frac{4}{3}, 2\right] \quad$ A1 \quad For correct $t O R$ position vector
$A W: W M=2: 1$
A1 5 For correct ratio
13
7 (i) $x+y-a \in \mathrm{R} \quad \mathrm{B} 1 \quad$ For stating closure is satisfied
(a)
$(x * y) * z=(x+y-a) * z=x+y+z-2 a \quad$ M1 \quad For using 3 distinct elements bracketed both
$x *(y * z)=x *(y+z-a)=x+y+z-2 a$
A1 For obtaining the same result twice for associativity
SR 3 distinct elements bracketed once, expanded, and symmetry noted scores M1 A1
$x+e-a=x \Rightarrow e=a$
B1 \quad For stating identity $=a$
M1 For attempting to obtain inverse of x
$x+x^{-1}-a=a \Rightarrow x^{-1}=2 a-x$
A1 6 For obtaining inverse $=2 a-x$
$O R$ for showing that inverses exist, where $x+x^{-1}=2 a$
(b) $x+y-a=y+x-a \Rightarrow$ commutative
(b)
x order $2 \Rightarrow x^{*} x=e \Rightarrow 2 x-a=e$
(c) $\Rightarrow 2 x-a=a \Rightarrow x=a=e$

OR $x=x^{-1} \Rightarrow x=2 a-x \Rightarrow x=a=e$
\Rightarrow no elements of order 2

B1 $\mathbf{1}$ For stating commutativity is satisfied, with justification
M1 For obtaining equation for an element of order A1 22

For solving and showing that the only solution is the identity (which has order 1)
$O R$ For proving that there are no self-inverse elements (other than the identity)
(ii)
e.g. $2+1-5=-2 \notin \mathrm{R}^{+}$
\Rightarrow not closed
e.g. $2 \times 5-11=-1 \notin \mathrm{R}^{+}$
\Rightarrow no inverse

M1 For attempting to disprove closure
A1 For stating closure is not necessarily satisfied ($0<x+y$, 5 required)
M1 For attempting to find an element with no inverse
A1 4 For stating inverse is not necessarily satisfied ($x \ldots 10$ required)

13

8 (i) $\quad \sin \theta=\frac{1}{2 \mathrm{i}}\left(\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta}\right)$
$\sin ^{6} \theta=$
z may be used for $\mathrm{e}^{\mathrm{i} \theta}$ throughout
B1 For expression for $\sin \theta$ seen or implied
M1 \quad For expanding $\left(e^{i \theta}-e^{-i \theta}\right)^{6}$
At least 4 terms and 3 binomial coefficients required.
$-\frac{1}{64}\left(\mathrm{e}^{6 i \theta}-6 \mathrm{e}^{4 i \theta}+15 \mathrm{e}^{2 \mathrm{i} \theta}-20+15 \mathrm{e}^{-2 i \theta}-6 \mathrm{e}^{-4 i \theta}+\mathrm{e}^{-6 \mathrm{ii} \mathrm{\theta}}\right) \quad$ For correct expansion. Allow $\frac{ \pm(\mathrm{i})}{64}(\cdots \cdots)$
A1
$=-\frac{1}{64}(2 \cos 6 \theta-12 \cos 4 \theta+30 \cos 2 \theta-20) \quad$ M1 For grouping terms and using multiple angles
$\sin ^{6} \theta=-\frac{1}{32}(\cos 6 \theta-6 \cos 4 \theta+15 \cos 2 \theta-10) \quad$ A1 5 For answer obtained correctly AG
(ii) $\cos ^{6} \theta=O R \sin ^{6}\left(\frac{1}{2} \pi-\theta\right)=\quad$ M1 For substituting $\left(\frac{1}{2} \pi-\theta\right)$ for θ throughout
$-\frac{1}{32}(\cos (3 \pi-6 \theta)-6 \cos (2 \pi-4 \theta)+15 \cos (\pi-2 \theta)-10)$
A1 For correct unsimplified expression
$\cos ^{6} \theta=\frac{1}{32}(\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10)$ A1 3 For correct expression with $\cos n \theta$ terms AEF
(iii) $\int_{0}^{\frac{1}{4} \pi} \frac{1}{32}(-2 \cos 6 \theta-30 \cos 2 \theta) d \theta$
$=-\frac{1}{16}\left[\frac{1}{6} \sin 6 \theta+\frac{15}{2} \sin 2 \theta\right]_{0}^{\frac{1}{4} \pi}$
$=-\frac{11}{24}$

B1 $\sqrt{ }$ For correct integral. f.t. from $\sin ^{6} \theta-\cos ^{6} \theta$
M1 For integrating $\cos n \theta, \sin n \theta$ or $\mathrm{e}^{\mathrm{i} n \theta}$
A1 $\sqrt{ }$ For correct integration. f.t. from integrand
A1 4 For correct answer www

4728 Mechanics 1

1 (i)	$\begin{aligned} & 0.5 \times 6=0.5 \times 0.8+4 \mathrm{~m} \\ & \mathrm{~m}=0.65 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \end{array}$	Uses CoLM If g used throughout, possible 3 marks
(ii)	$\begin{aligned} & 0.5 \times 6=-0.5 \times 0.8+4 \mathrm{~m} \\ & \mathrm{~m}=0.85 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{array}$	After momentums opposite signs If g used throughout, 0 marks
2 (i)	$\begin{aligned} \mathrm{T} & =400 \mathrm{~N} \\ \mathrm{D} & =400+900 \\ & =1300 \mathrm{~N} \end{aligned}$	B1 M1 A1 [3]	Order immaterial Or T + 900; sign correct
(ii)	$\begin{aligned} & 500 \times 0.6=\mathrm{T}-400 \\ & \mathrm{~T}=700 \mathrm{~N} \\ & 1250 \times 0.6=\mathrm{D}-900-700 \\ & \mathrm{D}=2350 \mathrm{~N} \\ & O R \\ & (500+1250) \times 0.6=\mathrm{D}-400-900 \\ & \mathrm{D}=2350 \mathrm{~N} \end{aligned}$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1ft } \\ \text { A1 } \\ \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[6]} \\ \hline \end{array}$	(Award M marks even if g included in ma terms. M marks require correct number forces) Uses N2L one object only Uses N2L other object $\mathrm{ftcv}(\mathrm{T}$ from (ii)); allow T instead of its value Uses N2L for both objects
3 (i)	$\begin{aligned} & 5 \cos 30 \text { or } 5 \sin 60 \text { or } 4.33 \\ & 5 \cos 60 \text { or } 5 \sin 30 \text { or } 2.5 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { B1 } \\ \text { B1 } \\ {[2]} \end{array}$	Order immaterial, accept $+/$. May be awarded in (ii) if no attempt in (i)
(ii)	$\begin{aligned} & 7-4.33(=2.67) \text { and } 9-2.5(=6.5) \\ & \mathrm{R}^{2}=2.67^{2}+6.5^{2} \\ & \mathrm{R}=7.03 \\ & \tan \theta=6.5 / 2.67 \\ & \theta=67.6,67.7 \text { degrees } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1* } \\ \text { A1 } \\ \text { D*M } \\ 1 \\ \text { A1 } \\ \text { D*M } \\ 1 \\ \text { A1 } \\ \hline \end{array}$	Subtracts either component from either force 3sf or better Valid trig for correct angle 3 sf or better
4 (i)	$\begin{aligned} & 20 \cos 30 \\ & 20 \cos 30=3 \mathrm{a} \\ & \mathrm{a}=5.77 \mathrm{~ms}^{-2} \end{aligned}$	$\begin{array}{\|c\|} \hline \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{array}$	Resolves 20 (accept $20 \sin 30$) Uses N2L horizontally, accept g in ma term
(ii)	$\begin{aligned} & \mathrm{R}=3 \mathrm{x} 9.8+20 \sin 30(=39.4) \\ & \mathrm{F}=20 \cos 30(=17.3) \\ & 17.3=39.4 \mu \\ & \mu=0.44 \end{aligned}$	M1 A1 B1 M1 A1 $[5]$	Resolves vertically (accept - , \cos if \sin in i); correct no. terms Correct (Neither R nor F need be evaluated) Uses $F=\mu \mathrm{R}$

