

GCE

Mathematics

Advanced GCE **A2 7890 - 2**

Advanced Subsidiary GCE AS 3890 - 2

Mark Schemes for the Units

January 2009

3890-2/7890-2/MS/R/09

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2009

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890) Advanced GCE Pure Mathematics (7891) Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEMES FOR THE UNITS

Unit/Content	Page
4721 Core Mathematics 1	1
4722 Core Mathematics 2	5
4723 Core Mathematics 3	8
4724 Core Mathematics 4	11
4725 Further Pure Mathematics 1	15
4726 Further Pure Mathematics 2	18
4727 Further Pure Mathematics 3	21
4728 Mechanics 1	25
4729 Mechanics 2	28
4730 Mechanics 3	30
4732 Probability & Statistics 1	34
4733 Probability & Statistics 2	38
4734 Probability & Statistics 3	40
4736 Decision Mathematics 1	43
4737 Decision Mathematics 2	47
Grade Thresholds	53

4721 Core Mathematics 1

			T
1	$3\sqrt{5} + \frac{20\sqrt{5}}{5}$ $= 7\sqrt{5}$	B1	$3\sqrt{5}$ soi
	$=7\sqrt{5}$	M1	Attempt to rationalise $\frac{20}{\sqrt{5}}$
		A1 3 3	cao
2 (i)	x^2	B1 1	cao
(ii)	$\frac{3y^4 \times 1000y^3}{2y^5} = 1500y^2$		
	$2y^5$	B1	1000y ³ soi
	$=1500y^2$	B1	1500
		B1 3	y^2
3	Let $y = x^{\frac{1}{3}}$	*M1	Attempt a substitution to obtain a quadratic or
	$3y^2 + y - 2 = 0$		factorise with $\sqrt[3]{x}$ in each bracket
	(3y-2)(y+1) = 0	DM1	Correct method to find roots
	$y = \frac{2}{3}, y = -1$	A1	Both values correct
	$x = \left(\frac{2}{3}\right)^3, x = (-1)^3$	DM1	Attempt cube of at least one value
	$x = \frac{8}{27}, x = -1$	A1 ft 5	Both answers correctly followed through
			SR If M1* not awarded, B1 $x = -1$ from T & I
4 (i)		B1	Excellent curve in one quadrant or roughly correct curves in correct 2 quadrants
		B1 2	Completely correct
			1
(ii)	$y = \frac{1}{\left(x+3\right)^2}$	M1	$\frac{1}{(x\pm 3)^2}$
		A1 2	$y = \frac{1}{(x+3)^2}$
(iii)	(1, 4)	B1 B1 2	Correct x coordinate Correct y coordinate
L			

		1		
5 (i)	$\frac{dy}{dx} = -50x^{-6}$	M1		kx^{-6}
	dx	A1	2	Fully correct answer
				,
(40)	<u>1</u>	B1		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
(ii)	$y = x^4$			$\sqrt[4]{x} = x^{\frac{1}{4}}$ soi
	$y = x^{\frac{1}{4}}$ $\frac{dy}{dx} = \frac{1}{4}x^{-\frac{3}{4}}$	B1		$\frac{1}{4}x^{c}$ $kx^{-\frac{3}{4}}$
	$\frac{\dot{x}}{dx} = \frac{1}{4}x^{-4}$	B1	3	4
				$kx^{-\frac{3}{4}}$
(iii)	$y = (x^2 + 3x)(1 - 5x)$	M1		Attempt to multiply out fully
	$= 3x - 14x^2 - 5x^3$	A1		Correct expression (may have 4 terms)
		AI		Correct expression (may have 4 terms)
	$\frac{dy}{dx} = 3 - 28x - 15x^2$	M1		The second of th
	ax			Two terms correctly differentiated from their expanded expression
		A1	4	Completely correct (3 terms)
			9	
	5(2 + 42) 9	B1	<u> </u>	p = 5
6(i)	$5(x^2 + 4x) - 8$			
	$= 5[(x+2)^2 - 4] - 8$	B1		$(x+2)^2$ seen or $q = 2$ $-8-5q^2$ or $-\frac{8}{5}-q^2$ r = -28
	$=5(x+2)^2-20-8$	M1		$-8-5q^2$ or $-\frac{6}{5}-q^2$
	$=5(x+2)^2-28$	A1	4	r = -28
	x = -2			
(ii)	x — — 2	B1 ft	1	
(iii)	$20^2 - 4 \times 5 \times -8$	M1		12 4
	= 560	A1	2	Uses $b^2 - 4ac$
(iv)			_	560
	2 real roots	B1	1	2 real roots
			8	
7(i)	30 + 4k - 10 = 0	M1		Attempt to substitute $x = 10$ into equation of line
	$\therefore k = -5$	A1	2	1
(ii)	– 3			
	$\sqrt{(10-2)^2+(-5-1)^2}$	M1		Correct method to find line length using Pythagoras'
	$\sqrt{(10-2)} + (-3-1)$	1411		theorem
	$=\sqrt{64+36}$	A1	2	cao, dependent on correct value of k in (i)
(iii)	= 10	111	۷	eas, dependent on correct value of K III (1)
(111)		B1		
	Centre (6, -2)		2	
	Radius 5	B1	2	
(iv)	Midpoint of $AB = (6, -2)$			
	Length of $AB = 2 x$ radius	B1		One correct statement of verification
	Both A and B lie on circumference	B1	2	Complete verification
	Centre lies on line $3x + 4y - 10 = 0$		8	
	The second secon	1		

A1

В1

B1

8 (i)	$x = \frac{8 \pm \sqrt{(-8)^2 - (4 \times -1 \times 5)}}{-2}$
	$=\frac{8\pm\sqrt{84}}{-2}$
	$=-4-\sqrt{21}$ or $=-4+\sqrt{21}$

M1 Correct method to solve quadratic

$$A1 \qquad x = \frac{8 \pm \sqrt{84}}{-2}$$

3 Both roots correct and simplified

(ii)
$$x \le -4 - \sqrt{21}$$
, $x \ge -4 + \sqrt{21}$

M1 Identifying $x \le$ their lower root, $x \ge$ their higher root

A1 2
$$x \le -4 - \sqrt{21}$$
, $x \ge -4 + \sqrt{21}$
(not wrapped, no 'and')

(iii)

B1 Roughly correct negative cubic with max and min

(-4, 0) (0, 20)