5 (i)	$\begin{aligned} & \mathrm{V}=\int 0.8 \mathrm{tdt} \\ & \mathrm{v}=0.8 \mathrm{t}^{2} / 2(+\mathrm{c}) \\ & \mathrm{t}=0, \mathrm{v}=13,(\mathrm{c}=13) \\ & \mathrm{v}=0.4 \times 6^{2}(+\mathrm{c}) \\ & \mathrm{v}=27.4 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \hline \text { M1* } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { D*M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	Attempt at integration Award if c omitted
(ii)	$\begin{aligned} & \mathrm{s}=\int 0.4 \mathrm{t}^{2}(+\mathrm{c}) \mathrm{dt} \\ & \mathrm{~s}=0.4 \mathrm{t}^{3} / 3+13 \mathrm{t}(+\mathrm{k}) \\ & \mathrm{t}=0, \mathrm{~s}=0,(\mathrm{k}=0) \\ & \mathrm{s}=0.4 \times 6^{3} / 3+13 \times 6 \\ & \mathrm{~s}=106.8 \mathrm{~m} \end{aligned}$	M1* A1ft M1 D*M1 A1 [5]	Attempt at integration of $\mathrm{v}(\mathrm{t})$ $\mathrm{ftcv}(\mathrm{v}(\mathrm{t})$ in (i)) Allow if $\mathrm{k}=0$ assumed. Accept 107 m .
(iii)	Fig. 2 Fig. 1 has zero initial velocity/gradient Fig. 3 does not have a increasing velocity/gradient	B1 [1] B1 B1 [2]	
$\begin{array}{cc} \hline 6 & \text { (i) } \\ & a \\ & b \end{array}$	$\begin{aligned} & 2.5=9.8 \mathrm{t}^{2} / 2 \\ & \mathrm{t}=0.714 \mathrm{~s} \text { or better or } 5 / 7 \\ & \mathrm{v}^{2}=2 \times 9.8 \times 2.5 \text { OR } \mathrm{v}=9.8 \times 0.714 \\ & \mathrm{v}=7 \mathrm{~ms}^{-1} \text { or } 6.99 \text { or art } 7.00 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ {[2]} \\ \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	Uses $s=0+/-\mathrm{gt}^{2} / 2$ Not awarded if - sign "lost" Uses $\mathrm{v}^{2}=0+/-2 \mathrm{gs}$ or $\mathrm{v}=\mathrm{u}+/-\mathrm{gt}$ Not awarded if - sign "lost"
(ii)	$\begin{aligned} & \mathrm{R}=2 \times 9.8 \sin 60(=16.97=17) \\ & \mathrm{F}=0.2 \times 16.97(=3.395 \text { or } 3.4) \end{aligned}$ Cmpt weight $=2 \times 9.8 \cos 60(=9.8)$ $2 a=9.8-3.395$ $\mathrm{a}=3.2 \mathrm{~ms}^{-2}$ Distance down ramp $=5 \mathrm{~m}$ $\begin{aligned} & v^{2}=2 \times 3.2 \times 5 \\ & v=5.66 \text { or } 5.7 \end{aligned}$	B1 M1 A1ft B1 M1 A1ft B1 M1 A1ft [9]	$\begin{aligned} & \text { With incorrect angle, e.g } \\ & \mathrm{R}=2 \mathrm{x} 9.8 \cos 60(=9.8) \mathrm{B} 0 \\ & \mathrm{~F}=0.2 \times 9.8(=1.96) \mathrm{M} 1 \mathrm{~A} 1 \sqrt{ } \\ & \mathrm{Cmpt} \mathrm{wt}=2 \times 9.8 \sin 60(=16.97) \mathrm{B} 0 \\ & 2 \mathrm{a}=16.97-1.96 \mathrm{M} 1 \\ & \mathrm{a}=7.5 \mathrm{~A} 1 \sqrt{ } \quad \mathrm{ft} \operatorname{cv}(\mathrm{R} \text { and Cmpt weight }) \\ & \mathrm{v}^{2}=2 \times 7.5 \times 5 \\ & \mathrm{v}=8.66 \text { or } 8.7 \mathrm{~A} 1 \sqrt{ } \quad \mathrm{ft} \operatorname{cv}(\sqrt{ }(10 \mathrm{a})) \end{aligned}$
7 (i)	$\begin{aligned} & \mathrm{p}=4-2 \times 0.4(=3.2) \\ & \mathrm{q}=1-2 \times 0.4(=0.2) \\ & 0.7 \times 3.2-0.3 \times 0.2=(1 \mathrm{x}) \mathrm{v} \\ & \mathrm{v}=2.18 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1 A1 M1 A1 A1 $[6]$	Use of $v=u-0.4 t$ Accept $\mathrm{q}=-0.2$ from $-1+2 * 0.4$ Uses CoLM on reduced velocities

(ii) a b	$\begin{aligned} & 0=1-0.4 \mathrm{t} \\ & \mathrm{t}=2.5 \mathrm{~s} \end{aligned}$ $\begin{aligned} & \mathrm{P}=4 \times 3-0.5 \times 0.4 \times 3^{2} \\ & \mathrm{Q}=1 \times 2.5-0.5 \times 0.4 \times 2.5^{2} \\ & \mathrm{PQ}=10.2+1.25=11.45 \mathrm{~m} \end{aligned}$	B1 B1 B1 [3] M1 A1 M1 A1 A1 A1 [6]	Straight line with larger y intercept slopes towards t axis, but does not reach it. Straight line with negative y intercept slopes towards t axis, and gets to t axis before other line ends. SR if $t=2$ in ii give B1 if line stops before axis Finds when Q comes to rest (any method) Uses $\mathrm{s}=\mathrm{ut}-0.4 \mathrm{t}^{2} / 2$ (nb $\quad 0^{(2)}=1^{(2)}-0.4 \mathrm{Q}^{2} / 2 \quad \mathrm{~B} 1$; convincing evidence (graph to scale, or calculation that Q comes to rest and remains at rest at t less than 3, M1A1;graph A1 needs -ve v intercept) SR if $t=2$ in iib, allow M1 for $s=u t-0.4 t^{2} / 2$ And A1 for $\mathrm{PQ}=8.4$

Alternative for Q3 where 7 N and 9 N forces combined initially

3 (i)	$\begin{aligned} & 5 \cos 30 \text { or } 5 \sin 60 \text { or } 4.33 \\ & 5 \cos 60 \text { or } 5 \sin 30 \text { or } 2.5 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	Order immaterial, accept +/-. May be awarded in (ii) if no attempt in (i)
(ii)	$\begin{aligned} & \mathrm{Z}^{2}=7^{2}+9^{2}(=130, \mathrm{Z}=11.4017 \ldots) \\ & \text { cos(angle of } \mathrm{Z} \text { with y axis) }=9 / 11.4017 . . \\ & \text { angle of } \mathrm{Z} \text { with } \mathrm{y} \text { axis }=37.8746 \ldots \\ & \text { Angle opposite } \mathrm{R} \text { in triangle of forces }= \\ & 180-(37.8746+90+30) \\ & =22.125(\text { Accept } 22) \\ & \mathrm{R}^{2}=5^{2}+11.4017^{2}-2 \times 5 \times 11.4017 \cos 22.125 \\ & \mathrm{R}(=7.0269)=7.03 \mathrm{~N} \\ & 11.4017^{2}=5^{2}+7.0269^{2}-2 \times 5 \times 7.0269 \cos \mathrm{~A} \\ & (\mathrm{~A}=142.33) \\ & \text { Angle between } \mathrm{R} \text { and y axis }=142.33-30- \\ & 90(=22.33) \\ & \theta(=90-22.33)=67.7 \text { degrees } \end{aligned}$	M1* A1 D*M1 A1 D*M1 A1 [6]	Z is resultant of 7 N and 9 N forces only R is resultant of all 3 forces Complete method Cosine rule to find R Or Sine Rule. A is angle between R and 5 N forces Complete method θ is angle between R and x axis

4729 Mechanics 2

$\mathbf{1}$	$(20 \sin \theta)^{2}=2 \times 9.8 \times 17$	M1	or B2 for $\operatorname{maxht}=v^{2} \sin ^{2} \theta / 2 \mathrm{~g}$
		A1	
	$\sin \theta=\sqrt{ }(2 \times 9.8 \times 17) \div 20$	M1	subst. values in above
	$\theta=65.9^{\circ}$	A1 $\mathbf{4}$	

$\mathbf{2}$	$\bar{x}=8$	B1	
	T $\sin 30^{\circ} \times 12=8 \times 2 \times 9.8$	M1	ok if g omitted
		A1 ft	ft their \bar{x}
	$\mathrm{~T}=26.1$	A1 $\mathbf{4}$	

3 (i)	$140 \times \mathrm{X}=40 \times 70$	M1	
	$\mathrm{X}=20 \mathrm{~N}$	A1	
	at $F 20 \mathrm{~N}$ to the right	B1	inspect diagram
	at $G 20 \mathrm{~N}$ to the left	B1 4	SR B1 for correct directions only
(ii)	$\mathrm{d}=(2 \times 40 \sin \Pi / 2) \div 3 \Pi / 2$	M1	must be radians
		A1	
	$\mathrm{d}=17.0$	A1	16.98 160/3П (8/15П m)
	$70 \bar{y}=100 \times 60+217 \times 10$	M1	
		A1 ft	ft $200+$ their d or $2+$ their d (m)
	$\bar{y}=117$	A1 6	116.7 10

4 (i)	$P / 10-800 \mathrm{x} 9.8 \sin 12^{\circ}-100 k=800 \times 0.25$	M1	$\mathrm{P} / 10=\mathrm{D}_{1}$ ok	
		A1	D_{1} ok	
	$P / 20-400 k=800 \times 0.75$	M1	$\mathrm{P} / 20=\mathrm{D}_{2}$ ok	
		A1	$\mathrm{D}_{1}=2 \mathrm{D}_{2}$ needed for this A1	
	solving above	M1		
	$k=0.900$	A1	AG 0.9000395	
	$P=19200$	A1 7	or 19.2 kW (maybe in part (ii))	
(ii)	$0.9 v^{2}=28800 / v$	M1	ok if 19200/v	
	solving above	M1 *	$\left(v^{3}=32000\right)$	
	$v=31.7 \mathrm{~m} \mathrm{~s}^{-1}$	A1 3		10

$\mathbf{5}$ (i)	$0.8 S$	B1	vert comp of S
	$0.6 T$	B1	vert comp of T
	$S \cos \alpha=T \cos \beta+0.2 \times 9.8$	M1	
	$0.8 S=0.6 T+1.96$	aef	A1 $\mathbf{4}$
(ii)	$0.6 S$	AG $\quad 4 S=3 T+9.8$	
	$0.8 T$	B1	
	$0.2 \times 0.24 \times 8^{2}$	B1	$3.072 \quad 384 / 125$
	$S \sin \alpha+T \sin \beta=0.2 \times 0.24 \times 8^{2}$	M1	must be $m r \omega^{2}$
	$6 S+8 T=30.72$	A1	aef
	eliminate S or T	M1	
	$S=3.4 \mathrm{~N}$	A1	3.411
	$T=1.3 \mathrm{~N}$	A1 $\mathbf{8}$	1.282