10

B1 Cubic with 3 distinct real roots

B1 5 Completely correct graph

 $\frac{dy}{dx} = 3x^2 + 2px$

M1 Attempt to differentiate A1 Correct expression cao

When x = 4, $\frac{dy}{dx} = 0$ $\therefore 3 \times 4^2 + 8p = 0$

M1 Setting their $\frac{dy}{dx} = 0$

8p = -48

Substitution of x = 4 into their $\frac{dy}{dx} = 0$ to evaluate p

p = -6 $\frac{d^2y}{dx^2} = 6x - 12$

A1 M1

M1

Looks at sign of $\frac{d^2y}{dx^2}$, derived correctly from their

When x = 4, 6x - 12 > 0

 $\frac{dy}{dx}$, or other correct method

Minimum point

A1 7

7

7 Minimum point CWO

		1	7
10(i)	$\frac{dy}{dx} = 2x + 1$	M1	Attempt to differentiate y
	ax = 5	A1 2	cao
(ii)	Gradient of normal = $-\frac{1}{5}$	B1 ft	ft from a non-zero numerical value in (i)
	When $x = 2$, $y = 6$	B1	May be embedded in equation of line
	$y-6=-\frac{1}{5}(x-2)$	M1	Equation of line, any non-zero gradient, their y
	x + 5y - 32 = 0	A1 4	coordinate Correct equation in correct form
		711 7	·
(iii)	$x^2 + x = kx - 4$	*M1	Equating $y_1 = y_2$
	$x^2 + (1 - k)x + 4 = 0$		
	One solution $\Rightarrow b^2 - 4ac = 0$	DM1	Statement that discriminant = 0
	$(1-k)^2 - 4 \times 1 \times 4 = 0$	DM1	Attempt (involving <i>k</i>) to use a, b, c from their equation
	$(1-k)^2 = 16$		Correct equation (may be unsimplified)
	$1 - k = \pm 4$	A1	Correct method to find k , dep on 1 st 3Ms
	k = -3 or 5	DM1	Both values correct
		A1 6	Dom values correct
		10	
		12	

4722 Core Mathematics 2

1 (i) $\int (x^3 + 8x - 5) dx = \frac{1}{4}x^4 + 4x^2 - 5x + c$	M1		Attempt integration – increase in power for at least 2 terms
•	A1		Obtain at least 2 correct terms
	A1	3	Obtain $\frac{1}{4}x^4 + 4x^2 - 5x + c$ (and no integral sign or dx)
(ii) $\int 12x^{\frac{1}{2}} dx = 8x^{\frac{3}{2}} + c$	B1		State or imply $\sqrt{x} = x^{\frac{1}{2}}$
	M1		Obtain $kx^{\frac{3}{2}}$
	A1	3	Obtain $8x^{\frac{3}{2}} + c$ (and no integral sign or dx)
			(only penalise lack of $+ c$, or integral sign or dx once)
		6	
2 (i) $140^{\circ} = 140 \times \frac{\pi}{180}$	M1		Attempt to convert 140° to radians
$= \frac{7}{9} \pi$	A1	2	Obtain $\frac{7}{9}\pi$, or exact equiv
(ii) arc $AB = 7 \times \frac{7}{9} \pi$	M1		Attempt arc length using $r\theta$ or equiv method
= 17.1	A1√		Obtain 17.1, $\frac{49}{9}\pi$ or unsimplified equiv
chord $AB = 2 \times 7 \sin \frac{7}{18} \pi = 13.2$	M1		Attempt chord using trig. or cosine or sine rules
hence perimeter = 30.3 cm	A 1	4	Obtain 30.3, or answer that rounds to this
		6	
3 (i) $u_1 = 23^1/_3$	В1		State $u_1 = 23^1/_3$
$u_2 = 22^2/_3$, $u_3 = 22$	B1	2	State $u_2 = 22^2/_3$ and $u_3 = 22$
(ii) $24 - \frac{2k}{3} = 0$	M1		Equate u_k to 0
<i>k</i> = 36	A1	2	Obtain 36
(iii) $S_{20} = \frac{20}{2} \left(2 \times 23 \frac{1}{3} + 19 \times \frac{-2}{3} \right)$	M1		Attempt sum of AP with $n = 20$
= 340	A 1		Correct unsimplified S_{20}
	A 1	3	Obtain 340
		7	
$4 \int_{-2}^{2} (x^4 + 3) dx = \left[\frac{1}{5} x^5 + 3x \right]_{-2}^{2}$	M1		Attempt integration – increase of power for at least 1 term
-2	A1		Obtain correct $\frac{1}{5}x^5 + 3x$
$=\left(\frac{32}{5}+6\right)-\left(\frac{-32}{5}-6\right)$	M1		Use limits (any two of -2, 0, 2), correct order/subtraction
$=24\frac{4}{5}$	A1		Obtain $24\frac{4}{5}$
area of rectangle = 19 x 4	B1		State or imply correct area of rectangle
hence shaded area = $76 - 24 \frac{4}{5}$	M1		Attempt correct method for shaded area
$=51\frac{1}{5}$	A1	7	Obtain $51\frac{1}{5}$ aef such as 51.2 , $\frac{256}{5}$
OR) / 1		Attornet subtraction oither and an
Area = $19 - (x^4 + 3)$ = $16 - x^4$	M1 A1		Attempt subtraction, either order Obtain $16 - x^4$ (not from $x^4 + 3 = 19$)
$\int_{2}^{2} (16 - x^{4}) dx = \left[16x - \frac{1}{5}x^{5} \right]_{-2}^{2}$	M1		Attempt integration
-2	A 1		Obtain $\pm \left(16x - \frac{1}{5}x^5\right)$

$$= (32 - \frac{32}{5}) - (-32 - \frac{-32}{5})$$
$$= 51\frac{1}{5}$$

M1 Use limits – correct order / subtraction

A1 Obtain $\pm 51\frac{1}{5}$

A1 Obtain $51\frac{1}{5}$ only, no wrong working

7

5 (i)
$$\frac{TA}{\sin 107} = \frac{50}{\sin 3}$$

 $TA = 914 \text{ m}$

M1 Attempt use of correct sine rule to find TA, or equiv

A1 Obtain 914, or better

(ii)
$$TC = \sqrt{914^2 + 150^2 - 2 \times 914 \times 150 \times \cos 70}$$

M1 Attempt use of correct cosine rule, or equiv, to find TC

= 874 m

A1√ Correct unsimplified expression for TC, following their (i)

A1 Obtain 874, or better

(iii) dist from $A = 914 \times \cos 70 = 313 \text{ m}$ beyond C, hence 874 m is shortest dist M1 Attempt to locate point of closest approach **A**1 Convincing argument that the point is beyond C,

or obtain 859, or better

perp dist = $914 \times \sin 70 = 859 \text{ m}$

SR B1 for 874 stated with no method shown

7

6 (i)
$$S_{\infty} = \frac{20}{1-0.9}$$

= 200

OR

M1 Attempt use of $S_{\infty} = \frac{a}{1-r}$

A1 Obtain 200

(ii)
$$S_{30} = \frac{20(1 - 0.9^{30})}{1 - 0.9}$$

= 192

Attempt use of correct sum formula for a GP, with n = 30M1

A1 Obtain 192, or better

(iii)
$$20 \times 0.9^{p-1} < 0.4$$

 $0.9^{p-1} < 0.02$

Β1 Correct $20 \times 0.9^{p-1}$ seen or implied

 $(p-1)\log 0.9 < \log 0.02$

Link to 0.4, rearrange to $0.9^k = c$ (or >, <), introduce M1 logarithms, and drop power, or equiv correct method

 $p - 1 > \frac{\log 0.02}{\log 0.9}$

M1 Correct method for solving their (in)equation

p > 38.1hence p = 39

A1 State 39 (not inequality), no wrong working seen

8

7 (i)
$$6k^2a^2 = 24$$

Obtain at least two of 6, k^2 , a^2 M1* M1dep* Equate $6k^m a^n$ to 24

$$k^2 a^2 = 4$$

 $ak = 2$ **A.G.**

A1 Show ak = 2 convincingly – no errors allowed

State or imply coeff of x is $4k^3a$

(ii) $4k^3a = 128$ $4k^{3}(\frac{2}{k})=128$

M1

Equate to 128 and attempt to eliminate a or k

 $k^2 = 16$

k = 4, $a = \frac{1}{2}$

A1 **A**1

B1

Obtain k = 4Obtain $a = \frac{1}{2}$

SR B1 for $k = \pm 4$, $a = \pm \frac{1}{2}$

(iii) $4 \times 4 \times \left(\frac{1}{2}\right)^3 = 2$

M1

Attempt $4 \times k \times a^3$, following their a and k (allow if still in

terms of a, k

A1 Obtain 2 (allow $2x^3$)

9

$8 (a)(i) \log_a xy = p + q$	B1	1	State $p + q$ cwo
(ii) $\log_a \left(\frac{a^2 x^3}{y} \right) = 2 + 3p - q$	M1		Use $\log a^b = b \log a$ correctly at least once
	M1		Use $\log \frac{a}{b} = \log a - \log b$ correctly
	A1	3	Obtain $2 + 3p - q$
(b)(i) $\log_{10} \frac{x^2-10}{x}$	B1	1	State $\log_{10} \frac{x^2-10}{x}$ (with or without base 10)
$\mathbf{(ii)} \ \log_{10} \frac{x^2 - 10}{x} = \log_{10} 9$	B1		State or imply that $2 \log_{10} 3 = \log_{10} 3^2$
$\frac{x^2 - 10}{x} = 9$	M1		Attempt correct method to remove logs
$x^2 - 9x - 10 = 0$	A1		Obtain correct $x^2 - 9x - 10 = 0$ aef, no fractions
(x-10)(x+1) = 0 x = 10	M1 A1	5	Attempt to solve three term quadratic Obtain $x = 10$ only
	[10	
9 (i) $f(1) = 1 - 1 - 3 + 3 = 0$ A.G.	B1		Confirm $f(1) = 0$, or division with no remainder shown, or matching coeffs with $R = 0$
$f(x) = (x - 1)(x^2 - 3)$	M1 A1		Attempt complete division by $(x - 1)$, or equiv Obtain $x^2 + k$
	A1		Obtain $x + k$ Obtain completely correct quotient (allow $x^2 + 0x - 3$)
$x^2 = 3$	M1		Attempt to solve $x^2 = 3$
$x = \pm \sqrt{3}$	A1	6	Obtain $x = \pm \sqrt{3}$ only
(ii) $\tan x = 1, \sqrt{3}, -\sqrt{3}$	В1√		State or imply $\tan x = 1$ or $\tan x = $ at least one of their roots from (i)
$\tan x = \sqrt{3} \Rightarrow x = {\pi/_3}, {4\pi/_3}$	M1		Attempt to solve $\tan x = k$ at least once
$\tan x = -\sqrt{3} \Rightarrow x = \frac{2\pi}{3}, \frac{5\pi}{3}$	A1		Obtain at least 2 of $\pi/3$, $2\pi/3$, $4\pi/3$, $5\pi/3$ (allow degs/decimals)
$\tan x = 1 \Rightarrow x = {\pi/4}, {5\pi/4}$	A1		Obtain all 4 of $\pi/_3$, $2\pi/_3$, $4\pi/_3$, $5\pi/_3$ (exact radians only)
	B1 B1	6	Obtain $\pi/4$ (allow degs / decimals) Obtain $5\pi/4$ (exact radians only)
	DI	U	SR answer only is B1 per root, max of B4 if degs / decimals
	[12	

4723 Core Mathematics 3

1 (i)	Obtain integral of form ke^{-2x} Obtain $-4e^{-2x}$	M1 A1		any constant k different from 8 or (unsimplified) equiv
(ii)	Obtain integral of form $k(4x+5)^7$ Obtain $\frac{1}{28}(4x+5)^7$ Include + c at least once	M1 A1 B1	5	any constant k in simplified form in either part
2 (i)	Form expression involving attempts at y values and addition Obtain $k(\ln 4 + 4 \ln 6 + 2 \ln 8 + 4 \ln 10 + \ln 12)$ Use value of k as $\frac{1}{3} \times 2$ Obtain 16.27 State 162.7 or 163	A1 A1		with coeffs 1, 4 and 2 present at least once any constant <i>k</i> or unsimplified equiv or 16.3 or greater accuracy (16.27164)
(II)	State 102.7 01 103	DIV	5	following their answer to (1), maybe founded
3 (i)	Attempt use of identity for $\tan^2 \theta$ Replace $\frac{1}{\cos \theta}$ by $\sec \theta$	M1 B1		using $\pm \sec^2 \theta \pm 1$; or equiv
	$\cos \theta$ Obtain $2(\sec^2 \theta - 1) - \sec \theta$	A1	3	or equiv
(ii)	Attempt soln of quadratic in $\sec \theta$ or $\cos \theta$ Relate $\sec \theta$ to $\cos \theta$ and attempt at least one value of θ Obtain 60°, 131.8° Obtain 60°, 131.8°, 228.2°, 300°	M1 M1 A1 A1	4	as far as factorisation or substitution in correct formula may be implied allow 132 or greater accuracy allow 132, 228 or greater accuracy; and no others between 0° and 360°
4 (i)	Obtain derivative of form $kx(4x^2 + 1)^4$ Obtain $40x(4x^2 + 1)^4$ State $x = 0$	M1 A1 A1v	3	any constant k or (unsimplified) equiv and no other; following their derivative of form $kx(4x^2 + 1)^4$
(ii)	Attempt use of quotient rule	M1		or equiv
	Obtain $\frac{2x \ln x - x^2 \cdot \frac{1}{x}}{(\ln x)^2}$	A1		or equiv
	Equate to zero and attempt solution Obtain $e^{\frac{1}{2}}$	M1 A1	4	as far as solution involving e or exact equiv; and no other; allow from ± (correct numerator of derivative)
			7	