6 (i)	$\mathrm{x}=\mathrm{v} \cos \theta \mathrm{t}$	B1	
	$\mathrm{y}=\mathrm{v} \sin \theta \mathrm{t}-1 / 2 \times 9.8 \mathrm{t}^{2}$	B1	or g
	substitute $\mathrm{t}=\mathrm{x} / \mathrm{v} \cos \theta$	M1	
	$\mathrm{y}=\mathrm{xtan} \theta-4.9 \mathrm{x}^{2} / \mathrm{v}^{2} \cos ^{2} \theta$	A1 4	AG
(ii)	Sub $\mathrm{y}=-h, \mathrm{x}=h, \mathrm{v}=14, \theta=30$	M1	signs must be correct
	$-h=h / \sqrt{3}-h^{2} / 30$	A1	aef
	solving above	M1	
	$h=47.3$	A1 4	
(iii)	$\begin{aligned} & v_{v}{ }^{2}=\left(14 \sin 30^{\circ}\right)^{2}-2 \times 9.8 \times(-47.3) \\ & \text { (double negative needed) } \mathrm{ft} \text { their }-47.3 \end{aligned}$	M1	$14 \cos 30^{\circ} \mathrm{t}=47.3 \mathrm{ft} \& \mathrm{v}_{\mathrm{v}}=14 \sin 30^{\circ}-9.8 \mathrm{t}$
		A1 ft	$\mathrm{t}=3.90$ (or dy/dx $=1 / \sqrt{3}-\mathrm{x} / 15$ etc ft)
	$\nu_{\mathrm{v}}= \pm 31.2$	A1	$v_{v}= \pm 31.2(\tan \alpha=1 / \sqrt{3}-47.3 / 15)$
	$\tan ^{-1}\left(31.2 / 14 \cos 30^{\circ}\right)$	M1	$\tan ^{-1}\left(31.2 / 14 \cos 30^{\circ}\right)$
	$\alpha=68.8^{\circ}$ below horiz/21.2 ${ }^{\circ}$ to d'vert.	A1 5	68.8\% \ldots...
(iv)	$1 / 2 \mathrm{mx} 14^{2}+\mathrm{mx} 9.8 \times 47.3=1 / 2 \mathrm{mv}^{2}$	M1	$\mathrm{ft}\left(12.1^{2}+31.2^{2}\right)$
	$\mathrm{v}=33.5$	A1 2	33.5

4730 Mechanics 3

1 (i)	For triangle sketched with sides (0.5)2.5 and (0.5)6.3 and angle θ correctly marked OR Changes of velocity in i and j directions $2.5 \cos \theta-6.3$ and $2.5 \sin \theta$, respectively. For sides $0.5 \times 2.5,0.5 \times 6.3$ and 2.6 (or $2.5,6.3$ and 5.2) OR $-2.6 \cos \alpha=0.5(2.5 \cos \theta-6.3)$ and $2.6 \sin \alpha=0.5(2.5 \sin \theta)$ $\left[5.2^{2}=2.5^{2}+6.3^{2}-2 \times 2.5 \times 6.3 \cos \theta \quad\right.$ OR $2.6^{2}=0.5^{2}\left\{(2.5 \cos \theta-6.3)^{2}+(2.5 \sin \theta)^{2}\right]$ $\cos \theta=0.6$	B1 B1ft M1 A1 [4]	May be implied in subsequent working. May be implied in subsequent working. For using cosine rule in triangle or eliminating α. AG
(ii)	$\begin{aligned} \sin \alpha=2.5 \times 0.8 / 5.2 & \text { OR } \\ -2.6 \cos \alpha & =0.5(2.5 \times 0.6-6.3) \end{aligned}$ Impulse makes angle of 157° or 2.75° with original direction of motion of P .	M1 A1 M1 A1 [4]	For appropriate use of the sine rule or substituting for θ in one of the above equations in θ and α For evaluating $(180-\alpha)^{\circ}$ or $(\pi-\alpha)^{c}$ SR (relating to previous 2 marks; max 1 mark out of 2) $\alpha=23^{\circ} \text { or } 0.395^{\mathrm{C}}$

2 (i)	$\begin{aligned} & {[70 \times 2=4 \mathrm{X}-4 \mathrm{Y}]} \\ & \mathrm{X}-\mathrm{Y}=35 \end{aligned}$		For taking moments about A for AB (3 terms needed)
(ii)	$\begin{aligned} & {[110 \times 3=-4 X+6 Y]} \\ & 2 X-3 Y+165=0 \end{aligned}$	A1 [2]	For taking moments about C for BC (3 terms needed) AG
(iii)	$X=270, Y=235$ Magnitude is 358 N	M1 A1ft M1 Alft [4]	For attempting to solve for X and Y ft any (X, Y) satisfying the equation given in (ii) For using magnitude $=\sqrt{X^{2}+Y^{2}}$ ft depends on all 4 Ms

3 (i)	$\begin{aligned} & {\left[\mathrm{T}_{\mathrm{A}}=(24 \times 0.45) / 0.6, \mathrm{~T}_{\mathrm{B}}=(24 \times 0.15) / 0.6\right]} \\ & \mathrm{T}_{\mathrm{A}}-\mathrm{T}_{\mathrm{B}}=18-6=12=\mathrm{W} \rightarrow \mathrm{P} \text { in equil'm. } \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	For using $\mathrm{T}=\lambda \mathrm{x} / \mathrm{L}$ for PA or PB
(ii)	Extensions are $0.45+\mathrm{x}$ and $0.15-\mathrm{x}$ Tensions are $18+40 \mathrm{x}$ and $6-40 \mathrm{x}$	B1 B1 [2]	AG From $\mathrm{T}=\lambda \mathrm{x} / \mathrm{L}$ for PA and PB
(iii)	$\begin{aligned} & {[12+(6-40 \mathrm{x})-(18+40 \mathrm{x})=12 \ddot{x} / \mathrm{g}]} \\ & \ddot{x}=-80 \mathrm{gx} / 12 \rightarrow \text { SHM } \\ & \text { Period is } 0.777 \mathrm{~s} \end{aligned}$	M1 A1 A1 [3]	For using Newton's second law (4 terms required) AG From Period $=2 \pi \sqrt{12 /(80 g)}$
(iv)	$\begin{aligned} & {\left[\mathrm{v}_{\text {max }}=0.15 \sqrt{80 \mathrm{~g} / \mathrm{l2}}\right.} \\ & \quad \text { or } \mathrm{v}_{\text {max }}=2 \pi \times 0.15 / 0.777 \\ & \text { or } 1 / 2(12 / \mathrm{g}) \mathrm{v}_{\text {max }}^{2}+\mathrm{mg}(0.15) \\ & \\ & \left.+24\left\{0.45^{2}+0.15^{2}-0.6^{2}\right\} /(2 \times 0.6)=0\right] \end{aligned}$ Speed is $1.21 \mathrm{~ms}^{-1}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ [2]	For using $\mathrm{v}_{\text {max }}=\mathrm{An}$ or $\mathrm{v}_{\text {max }}=2 \pi \mathrm{~A} / \mathrm{T}$ or conservation of energy (5 terms needed)

4 (i)	$\begin{aligned} & \text { Loss in } \mathrm{PE}=\mathrm{mg}(0.5 \sin \theta) \\ & {\left[1 / 2 \mathrm{mv}^{2}-1 / 23^{2}=m g(0.5 \sin \theta)\right]} \\ & \mathrm{v}^{2}=9+9.8 \sin \theta \end{aligned}$	$\begin{gathered} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{gathered}$	For using KE gain $=$ PE loss (3 terms required) AG
(ii)	$\begin{aligned} & \mathrm{a}_{\mathrm{r}}=18+19.6 \sin \theta \\ & {\left[\mathrm{ma}_{\mathrm{t}}=\mathrm{mg} \cos \theta\right]} \\ & \mathrm{a}_{\mathrm{t}}=9.8 \cos \theta \end{aligned}$	B1 M1 A1 [3]	Using $\mathrm{a}_{\mathrm{r}}=\mathrm{v}^{2} / 0.5$ For using Newton's second law tangentially
(iii)	$\begin{aligned} & {\left[\mathrm{T}-\mathrm{mg} \sin \theta=\mathrm{ma}_{\mathrm{r}}\right]} \\ & \mathrm{T}-1.96 \sin \theta=0.2(18+19.6 \sin \theta) \\ & \mathrm{T}=3.6+5.88 \sin \theta \\ & \theta=3.8 \end{aligned}$	M1 A1 A1 B1 [4]	For using Newton's second law radially (3 terms required) AG

5	Initial \mathbf{i} components of velocity for A and B are $4 \mathrm{~ms}^{-1}$ and $3 \mathrm{~ms}^{-1}$ respectively. $\begin{aligned} & 3 \times 4+4 \times 3=3 a+4 b \\ & 0.75(4-3)=b-a \\ & a=3 \end{aligned}$ Final \mathbf{j} component of velocity for A is $3 \mathrm{~ms}^{-1}$ Angle with l.o.c. is 45° or 135°	B1 M1 A1 M1 A1 M1 A1 B1 M1 A1ft [10]	May be implied. For using p.c.mmtm. parallel to l.o.c. For using NEL For attempting to find a Depends on all three M marks May be implied For using $\tan ^{-1}\left(v_{\mathbf{j}} / v_{\mathbf{i}}\right)$ for A ft incorrect value of a $(\neq 0)$ only
			SR for consistent sin/cos mix (max 8/10) $3 \times 3+4 \times 4=3 a+4 b \text { and }$ $\mathrm{b}-\mathrm{a}=0.75(3-4)$ M1 M1 as scheme and A1 for both equ's $\mathrm{a}=4 \mathrm{M} 1$ as scheme A1 j component for A is $4 \mathrm{~ms}^{-1} \mathrm{~B} 1$ Angle $\tan ^{-1}(4 / 4)=45^{\circ} \mathrm{M} 1$ as scheme A1