5 (i)	State 40 Attempt value of k using 21 and 80 Obtain $40e^{21k} = 80$ and hence 0.033 Attempt value of M for $t = 63$ Obtain 320 Differentiate to obtain $ce^{0.033t}$ or $40ke^{kt}$ Obtain $40 \times 0.033e^{0.033t}$ Obtain 2.64	B1 M1 A1 M1 A1 A1 A1	 	or equiv or equiv such as $\frac{1}{21} \ln 2$ using established formula or using exponential property or value rounding to this any constant c different from 40 following their value of k allow 2.6 or 2.64 ± 0.01 or greater accuracy (2.64056)
6 (i)	Attempt correct process for finding inverse Obtain $2x^3 - 4$ State $\sqrt[3]{2}$ or 1.26	M1 A1 B1	3	maybe in terms of y so far or equiv; in terms of x now
(ii)	State reflection in $y = x$ Refer to intersection of $y = x$ and $y = f(x)$ and hence confirm $x = \sqrt[3]{\frac{1}{2}x + 2}$	B1 B1	2	or clear equiv AG; or equiv
(iii)	Obtain correct first iterate Show correct process for iteration Obtain at least 3 correct iterates in all Obtain 1.39 $[0 \to 1.259921 \to 1.380330 \to 1.3$ $1 \to 1.357209 \to 1.388789 \to 1.3$ $1.26 \to 1.380337 \to 1.390784 \to$ $1.5 \to 1.401020 \to 1.392564 \to 1$ $2 \to 1.442250 \to 1.396099 \to 1.3$	9151 1.391 .3918	4 4 2 1684 337	→ 1.391747 4 → 1.391761 → 1.391775 → 1.391801]
7 (i)	Refer to stretch and translation State stretch, factor $\frac{1}{k}$, in <i>x</i> direction State translation in negative <i>y</i> direction by a [SC: If M0 but one transformation complete			
(ii)	Show attempt to reflect negative part in <i>x</i> -axis Show correct sketch	M1 A1	2	ignoring curvature with correct curvature, no pronounced 'rounding' at x-axis and no obvious maximum point
(iii)	Attempt method with $x = 0$ to find value of Obtain $a = 14$ Attempt to solve for k Obtain $k = 3$	aM1 A1 M1 A1	4 9	other than (or in addition to) value -12 and nothing else using any numerical a with sound process

0		
8 (i)	Attempt to express x or x^2 in terms of y Obtain $x^2 = \frac{1296}{(y+3)^4}$	M1 A1 or (unsimplified) equiv
	$(y+3)^{7}$ Obtain integral of form $k(y+3)^{-3}$ Obtain $-432\pi(y+3)^{-3}$ or $-432(y+3)^{-3}$	M1 any constant <i>k</i> A1 or (unsimplified) equiv
	Attempt evaluation using limits 0 and p	M1 for expression of form $k(y+3)^{-n}$ obtained from integration attempt; subtraction correct way round
	Confirm $16\pi (1 - \frac{27}{(p+3)^3})$	A1 6 AG; necessary detail required, including appearance of π prior to final line
(ii)	State or obtain $\frac{dV}{dp} = 1296\pi (p+3)^{-4}$	B1 or equiv; perhaps involving y
	Multiply $\frac{dp}{dt}$ and attempt at $\frac{dV}{dp}$	*M1 algebraic or numerical
	Substitute $p = 9$ and attempt evaluation Obtain $\frac{1}{4}\pi$ or 0.785	M1 dep *M A1 4 or greater accuracy 10
9 (i)	State $\cos 2\theta \cos \theta - \sin 2\theta \sin \theta$ Use at least one of $\cos 2\theta = 2\cos^2 \theta - 1$ and $\sin 2\theta = 2\sin \theta \cos \theta$ Attempt to express in terms of $\cos \theta$ only	B1 B1 M1 using correct identities for $\cos 2\theta$, $\sin 2\theta$ and $\sin^2 \theta$
	Obtain $4\cos^3\theta - 3\cos\theta$	A1 4 AG; necessary detail required
(ii)	Either: State or imply $\cos 6\theta = 2\cos^2 3\theta$ Use expression for $\cos 3\theta$ and attempt expansion Obtain $32c^6 - 48c^4 + 18c^2 - 1$ Or: State $\cos 6\theta = 4\cos^3 2\theta - 3\cos 2\theta$	M1 for expression of form $\pm 2\cos^2 3\theta \pm 1$ A1 3 AG; necessary detail required
	Express $\cos 2\theta$ in terms of $\cos \theta$ and attempt expansion Obtain $32c^6 - 48c^4 + 18c^2 - 1$, 1
(iii)	Substitute for $\cos 6\theta$ Obtain $32c^6 - 48c^4 = 0$ Attempt solution for c of equation	*M1 with simplification attempted A1 or equiv M1 dep *M

Obtain $32c^6 - 48c^4 = 0$ A1 or equiv Attempt solution for c of equation M1 dep *M Obtain $c^2 = \frac{3}{2}$ and observe no solutions A1 or equiv; correct work only Obtain c = 0, give at least three specific angles and conclude odd multiples of 90 A1 5 AG; or equiv; necessary detail required; correct work only

4724 Core Mathematics 4

1 Attempt to factorise numerator and denominator M1

M1
$$\frac{A}{f(x)} + \frac{B}{g(x)}$$
; fg= $6x^2 - 24x$

Any (part) factorisation of both num and denom

A1 Corres identity/cover-up

Final answer =
$$-\frac{5}{6x}$$
, $\frac{-5}{6x}$, $\frac{5}{-6x}$, $-\frac{5}{6}x^{-1}$ Not $-\frac{\frac{5}{6}}{x}$

A1

3

2 Use parts with u = x, $dv = \sec^2 x$

M1 result $f(x) + /- \int g(x) dx$

Obtain correct result $x \tan x - \int \tan x \, dx$

A1

В1

 $\int \tan x \, dx = k \ln \sec x \text{ or } k \ln \cos x, \text{ where } k = 1 \text{ or } -1$

or $k \ln |\sec x|$ or $k \ln |\cos x|$

Final answer = $x \tan x - \ln|\sec x| + c$ or $x \tan x + \ln|\cos x| + c$ A1

4

3 (i) $1 + \frac{1}{2} \cdot 2x + \frac{\frac{1}{2} \cdot -\frac{1}{2}}{2} \left(4x^2 \text{ or } 2x^2 \right) + \frac{\frac{1}{2} \cdot -\frac{1}{2} \cdot -\frac{3}{2}}{6} \left(8x^3 \text{ or } 2x^3 \right)$

$$= 1 + x$$
B1

...
$$-\frac{1}{2}x^2 + \frac{1}{2}x^3$$
 (AE fract coeffs)

A1 (3) For both terms

(ii) $(1+x)^{-3} = 1-3x+6x^2-10x^3$

B1 or
$$(1+x)^3 = 1+3x+3x^2+x^3$$

Either attempt at their (i) multiplied by $(1+x)^{-3}$

M1 or (i) long div by $(1+x)^3$

 $1-2x \ldots$

$$\sqrt{1+(a-3)x}$$

A1 f.t. (i) =
$$1 + ax + bx^2 + cx^3$$

... +
$$\frac{5}{2}x^2$$
....

$$\sqrt{(-3a+b+6)}x^2$$

... $-2x^3$

$$\sqrt{(6a-3b+c-10)x^3}$$

(iii) $-\frac{1}{2} < x < \frac{1}{2}$, or $|x| < \frac{1}{2}$

B1 (1)

9

A1

- 4 Attempt to expand $(1 + \sin x)^2$ and integrate it
- *M1 Minimum of $1 + \sin^2 x$
- Attempt to change $\sin^2 x$ into $f(\cos 2x)$
- M1

Use $\sin^2 x = \frac{1}{2} \left(1 - \cos 2x \right)$

A1 dep M1 + M1

Use $\int \cos 2x \, dx = \frac{1}{2} \sin 2x$

- A1 dep M1 + M1
- Use limits correctly on an attempt at integration
- dep* M1 Tolerate g $(\frac{1}{4}\pi) 0$