6(i)	Initial speed in medium is $\sqrt{2 g \times 10}(=14)$ $\begin{aligned} & {[0.125 \mathrm{dv} / \mathrm{dt}=0.125 \mathrm{~g}-0.025 \mathrm{v}]} \\ & \int \frac{5 d v}{5 g-v}=\int d t \\ & -5 \ln (5 \mathrm{~g}-\mathrm{v})=\mathrm{t}(+\mathrm{A}) \\ & {[-5 \ln 35=\mathrm{A}]} \\ & \mathrm{t}=5 \ln \{35 /(49-\mathrm{v})\} \\ & \mathrm{v}=49-35 \mathrm{e}^{-0.2 \mathrm{t}} \end{aligned}$	B1 M1 M1 A1 M1 A1 M1 A1 [8]	For using Newton's second law with $\mathrm{a}=\mathrm{dv} / \mathrm{dt}$ (3 terms required) For separating variables and attempt to integrate For using $v(0)=14$ For method of transposition AG
(ii)	$\mathrm{x}=49 \mathrm{t}+175 \mathrm{e}^{-0.2 \mathrm{t}}(+\mathrm{B})$ $\left[\mathrm{x}(3)=\left(49 \mathrm{x} 3+175 \mathrm{e}^{-0.6}\right)-(0+175)\right]$ Distance is 68.0 m	M1 A1 M1 A1 [4]	For integrating to find $x(t)$ For using limits 0 to 3 or for using $x(0)=0$ and evaluating $x(3)$

7(i)	$\begin{aligned} & \text { Gain in } \mathrm{EE}=20 \mathrm{x}^{2} /(2 \mathrm{x} 2) \\ & \\ & \text { Loss in GPE }=0.8 \mathrm{~g}(2+\mathrm{x}) \\ & {\left[1 / 20.8 \mathrm{v}^{2}=(15.68+7.84 \mathrm{x})-5 \mathrm{x}^{2}\right]} \\ & \mathrm{v}^{2}=39.2+19.6 \mathrm{x}-12.5 \mathrm{x}^{2} \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	Accept 0.8 gx if gain in KE is $1 / 20.8\left(v^{2}-19.6\right)$ For using the p.c.energy AG
(ii)	(a) Maximum extension is 2.72 m (b) $\begin{aligned} {[19.6-25 x} & =0 \\ v^{2} & \left.=46.8832-12.5(x-0.784)^{2}\right] \\ x=0.784 \text { or } c & =46.9 \end{aligned}$ $\left[\mathrm{v}_{\max }^{2}=39.2+15.3664-7.6832\right]$ Maximum speed is $6.85 \mathrm{~ms}^{-1}$ (c) $\begin{aligned} & \pm(0.8 \mathrm{~g}-20 \mathrm{x} / 2)=0.8 \mathrm{a} \\ & \text { or } 2 \mathrm{v} \mathrm{dv} / \mathrm{dx}=19.6-25 \mathrm{x} \\ & \mathrm{a}= \pm(9.8-12.5 \mathrm{x}) \\ & \quad \text { or } \ddot{y}=-12.5 \mathrm{y} \text { where } \mathrm{y}=\mathrm{x}-0.784 \\ & {\left[\|\mathrm{a}\|_{\max }=\|9.8-12.5 \mathrm{x} 2.72\|\right.} \\ & \quad \text { or }\left\|\ddot{y}_{\max }\right\|=\mid-12.5(2.72-0.784 \mid] \end{aligned}$ Maximum magnitude is $24.2 \mathrm{~ms}^{-2}$	M1 A1 [2] M1 A1 M1 A1 [4] M1 A1 A1 M1 A1 [5]	For attempting to solve $\mathrm{v}^{2}=0$ For solving $20 \mathrm{x} / 2=0.8 \mathrm{~g}$ or for differentiating and attempting to solve $d\left(v^{2}\right) / d x=0$ or $d v / d x=0$ or for expressing v^{2} in the form $c-a(x-b)^{2}$. For substituting $x=0.784$ in the expression for v^{2} or for evaluating \sqrt{c} For using Newton's second law (3 terms required) or $\mathrm{a}=\mathrm{vdv} / \mathrm{dx}$ For substituting $\mathrm{x}=\operatorname{ans}(\mathrm{ii})(\mathrm{a})$ into $\mathrm{a}(\mathrm{x})$ or $\mathrm{y}=\operatorname{ans}(\mathrm{ii})(\mathrm{a})-0.784$ into $\ddot{y}(\mathrm{y})$

4732 Probability \& Statistics 1

Note: "(3 sfs)" means "answer which rounds to \ldots.. to 3 sfs". If correct ans seen to ≥ 3 sfs, ISW for later rounding. Penalise over-rounding only once in paper.

1 (i)	$\begin{aligned} & 0.2^{2}+0.7 \times 0.1 \times 2 \\ & =0.18 \quad \mathbf{A G} \end{aligned}$	$\begin{aligned} & \text { M2 } \\ & \text { A1 } 3 \end{aligned}$	0.2^{2} or $0.7 \times 0.1:$ M1 no errors seen NB $2 \times 0.9 \times 0.1=0.18 \quad$ M0A0
(ii)	$\begin{aligned} & 0.28+2 \times 0.18+3 \times 0.04+4 \times 0.01 \\ & =0.8 \text { oe } \\ & 0.28+2^{2} \times 0.18+3^{2} \times 0.04+4^{2} \times 0.01 \\ & -\times 0.8^{\prime 2} \\ & =0.88 \text { oe } \end{aligned}$	M1 A1 M1 M1 A1 5 	```\(\geq 2\) terms correct (excl \(0 \times 0.49\)) \(\div 5\) (or 4 or 10 etc): M0 \(\geq 2\) terms correct (excl \(0^{2} \times 0.49\)) dep +ve result cao \(\Sigma(x-\mu)^{2}: 2\) terms: M1; 5 terms M2 \(0.8^{2} \times 0.49+0.2^{2} \times 0.28+1.2^{2} \times 0.18+2.2^{2} \times 0.04+3.2^{2} \times 0.01\) SC Use original table, 0.4:B1 0.44: B1```
Total		8	
2(i)(a)	$\begin{aligned} & \frac{8736.9-\frac{202 \times 245.3}{7}}{7300-\frac{202^{2}}{7}} \text { or } \frac{1658.24}{1470.86} \\ & =1.127 \ldots \quad(=1.13 \mathrm{AG}) \end{aligned}$	M1 A1 2	correct sub in any correct formula for b eg $\frac{236.8921}{210.1249}$ must see $1.127 \ldots$; $1.127 .$. alone: M1A1
(b)	$\begin{aligned} & y-245.3 / 7=1.13(x-202 / 7) \\ & y=1.1 x+2.5(\text { or } 2.4) \text { or } y=1.13 x+2.43 \end{aligned}$	$\begin{array}{ll} \mathrm{M1} & \\ \text { A1 } & 2 \end{array}$	
(ii)(a)	$(1.1(.) \times 30+.2.5(. .2)=35.5$ to 36.5	B1f	
(b)	$(1.1(.) \times 100+.2.5(.))=$.112.4 to 115.6	B1f 1	
(iii)	(a) Reliable (b) Unreliable because extrapolated	$\begin{array}{ll} \text { B1 } \\ \text { B1 } & 2 \end{array}$	Both reliable: B1 (a) more reliable than (b) B1 because (a) within data or (b) outside data B1 Ignore extras
Total		8	
3(i)(a)	$\begin{aligned} & \text { Geo stated } \\ & (7 / 8)^{2}(1 / 8) \\ & 49 / 512.0 \text { or } 0.0957 .(3 \mathrm{sfs}) . \end{aligned}$	M1 M1 A1 3	or impl. by $(7 / 8)^{n}(1 / 8)$ or $(1 / 8)^{n}(7 / 8)$ alone
(b)	$(1 / 8)^{3}$ alone ${ }^{343} / 512$ or $0.670(3 \mathrm{sfs}) \quad$ allow 0.67	$\begin{array}{ll} \text { M2 } & \\ \text { A1 } & 3 \end{array}$	or $1-\left(1 / 8+1 / 8 \times 1 /+(1 / 8)^{2} \times 1 / 8\right)$: one term incorrect, omit or extra: M1 $1-(7 / 8)^{3}$ or $(7 / 8)^{2}$ alone: M1
(ii)	8	B1 1	
(iii)	$\begin{aligned} & \text { Binomial stated or implied } \\ & { }^{15} \mathrm{C}_{2}(7 / 8)^{11}(1 / 8)^{2} \\ & =0.289(3 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	eg by $(1 / 8)^{a}(1 / 8)^{b}(a+b=15, a, b \neq 1)$, not just ${ }^{n} \mathrm{C}_{r}$
Total		10	
4 (i)	1 2 3 4 5 or 5 4 3 2 1	M1 A1 M1dep M1dep A1 5	```attempt ranks correct ranks \(S_{x x}\) or \(S_{y y}=55-15^{2} / 5(=10)\) or \(S_{y y}=39-15^{2} / 5(=-6)\) \(-6 / \sqrt{ }(10 \times 10)\)```

(ii)	\& 3 Largest neg r_{s} or large neg r_{s} or strong neg corr'n or close(st) to -1 or lowest r_{s}	Blind	ft if $-1<$ (i)<-0.9, ans $1 \& 2$ NOT: furthest from 0 or closest to ± 1 little corr'n most disagreement
Total		7	