 $\frac{3}{8}\pi - \sqrt{2} + \frac{7}{4} \quad AE(3-term)F$

A1 WW 1.51... → M1 A0

- 5 (i) Attempt to connect du and dx, find $\frac{du}{dx}$ or $\frac{dx}{du}$
- M1 But not e.g. du = dx

Any correct relationship, however used, such as dx = 2u du A1

or $\frac{du}{dx} = \frac{1}{2} x^{-\frac{1}{2}}$

Subst with clear reduction (≥ 1 inter step) to **AG**

A1 (3) WWW

(ii) Attempt partial fractions

M1

$$\frac{2}{u} - \frac{2}{1+u}$$

A1

$$\sqrt{A \ln u + B \ln (1+u)}$$

 $\sqrt{A1}$ Based on $\frac{A}{u} + \frac{B}{1+u}$

Attempt integ, change limits & use on f(u)

- M1 or re-subst & use 1 & 9
- $\ln \frac{9}{4}$ AEexactF (e.g. 2 ln 3 –2 ln 4 + 2 ln 2)
- A1 (5) Not involving ln 1

Solve 0 = t - 3 & subst into $x = t^2 - 6t + 4$

Obtain x = -5

M1

A1 (2) (-5,0) need not be quoted

N.B. If (ii) completed first, subst y = 0 into their cartesian eqn (M1) & find x (no f.t.) (A1)

(ii) Attempt to eliminate t

M1

Simplify to $x = y^2 - 5$ ISW

If t = 2, x = -4 and y = -1

A1 (2)

(iii) Attempt to find $\frac{dy}{dx}$ or $\frac{dx}{dy}$ from cartes or para form

M1 Award anywhere in Que

Obtain $\frac{dy}{dx} = \frac{1}{2t-6}$ or $\frac{1}{2y}$ or $(-)\frac{1}{2}(x+5)^{-\frac{1}{2}}$

В1 Awarded anywhere in (iii)

Using their num (x, y) & their num $\frac{dy}{dx}$, find tgt eqn

M1

A1

x + 2y + 6 = 0 AEF(without fractions) **ISW**

A1 (5)

9

7 (i) Attempt direction vector between the 2 given points M1

State eqn of line using format (\mathbf{r}) = (either end) + s(dir vec) M1

's' can be 't'

Produce 2/3 eqns containing t and s

M1 2 different parameters

Solve giving t = 3, s = -2 or 2 or -1 or 1

A1

Show consistency

B1

Point of intersection = (5,9,-1)

A1 (6)

(ii) Correct method for scalar product of 'any' 2 vectors

M1 Vectors from this question

Correct method for magnitude of 'any' vector

M1 Vector from this question

Use $\cos \theta = \frac{\mathbf{a.b}}{|\mathbf{a}||\mathbf{b}|}$ for the correct 2 vectors $\begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} & \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$

M1 Vects may be mults of dvs

62.2 (62.188157...) 1.09 (1.0853881)

A1 (4)

10

8 (i)
$$\frac{d}{dx}(y^3) = 3y^2 \frac{dy}{dx}$$

В1

Consider
$$\frac{d}{dx}(xy)$$
 as a product

M1

$$= x \frac{\mathrm{d}y}{\mathrm{d}x} + y$$

Tolerate omission of '6' **A**1

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6y - 3x^2}{3y^2 - 6x}$$
 ISW AEF

A1 (4)

(ii)
$$x^3 = 2^4$$
 or 16 and $y^3 = 2^5$ or 32

*B1

Satisfactory conclusion

dep* B1

Substitute $\left(2^{\frac{4}{3}}, 2^{\frac{5}{3}}\right)$ into their $\frac{dy}{dx}$

or the numerator of $\frac{dy}{dx}$

Show or use calc to demo that num = 0, ignore denom **AG** A1 (4)

(iii) Substitute (a, a) into eqn of curve

M1 & attempt to state 'a = ...'

a = 3 only with clear ref to $a \neq 0$

A1

Substitute (3,3) or (their a, their a) into their $\frac{dy}{dx}$

M1

-1 only WWW

A1 (4) from (their a, their a)

12

 $\frac{\mathrm{d}\theta}{\mathrm{d}t} = \dots$

B1

 $k(160-\theta)$

B1 (2) The 2 @ 'B1' are indep

(ii) Separate variables with $(160-\theta)$ in denom; or invert

 $\int \frac{1}{160 - \theta} d\theta = \int k, \frac{1}{k}, 1 dt$ *M1

Indication that LHS = $\ln f(\theta)$

If wrong ln, final 3@A = 0**A**1

RHS = kt or $\frac{1}{k}t$ or t (+ c)

Subst. $t = 0, \theta = 20$ into equation containing 'c' dep* M1

Subst $t = 5, \theta = 65$ into equation containing 'c' & 'k' dep*M1

 $c = -\ln 140$ (-4.94)

ISW

A1

A1

A1

 $k = \frac{1}{5} \ln \frac{140}{95}$ ($\approx 0.077 \text{ or } 0.078$)

Using their 'c' & 'k', subst t = 10 & evaluate θ dep*M1

 $\theta = 96(95.535714) \left(95\frac{15}{28}\right)$

A1 (9)

11

4725 Further Pure Mathematics 1

1		M1		Multiply by conjugate of denominator
		A1 A1		Obtain correct numerator
	$\frac{7}{26} + \frac{17}{26}$ i.	A1	4	Obtain correct denominator
	26 26 26		4	
2	(5 0)	B1		Both diagonals correct
	(i) $\frac{1}{10} \begin{pmatrix} 5 & 0 \\ -a & 2 \end{pmatrix}$	B1	2	Divide by correct determinant
	(-a 2)			
	(ii) $\begin{pmatrix} 3 & -2 \\ 2a & 6 \end{pmatrix}$	B1		Two elements correct
	$\begin{bmatrix} (ii) & 3 & 2 \\ 2a & 6 \end{bmatrix}$	B1	2	Remaining elements correct
	(2a 0)		4	
3		M1		Express as sum of 3 terms
	$n^{2}(n+1)^{2} + n(n+1)(2n+1) + n(n+1)$	A1		2 correct unsimplified terms
		A1		3 rd correct unsimplified term
	1)27	M1		Attempt to factorise
	$n(n+1)^2(n+2)$	A1ft		Two factors found, ft their quartic
		A1	6	Correct final answer a.e.f.
			6	
4		B1		State or use correct result
		M1		Combine matrix and its inverse
	$(0 \ 0)$	A1		Obtain I or I^2 but not 1
		A1	4	Obtain zero matrix but not 0
	$(0 \ 0)$		4	S.C. If $0/4$, B1 for $AA^{-1} = I$
5	Either	M1		Consider determinant of coefficients of LHS
		M1		Sensible attempt at evaluating any 3×3 det
	4k-4	A1		Obtain correct answer a.e.f. unsimplified
		M1		Equate det to 0
	k = 1	A1ft	5	Obtain $k = 1$, ft provided all M's awarded
	Or	M1		Eliminate either <i>x</i> or <i>y</i>
		A1		Obtain correct equation
		M1		Eliminate 2 nd variable
		A1		Obtain correct linear equation
		A1		Deduce that $k = 1$
			5	
6	(i) Either	B1 DB1	2	Reflection, in x-axis
	Or	B1 DB1		Stretch parallel to <i>y</i> -axis, s.f. –1
	(ii)	B1 DB1	2	Reflection, in $y = -x$
	(0 1)			
	(iii) $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	B1 B1	2	Each column correct
	(iv)	B1B1B1	2	Rotation, 90°, clockwise about O
		DIDIDI	3 9	
			9	S.C. If (iii) incorrect, B1 for identifying
				their transformation, B1 all details correct