5 (i)	$\begin{aligned} & 68 \\ & 75-59 \\ & =16 \end{aligned}$		B1 M1 A1 3	attempt $6^{\text {th }} \& 18^{\text {th }}$ or $58-60,74-76 \&$ subtr must be from 75 - 59
(ii)	Unaffected by outliers or extremes (allow less affected by outliers) sd can be skewed by one value		B1 1	NOT: ... by anomalies or freaks easier to calculate
(iii)	Shows each data item, retains orig data can see how many data items can find (or easier to read) mode or modal class can find (or easier to read) frequs can find mean Harder to read med (or Qs or IQR) Doesn't show med (or Qs or IQR) B\&W shows med (or Qs or IQR) B\&W easier to compare meds		B1 $\text { B1 } 2$	NOT: shows freqs shows results more clearly B\&W does not show freqs NOT: B\&W easier to compare B\&W shows spread or variance or skew B\&W shows highest \& lowest Assume in order: Adv, Disadv, unless told Allow disadv of B\&W for adv of S\&L $\&$ vice versa Ignore extras
(iv)	$\begin{aligned} & \mathrm{m}=68.1 \\ & \mathrm{sd}=9.7 \text { (or same) } \end{aligned}$	NOT by restart NOT by restart	$\begin{array}{ll} \text { B1 } \\ \text { B1 } & 2 \end{array}$	Restart mean or mean \& sd: 68.1 or $68.087 \& 9.7$ or 9.73 B1 only
Total			8	

6 (i) (a)	$\begin{aligned} & 8! \\ & =40320 \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$	Allow ${ }^{4} \mathrm{P}_{4} \&{ }^{3} \mathrm{P}_{3}$ instead of $3!\& 4$ thro'out Q6
(b)	$\begin{aligned} & 4 / 8 \times 4 / 7 \times 3 / 6 \times 3 / 5 \times 2 / 4 \times 2 / 3 \times 1 / 2 \\ & \times 2 \\ & =1 / 35 \text { or } 0.0286(3 \mathrm{sfs}) \end{aligned}$	M1 M1dep A1 3	$4!\times 4!\div 8!$ $\times 2$$\|$allow $1-$ above for M1 only oe, eg ${ }^{1152} / 40320$
(ii)(a)	$\begin{aligned} & 4!\times 4! \\ & =576 \end{aligned}$	$\begin{array}{ll} & \\ \text { M1 } & 2 \end{array}$	allow $4!\times 4!\times 2$: M1
(b)	116 or 00625	B1 1	
(c)	Separated by 5 or 6 qus stated or illus $\begin{aligned} & 1 / 4 \times 1 / 4 \times 3 \text { or } 1 / 16 \times 3 \\ & \text { M1) }(1 / 4 \times 1 / 4 \text { or } 1 / 16 \text { alone or } \times(2 \text { or } 6): \\ & 3 / 16 \text { or } 0.1875 \text { or } 0.188 \end{aligned}$	M1 M2 A1 4	allow 5 only or 6 only or (4, 5 or 6) can be impl by next M2 or M1 $\begin{array}{\|l} 3!\times 3!\times 3 \\ \quad(3!\times 3!\text { alone or } \times(2 \text { or } 6) ; \text { or }(3!+3!) \times 3: \text { M1 }) \\ (\div 576) \end{array}$ correct ans, but clearly B, J sep by 4: M0M2A0 $\begin{aligned} & \text { 1- P(sep by } 0,1,2,3,(4)) \\ & 1-\left(1 / 4+4+1 / 4 \times{ }^{3} / 41 / 4 \times 1 / 2\right) \\ & \text { or } 1-\left(1 / 4 \times 1 / 4+1 / 2 \times 1 / 4++^{3} / 4 \times 1 / 4+1 \times 1 / 4+^{3} / 4 \times 1 / 4\right) \\ & \text { (one omit: M1 }) \end{aligned}$
Total		12	

7 (i)	Binomial $n=12, p=0.1$ Plates (or seconds) independent oe Prob of fault same for each plate oe	B1 B1 B1 B1 4	B(12, 0.1) : B2 NOT: batches indep Comments must be in context Ignore incorrect or irrelevant
(ii)(a)	$\begin{aligned} & 0.9744-0.8891 \text { or }{ }^{12} \mathrm{C}_{3} \times 0 \times 9^{9} \times 0.1^{1} \\ & =0.0852 \text { or } 0.0853 \text { (3 } \mathrm{sfs} \text {) } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
(b)	$\begin{aligned} & 1-0.2824 \text { or } 1-0.9^{12} \\ & =0.718 \text { (3 } 3 \mathrm{sfs} \text {) } \end{aligned}$	$\begin{array}{ll} \begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array} \\ \hline \end{array}$	allow $1-0.6590$ or $1-0.9^{11}$
(iii)	" 0.718 " and $1-$ " 0.718 " used $\begin{aligned} (1-0.718)^{4} & +4(1-0.718)^{3} \times 0.718 \\ & +{ }_{2} \mathrm{C}_{2}(1-0.718)^{2} \times 0.718^{2} \end{aligned}$ $=0.317(3 \mathrm{sfs})$	B1 M2 A1 4	$\mathrm{ft}(\mathrm{b})$ for B1M1M1 M1 for any one term correct (eg opp tail or no coeffs) $1-\mathrm{P}(3$ or 4$)$ follow similar scheme M 2 or M1 $1-$ correct wking $(=0.623)$ B1M2 cao
Total		12	

8 (i)	$\begin{aligned} & 1 / 6+3 \times(1 / 6)^{2} \\ & =1 / 4 \ldots \ldots \ldots \ldots \end{aligned}$	$\begin{aligned} & \text { M2 } \\ & \text { A1 } 3 \end{aligned}$	$\begin{array}{r} \text { or } 3 \times(1 / 6)^{2} \text { or } 1 / 6+(1 / 6)^{2} \text { or } 1 / 6+2(1 / 6)^{2} \\ \text { or } 1 / 6+4(1 / 6)^{2} \quad \text { M1 } \end{array}$
(ii)	$1 / 3$	B1 1	
(iii)	3 routes clearly implied out of 18 possible (equiprobable) routes	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$	$\begin{aligned} & \text { or } 1 / 3 \times 1 / 6 \times 3 \\ & \text { or } 1 / 3 \times 1 / 6 \text { or } 1 / 6 \times 1 / 6 \times 3 \text { or } 1 / 3 \times 1 / 3 \times 3 \text { or } 1 / 4-1 / 6 \text { M1 } \\ & \text { but } 1 / 6 \times 1 / 6 \times 2 \end{aligned}$
			$\begin{aligned} & \frac{\left(\frac{1}{6}\right)^{2} \times 3}{\frac{1}{2}} \text { or } \frac{\frac{1}{4}-\frac{1}{6}}{\frac{1}{2}} \text { or } \frac{\frac{1}{2} \times \frac{1}{6}}{\frac{1}{2}} \text { oe } \\ & \text { or } \frac{P(4 \& \text { \&twice })}{P(\text { (twice })} \text { stated or } \frac{\text { prob }}{\frac{1}{2}} \end{aligned}$
			Whatever $1^{\text {sid }}$, only one possibility on $2^{\text {nd }}$ M2
			$1 / 6$, no wking M1M1A1 $1 / 12$, no wking M0
		A1 3	
Total		7	

Total 72 marks

4733 Probability \& Statistics 2

1	$\begin{aligned} & \hline U \sim \mathrm{~B}(800,0.005) \approx \mathrm{Po}(4) \\ & \mathrm{P}(U \leq 6) \quad=\mathbf{0 . 8 8 9 3} \\ & \\ & n>50 / \text { large }, n p<5 / p \text { small } \\ & \hline \end{aligned}$	B1 M1 A1 B1 4	$\operatorname{Po}(n p)$ stated or implied Tables or formula ± 1 term, e.g. $0.7851,0.9489,0.1107$, not $1-$ Answer 0.889 or a.r.t. 0.8893 Both conditions
2	$\begin{array}{ll} \frac{23.625-23}{5 / \sqrt{n}}=2 & \\ \sqrt{n}=16 & n=\mathbf{2 5 6} \end{array}$	M1 A1 M1 A1 4	Standardise with $\sqrt{ }$, allow $\sqrt{ } / 2$ errors Equate to 2 or a.r.t. 2.00, signs correct Solve for $\sqrt{ } n$, needs Φ^{-1}, not from $/ n$ 256 only, allow from wrong signs
3 (i)	(a) (b) $0.42 e^{-0.42}=\mathbf{0 . 2 7 6}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 3 \\ \hline \end{array}$	Correct formula for $R=0$ or 1 $\mathrm{P}(0)$, a.r.t. 0.657 P(1) a.r.t.t. 0.276
(ii)	$\begin{aligned} & \operatorname{Po}(2.1) \\ & 1-\mathrm{P}(\leq 3)=1-0.8386 \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	Po(2.1) stated or implied Tables or formula, e.g. 0.8386 or 0.6496 or 0.9379 or complement; Answer, in range [0.161, 0.162]
(iii)		B2 ${ }^{2}$	At least 3 separate bars, all decreasing Allow histogram. Allow convex $\mathrm{P}(0)<\mathrm{P}(1)$ but otherwise OK: B1 Curve: B1 [no hint of normal allowed]
4 (i)	$\begin{aligned} & \mathrm{H}_{0}: p=0.14 \\ & \mathrm{H}_{1}: p<0.14 \\ & \mathrm{~B}(22,0.14) \\ & \mathrm{P}(\leq 2)=.86^{22}+\left(22 \times .86^{21} \times .14\right)+ \\ & \left(231 \times .86^{20} \times .14^{2}\right)=\mathbf{0 . 3 8 7 7} \\ & >0.1 \end{aligned}$ Do not reject H_{0}. Insufficient evidence that company overestimates viewing proportion	B2 M1 A1 A1 B1 M1 A1 $\mathbf{8}$ 	Both correct. 1 error, B1, but x or r or \bar{x} etc: 0 $\mathrm{B}(22,0.14)$ stated or implied, e.g. $\mathrm{N}(3.08,2.6488)$ or $\mathrm{Po}(3.08)$ Correct formula for 2 or 3 terms, or $\mathrm{P}(\leq 0)=0.036$ and CR Correct answer, a.r.t. 0.388 , or CR is $=0$ Explicitly compare 0.1 or CR with 2, OK from Po but not from N Correct comparison type and conclusion, needs binomial, at least 2 terms, not from $\mathrm{P}(<2)$ Contextualised, some acknowledgement of uncertainty [SR: Normal: B2 M1 A0 B0 M0] [SR: 2-tailed, or $p>0.14, \mathrm{P}(\geq 2): \mathrm{B} 1 \mathrm{M} 1 \mathrm{~A} 2 \mathrm{~B} 0 \mathrm{M} 1 \mathrm{~A} 1]$
(ii)	Selected independently Each adult equally likely to be chosen	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	Independent selection Choice of sample elements equally likely (no credit if not focussed on selection) [Only "All samples of size n equally likely": B1 only unless related to Binomial conditions]
5 (i)		$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & \mathbf{3} \end{array}$	Horizontal straight line Symmetrical U-shaped curve Both correct, including relationship between the two and not extending beyond $[-2,2]$, curve through $(0,0)$
(ii)	S is equally likely to take any value T is more likely at extremities	B2 2	Correct statement about both distributions, $\sqrt{ }$ on their graph [Correct for one only, or partial description: B1] Not "probability of S is constant", etc.
(iii)	$\begin{aligned} & \frac{5}{64} \int_{-2}^{2} x^{6} d x=\frac{5}{64}\left[\frac{x^{7}}{7}\right]_{-2}^{2}\left[=\frac{20}{7}\right] \\ & -0^{2} \\ & =\frac{20}{7} \end{aligned}$	$\begin{array}{ll} & \\ \text { M1 } & \\ \text { A1 } & \\ \text { B1 } & \\ \text { A1 } & 4 \end{array}$	Integrate $x^{2} \mathrm{~g}(x)$, limits $-2,2$ Correct indefinite integral [$=5 x^{7} / 448$] 0 or 0^{2} subtracted or $\mathrm{E}(X)=0$ seen, not $\int x^{2} \mathrm{f}(x) \mathrm{d} x-\int x \mathrm{f}(x) \mathrm{d} x$ Answer $\frac{20}{7}$ or $2 \frac{6}{7}$ or a.r.t. 2.86 , don't need 0