7	(i) $13^n + 6^{n-1} + 13^{n+1} + 6^n$ (ii)	B1 M1 A1 B1 B1 B1	3 4 7	Correct expression seen Attempt to factorise both terms in (i) Obtain correct expression Check that result is true for $n = 1$ (or 2) Recognise that (i) is divisible by 7 Deduce that u_{n+1} is divisible by 7 Clear statement of Induction conclusion
8	(i)	M1		Expand at least 1 of the brackets
		A1	2	Derive given answer correctly
	(ii) $\alpha + \beta = 6k, \alpha\beta = k^2$	B1 B1		State or use correct values
	, , , ,	M1		Find value of $\alpha - \beta$ using (i)
	$\alpha - \beta = (4\sqrt{2})k$	A1		Obtain given value correctly (allow if –6k
			4	used)
	(iii) $\sum \alpha' = 6k$	B1ft	'	Sum of new roots stated or used
		3.61		
	$\alpha' \beta' = \alpha \beta - (\alpha - \beta) - 1$	M1		Express new product in terms of old roots
		A1ft		Obtain correct value for new product
	$\alpha' \beta' = k^2 - (4\sqrt{2})k - 1$	B1ft		
	$x^2 - 6kx + k^2 - (4\sqrt{2})k - 1 = 0$	DIII	4	Write down correct quadratic equation
			10	
9	(i)	M1	_	Use correct denominator
		A1	2	Obtain given answer correctly
	(ii)	M1		Express terms as differences using (i)
		M1		Do this for at least 1 st 3 terms
		A1		First 3 terms all correct
		A1		Last 3 terms all correct (in terms or <i>n</i> or <i>r</i>)
	$1 + \frac{1}{3} - \frac{1}{2n-1} - \frac{1}{2n+1}$	M1		Show pairs cancelling
		A1	6	Obtain correct answer, a.e.f.(in terms of n)
	(iii) $\frac{4}{3}$	B1ft	1	Given answer deduced correctly, ft their (ii)
			9	3, ()

10	(i) $x^2 - y^2 = 2,2xy = \sqrt{5}$ $4x^4 - 8x^2 - 5 = 0$	M1 A1 M1 M1		Attempt to equate real and imaginary parts Obtain both results a.e.f. Eliminate to obtain quadratic in x^2 or y^2 Solve to obtain x (or y) values
	$x = \pm \frac{\sqrt{10}}{2}, y = \pm \frac{\sqrt{2}}{2}$ $\pm (\frac{\sqrt{10}}{2} + i \frac{\sqrt{2}}{2})$	A1 A1	6	Correct values for both x & y obtained a.e.f. Correct answers as complex numbers
	(ii) $z^{2} = 2 \pm i\sqrt{5}$ $z = \pm \left(\frac{\sqrt{10}}{2} \pm i\frac{\sqrt{2}}{2}\right)$	M1 A1 M1 A1ft	4	Solve quadratic in z^2 Obtain correct answers Use results of (i) Obtain correct answers, ft must include root from conjugate
	(iii)	B1ft	1	Sketch showing roots correctly
	(iv)	B1 B1ft B1ft	3 14	Sketch of straight line, \perp to α Bisector

4726 Further Pure Mathematics 2

1	(i)	Give $1 + 2x + (2x)^2/2$ Get $1 + 2x + 2x^2$	M1 A1	Reasonable 3 term attempt e.g. allow $2x^2/2$ cao SC Reasonable attempt at f'(0) and f''(0) M1 Get $1+2x+2x^2$ cao A1
	(ii)	$\ln((1+2x+2x^2) + (1-2x+2x^2)) =$	M1	Attempt to sub for e^{2x} and e^{-2x}
		$\ln(2+4x^{2}) = \ln 2 + \ln(1+2x^{2})$ $\ln 2 + 2x^{2}$	A1√ M1 A1	On their part (i) Use of log law in reasonable expression cao SC Use of Maclaurin for f '(x) and f"(x) M1 One correct A1 Attempt f(0), f '(0) and f"(0) Get cao A1
2	(i)	$x_2 = 1.8913115$ $x_3 = 1.8915831$ $x_4 = 1.8915746$	B1 B1√ B1	x_2 correct; allow answers which round For any other from their working For all three correct
	(ii)	$e_3/e_2 = -0.031(1)$	M1	Subtraction and division on their values; allow ±
		$e_4/e_3 = -0.036(5)$ State f'(\alpha) \approx e_3/e_2 \approx e_4/e_3	A1 B1√	Or answers which round to -0.031 and -0.037 Using their values but only if approx. equal; allow differentiation if correct conclusion; allow gradient for f'
3	(i)	Diff. $\sin y = x$ Use $\sin^2 + \cos^2 = 1$ to A.G. Justify +	M1 A1 B1	Implicit diff. to $dy/dx = \pm (1/\cos y)$ Clearly derived; ignore \pm e.g graph/ principal values
	(ii)	Get $2/(\sqrt{(1-4x^2)} + 1/(\sqrt{(1-y^2)}) dy/dx = 0$	M1	Attempt implicit diff. and chain rule; allow e.g. $(1-2x^2)$ or $a/\sqrt{(1-4x^2)}$
		Find $y = \sqrt{3/2}$ Get $-2\sqrt{3/3}$	A1 M1 A1√	Method leading to y AEEF; from their a above SC Write $\sin(\frac{1}{2}\pi - \sin^{-1}2x) = \cos(\sin^{-1}2x)$ B1 Attempt to diff. as above M1 Replace x in reasonable $\frac{dy}{dx}$ and attempt to tidy M1 Get result above A1

Let $x = \cosh \theta$ such that (i)

 $dx = \sinh \theta d\theta$

Clearly use \cosh^2 - $\sinh^2 = 1$

M1

M1

M1

B1

B1

A1 Clearly derive A.G.

Allow $a (\cosh 2\theta \pm 1)$

Allow bsinh $2\theta \pm a\theta$

(ii) Replace $\cosh^2\theta$

Attempt to integrate their

expression

Get $\frac{1}{4}\sinh 2\theta + \frac{1}{2}\theta (+c)$

Clearly replace for *x* to A.G.

A1 B1

Condone no +cSC Use expo. defⁿ; three terms M1 Attempt to integrate M1

Get $\frac{1}{8}(e^{2\theta}-e^{-2\theta}) + \frac{1}{2}\theta (+c)$ **A**1 Clearly replace for x to A.G. B1

5 (a) State $(x=) \alpha$ (i)

None of roots

(b) Impossible to say All roots can be derived **B**1 Some discussion of values close to 1 or 2 or **B**1 central leading to correct conclusion

(ii) (1, 0.8)а γ В (1, -0.8)

B1 Correct x for y=0; allow 0.591, 1.59, 2.31

B1Turning at (1,0.8) and/or (1,-0.8)

No explanation needed

Meets x-axis at 90° **B**1

- Symmetry in *x*-axis; allow B1
- Correct definitions used (i) Attempt at $(e^{x}-e^{-x})^{2}/4+1$ Clearly derive A.G.

Allow $(e^{x}+e^{-x})^{2}+1$; allow /2 M1 **A**1

B1

(ii) Form a quadratic in sinh x

Attempt to solve Get $sinh x = -\frac{1}{2}$ or 3 **A**1

Use correct in expression M1

Get $\ln(-\frac{1}{2} + \frac{\sqrt{5}}{2})$ and $\ln(3 + \sqrt{10})$

M1 M1Factors or formula

On their answer(s) seen once

 $OP = 3 + 2\cos\alpha$ (i)

 $OQ = 3 + 2\cos(\frac{1}{2}\pi + \alpha)$

 $=3-2\sin\alpha$ Similarly $OR=3-2\cos\alpha$

M1

M1

M1

A1

Attempt at simplification of at least two

Need not be expanded, but three terms if it is

Any other unsimplified value

correct expressions

 $OS=3 + 2\sin \alpha$

Sum = 12**A**1 cao

Correct formula with attempt at r^2 (ii)

Square *r* correctly **A**1 Attempt to replace $\cos^2\theta$ with M1

 $a(\cos 2\theta \pm 1)$

Integrate their expression

 $Get^{11\pi}/_{4} - 1$

A1√ Need three terms

A1 cao

8 (i)	Area = $\int 1/(x+1) dx$ Use limits to $\ln(n+1)$	B1 B1	Include or imply correct limits
	Compare area under curve to areas of rectangles	B1	Justify inequality
	Sum of areas = $1x(\frac{1}{2} + \frac{1}{3} + + \frac{1}{(n+1)})$	M1	Sum seen or implied as 1 x y values
	Clear detail to A.G.	A1	Explanation required e.g. area of last rectangle at $x=n$, area under curve to $x=n$
(ii)	Show or explain areas of rectangles above curve	M1	
	Areas of rectangles (as above) > area under curve	A1	First and last heights seen or implied; A.G.
(iii)	Add 1 to both sides in (i) to make $\sum_{i=1}^{n} \binom{1}{r}$	B1	Must be clear addition
	Add $^{1}/_{(n+1)}$ to both sides in (ii) to make $\sum (^{1}/r)$	B1	Must be clear addition; A.G.
(iv)	State divergent Explain e.g. $\ln(n+1) \rightarrow \infty$ as $n \rightarrow \infty$	B1 B1	Allow not convergent
9 (i)	Require denom. = 0 Explain why denom. $\neq 0$	B1 B1	Attempt to solve, explain always > 0 etc.
(ii)	Set up quadratic in x Get $2yx^2-4x+(2a^2y+3a)=0$	M1 A1	
	Use $b^2 \ge 4ac$ for real x	M1	Produce quadratic inequality in y from their quad.; allow use of = or <
	Attempt to solve their inequality Get $y > {}^{1}/{}_{2a}$ and $y < {}^{-2}/{}_{a}$	M1 A1	Factors or formula Justified from graph
	Get y = 12a und y = 1a	711	SC Attempt diff. by quot./product rule M1 Solve $dy/dx = 0$ for two values of x M1
			Get $x=2a$ and $x=-a/2$ A1 Attempt to find two y values M1
			Get correct inequalities (graph used to justify them) A1
(iii)	Split into two separate integrals Get $k \ln(x^2+a^2)$	M1 A1	Or $p\ln(2x^2+2a^2)$
	Get $k_1 \tan^{-1}(x/a)$ Use limits and attempt to simplify	A1 M1	k_1 not involving a
	Get $\ln 2.5 - 1.5 \tan^{-1} 2 + 3\pi/8$	A1	AEEF
		711	SC Sub. $x = a \tan \theta$ and $dx = a \sec^2 \theta \ d\theta$ M1 Reduce to $\int p \tan \theta - p_1 \ d\theta$ A1 (ignore limits here)
			Integrate to $p\ln(\sec\theta)-p_1\theta$ A1 Use limits (old or new) and
			attempt to simplify M1 Get answer above A1

4727 Further Pure Mathematics 3

(b)	() (
(0)	(n =) 6	B1 1	For correct <i>n</i>
(c)	(n=) 4	B1 1	For correct <i>n</i>
(ii)	(n =) 4, 6	B1	For either 4 or 6
		B1 2	For both 4 and 6 and no extras
			Ignore all $n \dots 8$
			SR B0 B0 if more than 3 values given, even if they include 4 or 6
		5	
2 (i)	$\frac{\sqrt{3} + i}{\sqrt{3} - i} \times \frac{\sqrt{3} + i}{\sqrt{3} + i} = \frac{1}{2} + \frac{1}{2}i\sqrt{3}$	M1	For multiplying top and bottom by complex conjugate
	$OR \frac{\sqrt{3} + i}{\sqrt{3} - i} = \frac{2e^{\frac{1}{6}\pi i}}{2e^{-\frac{1}{6}\pi i}}$		OR for changing top and bottom to polar form
	$=(1)e^{\frac{1}{3}\pi i}$	A1	For $(r =)$ 1 (may be implied)
		A1 3	For $(\theta =) \frac{1}{3} \pi$
			SR Award maximum A1 A0 if $e^{i\theta}$ form is not seen
(ii)	$\left(e^{\frac{1}{3}\pi i}\right)^6 = e^{2\pi i} = 1 \implies (n = 6)$	M1	For use of $e^{2\pi i} = 1$, $e^{i\pi} = -1$, $\sin k\pi = 0$ or $\cos k\pi = \pm 1$ (may be implied)
		A1 2	For $(n =)$ 6 SR For $(n =)$ 3 only, award M1 A0
		5	
3 (i)	$\mathbf{n} = [2, 1, 3] \times [3, 1, 5]$	M1	For using direction vectors and attempt to find vector product
	=[2,-1,-1]	A1 2	For correct direction (allow multiples)
(ii)	$d = \frac{[5, 2, 1] \cdot [2, -1, -1]}{\sqrt{6}}$	B1	For $(\mathbf{AB} =)[5, 2, 1]$ or any vector joining lines
	$u = \frac{1}{\sqrt{6}}$	M1	For attempt at evaluating AB.n
		M1	For n in denominator
	$=\frac{7}{\sqrt{6}}=\frac{7}{6}\sqrt{6}=2.8577$	A1 4	For correct distance
		6	