6 (i)	$\begin{aligned} & 50.0 \pm 1.96 \sqrt{\frac{20.25}{81}}=50.0 \pm 0.98 \\ & =49.02,50.98 \\ & \bar{W}<49.02 \text { and } \bar{W}>50.98 \end{aligned}$	M1 B1 A1A1 A1 $\sqrt{ } 5$	$50.0 \pm z \sqrt{ }(1.96 / 81)$, allow one sign only, allow $\sqrt{ }$ errors $z=1.96$ in equation ($n o t$ just stated) Both critical values, min 4 SF at some stage (if both $3 \mathrm{SF}, \mathrm{A} 1$) CR, allow \leq / \geq, don't need $\bar{W}, \sqrt{ }$ on their CVs, can't recover [Ans 50 ± 0.98 : A1 only] [SR: 1 tail, M1B0A0; 50.8225 or 49. 1775: A1] \ldots
(ii)	$\begin{aligned} & \frac{50.98-50.2}{0.5}=1.56 \\ & \frac{49.02-50.2}{0.5}=-2.36 \\ & \Phi(1.56)-\Phi(-2.36)=\mathbf{0 . 9 3 1 5} \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{5} \end{array}$	Standardise one limit with same SD as in (i) Correct handling of tails for Type II error Answer in range [0.931, 0.932] [SR 1-tail M1; -1.245 or $2.045 \mathrm{~A} 1 ; 0.893$ or 0.9795 A 1$]$
(iii)	It would get smaller	B1 1	No reason needed, but withhold if definitely wrong reason seen. Allow from 1-tail
7 (i)	$\begin{aligned} & \hat{\mu}=\bar{t}=13.7 \\ & \frac{12657.28}{64}-13.7^{2} \quad[=10.08] ; \times \frac{64}{63} \\ & \quad=\mathbf{1 0 . 2 4} \\ & \mathrm{H}_{0}: \mu=13.1, \mathrm{H}_{1}: \mu>13.1 \end{aligned} \begin{aligned} & \frac{13.7-13.1}{\frac{\sqrt{10.24 / 64}}{}=1.5 \text { or } p=0.0668} \\ & 1.5<1.645 \text { or } 0.0668>0.05 \end{aligned}$ Do not reject H_{0}. Insufficient evidence that time taken on average is greater than 13.1 min	B1 M1 M1 A1 B2 M1 A1 B1 M1 A1 $\mathbf{1 1}$	13.7 stated Correct formula for biased estimate $\times \frac{64}{63}$ used, or equivalent, can come in later Variance or SD 10.24 or 10.2 Both correct. [SR: One error, B1, but x or t or \bar{x} or $\bar{t}, 0$] Standardise, or find CV, with $\sqrt{ } 64$ or 64 $z=$ a.r.t. 1.50 , or $p=0.0668$, or CV $13.758[\sqrt{ }$ on $z]$ Compare $z \& 1.645$, or $p \& 0.05$ (must be correct tail), or $z=1.645 \& 13$ with CV Correct comparison \& conclusion, needs 64 , not $\mu=13.7$ Contextualised, some acknowledgement of uncertainty [13.1 - 13.7: (6), M1 A0 B1 M0].
(ii)	Yes, not told that dist is normal	B1 1	Equivalent statement, not " n is large", don't need "yes"
8 (i)	N(14.7, 4.41) Valid because $\begin{aligned} n p=14.7>5 ; n q & =6.3>5 \\ 1-\Phi\left(\frac{15.5-14.7}{\sqrt{4.41}}\right) & =1-\Phi(0.381) \\ =1-0.6484 & =\mathbf{0 . 3 5 1 6} \end{aligned}$	M1 A1 B1 B1 M1 A1 A1 7	
(ii)	$\begin{array}{r} \bar{K} \sim \mathrm{~N}(14.7,4.41 / 36) \\ {\left[=\mathrm{N}\left(14.7,0.35^{2}\right)\right]} \end{array}$ Valid by Central Limit Theorem as 36 is large $\begin{aligned} \Phi\left(\frac{14.0+\frac{1}{72}-14.7}{\sqrt{4.41 / 36}}\right) & =\Phi(-1.96) \\ & =0.025 \end{aligned}$	M1 A1 B1 M1 A1 A1 A1 7	```Normal, their \(n p\) from (i) Their variance/36 Refer to CLT or large \(n(=36\), not 21\()\), or " \(K \sim \mathrm{~N}\) so \(\bar{K} \sim \mathrm{~N}\) ", not same as (i), not \(n p>5, n q>5\) for \(\bar{K}\) Standardise 14.0 with 36 or \(\sqrt{ } 36\) cc included, allow 0.5 here, e.g. \(14.5-14.7\) \(z=-1.96\) or -2.00 or -2.04 , allow + if answer \(<0.5\) 0.025 or 0.0228 [0.284 loses last 2] [\(\mathrm{Po}(25.2\)) etc: probably 0\(]\)```
OR:	$\begin{aligned} & \mathrm{B}(756,0.7) \approx \mathrm{N}(529.2,158.76) \\ & \begin{aligned} \Phi\left(\frac{504.5-529.2}{\sqrt{158.76}}\right) & =\Phi(-1.96) \\ & =\mathbf{0 . 0 2 5} \end{aligned} \end{aligned}$	$\begin{aligned} & \text { M1M1A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\times 36 ; \mathrm{N}(529.6, \ldots) ; 158.76$ CLT as above, or $n p>5, n q>5$, can be asserted here Standardise 14×36 cc correct and $\sqrt{ } n p q$ $0.025 \text { or } 0.0228$

4734 Probability \& Statistics 3

\begin{tabular}{|c|c|c|c|}
\hline 1 \& \(T\) has a Poisson distribution
\[
\begin{aligned}
\mathrm{E}(T) \& =28 \times 0.75+4 \times 6.4 \\
\& =46.6 \\
\operatorname{Var}(T) \& =46.6
\end{aligned}
\] \& \[
\begin{array}{ll}
\hline \text { B1 } \& \\
\& \\
\text { M1 } \& \\
\text { A1 } \& \\
\text { B1 } \& 4
\end{array}
\] \& \begin{tabular}{l}
From sum of Poissons \\
Ft \(\mathrm{E}(T)\) only if Poisson
\end{tabular} \\
\hline \begin{tabular}{l}
2 (i) \\
(ii)
\end{tabular} \& Use \(\mathrm{F}\left(Q_{3}\right)=0.75\) or \(\int_{Q_{3}}^{\infty} \frac{1}{5} e^{-\frac{1}{4} u} \mathrm{~d} u=0.25\) Solve to obtain \(Q_{3}=4.65\) AEF eg \(4 \ln (16 / 5)\)
\[
\mathrm{f}(u)= \begin{cases}\frac{1}{5} \mathrm{e}^{u} \& u<0 \\ \frac{1}{5} \mathrm{e}^{-\frac{1}{4} u} \& u \geq 0 .\end{cases}
\] \& \begin{tabular}{l}
M1 \\
M1A1 3
\(\qquad\) \\
B1 \\
B1 \\
2
\end{tabular} \& \begin{tabular}{l}
M1 for solving similar eqn A0 for \(\geq 4.65\)
\(\qquad\) \\
\(u<0\) unless evidence of \(\int\)
\[
u \geq 0
\]
\end{tabular} \\
\hline \begin{tabular}{l}
3 (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Use \(28 \pm z s\)
\[
\begin{aligned}
\& z=2.326 \\
\& s^{2}=28 \times 72 / 1200 \\
\& (25.0,31.0)
\end{aligned}
\]
\[
2 \times 2.326 \sqrt{ }(0.28 \times 0.72 / n) \leq 0.05 \mathrm{AEF}
\] \\
Solve to obtain \(n\) \\
Smallest \(n=1745\) \\
e.g. Variance is an approximation
\end{tabular} \& \begin{tabular}{ll}
M1 \& \\
B1 \& \\
B1 \& \\
A1 \& \(\mathbf{4}\) \\
------- \\
M1 \& \\
M1 \& \\
A1 \& \\
B1 \& 4
\end{tabular} \& \begin{tabular}{l}
Accept \(\mathrm{s}=\mathrm{c} / \sqrt{\mathrm{n}}\) for M1 Accept 0.28 with corresponding s \\
Or 1199 \\
Accept \((25,31)\)
\[
\mathrm{Or}=\text { or } \geq
\] \\
Solving similar equn \\
Accept 1746,1750 \\
Or normal is approx or \\
Or p only an estimate
\end{tabular} \\
\hline \begin{tabular}{l}
4 (i) \\
(ii) \\
(iii)
\end{tabular} \& \& \begin{tabular}{ll}
B1 \& 1 \\
---------- \\
M1 \& \\
A1 \& \\
A`1 \& 3 \\
-------- \\
M1 \& \\
M1 \& \\
A1 \& 3
\end{tabular} \& Correct indefinite integral
2120 or better than 2118
O---------------------------------
Cao \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 5 (i)
(ii)

(iii) \& \begin{tabular}{l}
$\mathrm{H}_{0}: \mu_{2}=\mu_{1}, \mathrm{H}_{1}: \mu_{2}>\mu_{1}$, where μ_{1} and μ_{2} are the mean concentrations in the lake before and after the spillage respectively
$$
\begin{aligned}
& \bar{X}_{2}-\bar{X}_{1} \geq z s \\
& \mathrm{z}=1.645 \\
& \mathrm{~s}=0.24 \sqrt{ }(1 / 5+1 / 6) \\
& \geq 0.2391 \\
& \left.--\cdots--\cdots------------\bar{X}_{1}<0.2391\right) \\
& \mathrm{P}\left(\bar{X}_{2}-\bar{X}_{1}\right. \\
& z=[0.2391-0.3] / s \\
& p=0.3376
\end{aligned}
$$

This is a large probability for this error

 \&

\hline B1 \&

B1 \& 2

M1 \&

A1 \&

B1 \&

A1 \& 4

\hdashline M1 \&

\hline M1 \&

A1 \&

B1 \& 4

 \&

For both hypotheses Allow in words if population mean used.

Accept $>,=,<. \leq, t s$

$$
\text { Or >; } 0.239
$$

May be implied

ART 0.337 or 0.338

Relevant comment
\end{tabular}

\hline | 6 (i) |
| :--- |
| (ii) | \& | Use $B \sim \mathrm{~B}(29,0.3), G \sim \mathrm{~B}(26,0.2)$ |
| :--- |
| $\mathrm{E}(F)=29 \times 0.3+26 \times 0.2=13.9$ |
| $\operatorname{Var}(F)=29 \times 0.3 \times 0.7+26 \times 0.2 \times 0.8=10.25$ |
| $B: n p=8.7, n q=20.3$ |
| $G: n p=5.2, n q=20.8$ |
| All exceed 5, so normal approximation valid for each |
| $F \sim \mathrm{~N}(13.9,10.25)$ (approximately) |
| (Requires $\mathrm{P}(F \leq n)=0.99$) |
| $[n+0.5-13.9] / \sqrt{ }(10.25) ;=2.326$, their 10.25 $n=20.85$ |
| Need to have 21 spares available |
| SR Using $\mathrm{B}(55,0.2527)$: B 1 ; M1 (N(13.9, 10.39); |
| M1B1M1A0 (Max 5/8) | \& M1

M1A1
M1A1 5

B2
M1 $\sqrt{ }$
M1B1
A1
M1

A1 $\quad 8$ \& | Must check numerically |
| :--- |
| B1 for checking one distribution |
| Use normal. May be implied |
| Standardise |
| M0 if variance has divisors cc |
| Solving similar |
| No cc, lose last A1 ($\mathrm{n}=22$) |
| Wrong cc, lose A1A1 |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 7 (i)

(ii) \& \begin{tabular}{l}
Requires population of (2nd mark - 1st mark) to be normally distributed
$$
\begin{aligned}
& \mathrm{H}_{0}: \mu_{d}=0, \mathrm{H}_{1}: \mu_{d}>0 \\
& \mathrm{~T}_{2}-\mathrm{T}_{1}:-1-1 \quad 20-2232 \\
& \bar{d}=0.625, \quad s^{2}=3.411\left(3^{23} / 56 \text { or }{ }^{191} / 56\right)
\end{aligned}
$$

Use 2.998
$$
\begin{aligned}
& \text { EITHER: } t=0.625 / \sqrt{ }(3.411 / 8) \\
&=0.957 \\
& \text { OR: CV(CR), } \\
& \bar{d} \geq 2.998 \sqrt{3.411 / 8} \\
&=1.958
\end{aligned}
$$

EITHER $0.957<2.998$ OR $0.625<1.958$

Do not reject H_{0}, there is insufficient evidence of improvement

Use $\mathrm{E}\left(X_{2}-X_{1}+k\right)=0.625+k$

Requires $(0.625+k) / \sqrt{ }(3.411 / 8) \geq 2.998$

Giving $k \geq 1.33$

Increase each mark by 2

 \&

B1

M1

B1B1

B1

M1

A1

M1

A1

M1

8

M1

A1V

A1 3

 \&

M0 if clearly z

With comparison and conclusion

Allow 1.33
\end{tabular}

\hline 8 (i) \& $$
\begin{aligned}
& \text { Mean }=(20+16+9) / 75 \\
&=0.6 \\
& 3 p=0.6, p=0.2 \mathrm{AG}
\end{aligned}
$$ \& \[

$$
\begin{array}{ll}
\text { M1 } \\
\text { A1 } & \\
\text { A1 } & 3
\end{array}
$$
\] \&

\hline (ii) \& | $\mathrm{H}_{0}: \mathrm{B}(3, p)$ fits the data |
| :--- |
| $\left(\mathrm{H}_{1}: \mathrm{B}(3, p)\right.$ does not fit the data) |
| Expected values |
| $\begin{array}{llll}38.4 & 28.8 & 7.2 & 0.6\end{array}$ |
| Combine last two cells $\begin{aligned} \chi^{2}= & 5.6^{2} / 38.4+8.8^{2} / 28.8+3.2^{2} / 7.8 \\ & =4.818 \end{aligned}$ |
| $4.818>3.841$ |
| Reject H_{0} and conclude that there is insufficient evidence that $\mathrm{B}(3, p)$ fits the data. | \& B1

M1
A1
A1
A1
M1
A1 $\sqrt{2}$
A1
B1 $\sqrt{ }$
M1

$\quad 10$ \& | Or: $\mathrm{X} \sim \mathrm{B}(3, \mathrm{p})$ or $\mathrm{B}(3,0.2)$ |
| :--- |
| Not 'Data fits model' |
| Use B(3,0.2)×75 |
| At least 2 correct |
| All correct |
| With one correct |
| At least 2 correct Ft E values |
| Accept 4.82 cao |
| ft 4.818 |
| SR1 If cells not combined: |
| B1M1A1A1B0M1A1A0B1(5.991)M1 |
| SR2:E-values rounded :B1M1A1A1 |
| B1M1A1A0(4.865)B1M1 |

\hline (iii) \& $2.74<3.841$, accept H_{0} conclude that $\mathrm{B}(6, p)$ fits the data \& | B1 |
| :--- |
| 1 | \& Accept with no reason if evidence of method in (ii)

\hline
\end{tabular}

4736 Decision Mathematics 1

2	(i)	eg	M1 A1	Graph need not be simple or planar A graph with five vertices and at least three correct vertex orders A graph with five vertices of orders $1,2,2,3,4$	[2]
	(ii)	Semi-Eulerian It has exactly two odd nodes	M1 A1	Unless their graph was not connected, in which case the answer is 'neither' (Unless their graph was not connected, in which case follow this through)	[2]
	(iii)	A tree with five vertices would only have four arcs, but this graph has six Or A tree must have at least two vertices of order 1	B2	Give B1 for an incomplete reason, eg 'too many arcs' or 'it has a cycle'	[2]

ANSWERED ON INSERT

ANSWERED ON INSERT

4 (i)	8	B1	cao	[1]
(ii)	1 comparison and 1 swap	B1	1 and 1	[1]
(iii)		$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \hline \end{aligned}$	Correct list (complete) 2 and 1	[2]
(iv)		$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Underlined values correct in $3^{\text {rd }}$ and $4^{\text {th }}$ passes, values not underlined may be left blank Similarly for $5^{\text {th }}$ and $6^{\text {th }}$ passes, follow through slips in previous passes Similarly for $7^{\text {th }}$ and $8^{\text {th }}$ passes, but cao (Dependent on both M marks) Reasonable attempt at Comp and Swap 143534 cao in figures 042423 cao in figures	[3]

(v)	Shuttle sort uses 23 comparisons and 17 swaps Shuttle sort is more efficient because although it uses the same number of swaps as bubble sort it uses fewer comparisons	A1	M1	Follow through their totals if possible Choosing shuttle sort with a reason or with totals seen (here) Correct reason stated (comparisons and swaps both compared, in words)			
Total $=$							$\mathbf{1 2}$

\begin{tabular}{|c|c|c|c|c|c|}
\hline 5 \& (i) \& \begin{tabular}{l}
Katie must spend at least 8 minutes preparing the first batch of cookies so she has at most 52 minutes of baking time. \\
\(52 \div 12=4.3\), hence at most 4 batches
\end{tabular} \& M1 \& Identifying why there is less than 60 minutes of baking time (or seeing 52) Explaining why 4 is the greatest possible number of batches \& [2] \\
\hline \& (ii) \& The last batch takes 12 minutes to bake, so Katie has (at most) 48 minutes of preparation time
\[
\begin{aligned}
8 x+12 y+10 z \leq 48 \Rightarrow \& 4 x+6 y+5 z \leq 24 \\
\& \text { as given }
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
B1
\end{tabular} \& \begin{tabular}{l}
Explaining why total time for preparation cannot exceed 48 minutes \\
\(8 x+12 y+10 z \leq 48\) seen or explicitly referred to
\end{tabular} \& 2] \\
\hline \& (iii) \& Must be integer valued \& B1 \& Integers \& 1] \\
\hline \& (iv) \& \begin{tabular}{l}
\[
P=5 x+4 y+3 z
\] \\
Assumes that she sells all the cookies (batches) that she makes
\end{tabular} \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& \begin{tabular}{l}
\(5 x+4 y+3 z\) or any positive multiple of this \\
Assumes she sells them all
\end{tabular} \& 2] \\
\hline \& (v) \& \begin{tabular}{l}
\begin{tabular}{ccccccc}
P \& x \& y \& z \& s \& t \& \\
1 \& -5 \& -4 \& -3 \& 0 \& 0 \& 0 \\
0 \& 1 \& 1 \& 1 \& 1 \& 0 \& 4 \\
0 \& 4 \& 6 \& 5 \& 0 \& 1 \& 24
\end{tabular} \\
\(4 \div 1=4,24 \div 4=6,4<6\) \\
Pivot on the 1 in the \(x\) column \\
Row \(1=\mathrm{R} 1+5 \times \mathrm{R} 2\) \\
Row \(2=\mathrm{R} 2 \div 1\) \\
Row \(3=\) R3-4×R2
\[
x=4, y=0, z=0, P=20
\] \\
Katie should make 4 batches of plain cookies, and no chocolate chip or fruit cookies, to give a profit of \(£ 20\).
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
B1 \\
M1 \\
A1 \\
B1 \\
M1 \\
A1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Correct use of slack variable columns \\
Objective row correct (cao) \\
Constraint rows correct (cao) \\
Working need not be seen \\
Correct pivot choice (row 2) (cao) \\
Follow through their tableau and pivot choice, if possible sca pivoting (\(x, t\) cols, \(P\) not decreased) Correct tableau (final column contains no negative values) \\
Showing valid method, may imply row 2 \\
Follow through their tableau, if reasonable (non-negative variables) \\
Reading off values from tableau (may be implied from answer) Interpretation: 4 batches of plain cookies (may imply none of others) Interpretation: \(£ 20\)
\end{tabular} \& [3]

[4]

\hline
\end{tabular}

4737 Decision Mathematics 2

1	(i)	Stage 1 2 3	State 0 1 2 3 0 1 2 3 0	Action 0 0 0 0 0 0 2 0 1 2 1 2 3 1 3 0 1 2 3	Working 10 11 14 15 $\min (12, \mathbf{1 0})=\mathbf{1 0}$ $\min (10, \mathbf{1 4})=\mathbf{1 0}$ $\min (13, \mathbf{1 0})=\mathbf{1 0}$ $\min (10, \mathbf{1 1)}=\mathbf{1 0}$ $\min (11, \mathbf{1 4}=\mathbf{1 1}$ $\min (9,11)=\mathbf{9}$ $\min (10, \mathbf{1 4})=\mathbf{1 0}$ $\min (\mathbf{7}, \mathbf{1 5})=7$ $\min (8, \mathbf{1 1})=\mathbf{8}$ $\min (12, \mathbf{1 5})=\mathbf{1 2}$ $\min (15, \mathbf{1 0})=\mathbf{1 0}$ $\min (14, \mathbf{1 1)}=\mathbf{1 1}$ $\min (16, \mathbf{1 0)}=\mathbf{1 0}$ $\min (13, \mathbf{1 2})=\mathbf{1 2}$		M1 M1 M1 A1 M1 A1	Answered on insert Transferring maximin values from stage 1 correctly Completing working column for stage 2 (method) Calculating maximin values for stage 2 (method) Maximin values correct for stage 2 (cao) Transferring maximin values from stage 2 correctly Working column for stage 3 correct (cao)	[6]
	(ii)	Maxim Maxim	value route	$\begin{aligned} & 12 \\ & (0 ; 0) \end{aligned}$	$\text { 3) - }(2 ; 3)$		B1 M1 A1	12 (cao) Route, or in reverse, follow through their table if possible, condone omission of $(0 ; 0)$ Correct route, including ($0 ; 0$) (cao)	[3]
	Total $=$								9

\begin{tabular}{|c|c|c|c|c|c|}
\hline 3 \& (i) \& \[
\begin{aligned}
\& 4+3-2+8-2+7 \\
\& =\mathbf{1 8} \text { litres per second } \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
Answered on insert \\
Imply method mark from 18,20 or 22 cao
\end{tabular} \& [2] \\
\hline \& (ii) \& \begin{tabular}{l}
3 litres per second flow out of \(B(\operatorname{arc} B D)\) so only 2 litres per second can enter \(B\) from \(E\) and only 1 litre per second can enter \(B\) from \(S\). \\
At least 4 litres per second flow out of \(E\) to \(G, 2\) litres per second from \(E\) to \(B\) and 2 litres per second from \(E\) to \(H\), so 8 litres per second must flow into \(E\) from \(C\). \\
8 litres per second flows from \(C\) to \(E\) and at most 11 litres per second enters \(C\) from \(S\), so at most 3 litres per second flows from \(C\) to \(H\). Also, 2 litres per second flow from \(E\) to \(H\) so the most that can enter \(H\) is 5 litres per second. But at least 5 litres per second leave \(H\) along \(H T\), hence the flow in \(H T\) is 5 litres per second.
\end{tabular} \& B1
B1

M1

A1 \& | At B: 3 out and $1+2$ in |
| :--- |
| At E : (at least) $4+2+2$ out |
| Considering C to show flow in $C H$ is at most 3 Must explicitly refer to ≤ 3, or $2 \leq$ flow ≤ 3, not just stating 3 |
| At $H: 2+3$ in | \& [4]

\hline \& (iii) \& | Flow augmenting route: SADFT or SADGT |
| :--- |
| Cut: $X=\{S, B\}, Y=\{A, C, D, E, F, G, H, T\}$ |
| Or $X=\{S, A, B\}, Y=\{C, D, E, F, G, H, T\}$ | \& M1

A1
B1

B1 \& | Substantially correct attempt (at least 12 correct) |
| :--- |
| (Not shown as excess capacities and potential backflows) |
| All correct (cao) |
| Either of these (correct) flow augmenting routes |
| Either of these (correct) cuts described in any way, or marked clearly on diagram | \& [4]

\hline \& (iv) \& B would have at most 3 litres per second entering it and at least 5 litres per second leaving. \& $$
\begin{aligned}
& \hline \text { M1 } \\
& \text { A1 }
\end{aligned}
$$ \& Identifying that problem is at B A correct explanation \& [2]

\hline \multicolumn{5}{|r|}{Total =} \& 12

\hline
\end{tabular}

Grade Thresholds

Advanced GCE Mathematics (3890-2, 7890-2)
January 2009 Examination Series
Unit Threshold Marks

7892		Maximum Mark	A	B	C	D	E	U
4721	Raw	72	57	50	43	37	31	0
	UMS	100	80	70	60	50	40	0
4722	Raw	72	59	51	44	37	30	0
	UMS	100	80	70	60	50	40	0
4723	Raw	72	55	48	41	34	28	0
	UMS	100	80	70	60	50	40	0
4724	Raw	72	62	54	46	38	31	0
	UMS	100	80	70	60	50	40	0
4725	Raw	72	57	49	41	34	27	0
	UMS	100	80	70	60	50	40	0
4726	Raw	72	49	44	39	34	30	0
	UMS	100	80	70	60	50	40	0
4727	Raw	72	54	47	40	33	27	0
	UMS	100	80	70	60	50	40	0
4728	Raw	72	62	54	46	38	30	0
	UMS	100	80	70	60	50	40	0
4729	Raw	72	61	51	41	31	21	0
	UMS	100	80	70	60	50	40	0
4730	Raw	72	57	48	40	32	24	0
	UMS	100	80	70	60	50	40	0
4732	Raw	72	58	50	43	36	29	0
	UMS	100	80	70	60	50	40	0
4733	Raw	72	58	49	41	33	25	0
	UMS	100	80	70	60	50	40	0
4734	Raw	72	50	43	37	31	25	0
	UMS	100	80	70	60	50	40	0
4736	Raw	72	58	51	45	39	33	0
	UMS	100	80	70	60	50	40	0
4737	Raw	72	60	53	46	39	33	0
	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{3 8 9 0}$	300	240	210	180	150	120	0
$\mathbf{3 8 9 1}$	300	240	210	180	150	120	0
$\mathbf{3 8 9 2}$	300	240	210	180	150	120	0
$\mathbf{7 8 9 0}$	600	480	420	360	300	240	0
$\mathbf{7 8 9 1}$	600	480	420	360	300	240	0
$\mathbf{7 8 9 2}$	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{3 8 9 0}$	24.1	50.4	72.7	85.8	95.1	100	960
$\mathbf{3 8 9 2}$	28.1	59.4	78.1	90.6	93.8	100	32
$\mathbf{7 8 9 0}$	26.8	58.1	84.4	92.2	96.6	100	205
$\mathbf{7 8 9 2}$	33.3	75.0	91.7	91.7	100	100	12

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