	1. /16.22		
4	$m^2 + 4m + 5 (= 0) \Rightarrow m = \frac{-4 \pm \sqrt{16 - 20}}{2}$	M1	For attempt to solve correct auxiliary equation
	$=-2\pm i$	A1	For correct roots
	$CF = e^{-2x} (C\cos x + D\sin x)$	A 1√	For correct CF (here or later). f.t. from m AEtrig but not forms including e^{ix}
	$PI = p\sin 2x + q\cos 2x$	B1	For stating a trial PI of the correct form
	$y' = 2p\cos 2x - 2q\sin 2x$ $y'' = -4p\sin 2x - 4q\cos 2x$	M1	For differentiating PI twice and substituting into the DE
	$\cos 2x \left(-4q + 8p + 5q\right)$		
	$+\sin 2x \left(-4p - 8q + 5p\right) = 65\sin 2x$	A 1	For correct equation
	$ \begin{cases} 8p+q=0 \\ p-8q=65 \end{cases} p=1, q=-8 $	M1	For equating coefficients of $\cos 2x$ and $\sin 2x$ and attempting to solve for p and/or q
	$PI = \sin 2x - 8\cos 2x$	A1	For correct p and q
	$\Rightarrow y = e^{-2x} (C\cos x + D\sin x) + \sin 2x - 8\cos 2x$	B1√ 9	For using $GS = CF + PI$, with 2 arbitrary constant in CF and none in PI
		9	
5 (i)	$y = u - \frac{1}{x} \implies \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}x} + \frac{1}{x^2}$	M1 A1	For differentiating substitution For correct expression
	$x^{3} \left(\frac{\mathrm{d}u}{\mathrm{d}x} + \frac{1}{x^{2}} \right) = x \left(u - \frac{1}{x} \right) + x + 1$	M1	For substituting y and $\frac{dy}{dx}$ into DE
	$\Rightarrow x^2 \frac{\mathrm{d}u}{\mathrm{d}x} = u$	A1 4	For obtaining correct equation AG
(ii)	METHOD 1 $\int \frac{1}{u} du = \int \frac{1}{x^2} dx \implies \ln ku = -\frac{1}{x}$	M1 A1	For separating variables and attempt at integration For correct integration (<i>k</i> not required here)
	$ku = e^{-1/x} \implies k\left(y + \frac{1}{x}\right) = e^{-1/x}$	M1 M1	For any 2 of For all 3 of k seen, exponentiating, substituting for u
	$\Rightarrow y = Ae^{-1/x} - \frac{1}{x}$	A1 5	For correct solution AEF in form $y = f(x)$
	METHOD 2		
	$\frac{du}{dx} - \frac{1}{x^2}u = 0 \implies \text{I.F. } e^{\int -1/x^2 dx} = e^{1/x}$	M1	For attempt to find I.F.
	$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \Big(u \mathrm{e}^{1/x} \Big) = 0$	A1	For correct result
	$u e^{1/x} = k \implies y + \frac{1}{x} = k e^{-1/x}$	M1 M1	From $u \times I.F. = $, for k seen for substituting for u in either
	a) 1		order
	$\Rightarrow y = k e^{-1/x} - \frac{1}{x}$	A1	For correct solution AEF in form $y = f(x)$
		9	

6 (i)	METHOD 1			
	Use 2 of [-4, 2, 0], [0, 0, 3], [-4, 2, 3], [4, -2, 3] or multiples	M1		For finding vector product of 2 appropriate vectors in plane <i>ACGE</i>
	$\mathbf{n} = k [1, 2, 0]$	A 1		For correct n
	Use A[4, 0, 0], C[0, 2, 0], G[0, 2, 3] OR E[4, 0, 3]	M1		For substituting a point in the plane
	r. [1, 2, 0] = 4	A1	4	For correct equation. AEF in this form
	METHOD 2 $\mathbf{r} = [4, 0, 0] + \lambda[-4, 2, 0] + \mu[0, 0, 3]$	M1		For writing plane in 2-parameter form
	$\Rightarrow x = 4 - 4\lambda, y = 2\lambda, z = 3\mu$	A1		For 3 correct equations
	x + 2y = 4	M1		For eliminating λ (and μ)
	\Rightarrow r • [1, 2, 0] = 4	A1		For correct equation. AEF in this form
(ii)	$\theta = \cos^{-1} \frac{ [3, 0, -4] \cdot [1, 2, 0] }{\sqrt{3^2 + 0^2 + 4^2} \sqrt{1^2 + 2^2 + 0^2}}$	B1\ M1		For using correct vectors (allow multiples). f.t. from n
	V3 +0 +4 V1 +2 +0	M1		For using scalar product For multiplying both moduli in denominator
	$\theta = \cos^{-1} \frac{3}{5\sqrt{5}} = 74.4^{\circ}$	A1	4	For correct angle
	(74.435°, 1.299)	3.61		
(iii)	AM: $(\mathbf{r} =) [4, 0, 0] + t[-2, 2, 3]$ (or [2, 2, 3] + t[-2, 2, 3])	M1 A1		For obtaining parametric expression for <i>AM</i> For correct expression seen or implied
	(0t [2, 2, 3] + t[-2, 2, 3]) $3(4-2t)-4(3t) = 0$			
	$(or \ 3(2-2t)-4(3+3t)=0)$	M1		For finding intersection of AM with ACGE
	$t = \frac{2}{3} (or \ t = -\frac{1}{3}) OR \ \mathbf{w} = \left[\frac{8}{3}, \frac{4}{3}, 2\right]$	A 1		For correct t OR position vector
	AW:WM=2:1	A 1	5	For correct ratio
		13	3	
7 (i) (a)	$x + y - a \in \mathbf{R}$	B1		For stating closure is satisfied
	(x*y)*z = (x+y-a)*z = x+y+z-2a	M1		For using 3 distinct elements bracketed both ways
	x*(y*z) = x*(y+z-a) = x+y+z-2a	A1		For obtaining the same result twice for associativity
	$x + e - a = x \implies e = a$	B1		SR 3 distinct elements bracketed once, expanded, and symmetry noted scores M1 A1 For stating identity = a
	$x + x^{-1} - a = a \implies x^{-1} = 2a - x$	M1 A1	6	For attempting to obtain inverse of x For obtaining inverse = $2a - x$
				<i>OR</i> for showing that inverses exist, where $x + x^{-1} = 2a$
(b)	$x + y - a = y + x - a \Rightarrow$ commutative	B1	1	For stating commutativity is satisfied, with justification
	$x \text{ order } 2 \Rightarrow x * x = e \Rightarrow 2x - a = e$	M1		For obtaining equation for an element of order
(c)	$\Rightarrow 2x - a = a \Rightarrow x = a = e$	A 1	2	2 For solving and showing that the only solution
	$OR \ x = x^{-1} \Rightarrow x = 2a - x \Rightarrow x = a = e$			is the identity (which has order 1)
	⇒ no elements of order 2			OR For proving that there are no self-inverse elements (other than the identity)

(**)			
(ii)	e.g. $2+1-5=-2 \notin R^+$	M1	For attempting to disprove closure
	⇒ not closed	A 1	For stating closure is not necessarily satisfied $(0 < x + y)$, 5 required
	e.g. $2 \times 5 - 11 = -1 \notin \mathbb{R}^+$	M1	For attempting to find an element with no inverse
	⇒ no inverse	A1 4	For stating inverse is not necessarily satisfied $(x10 \text{ required})$
		13	
8 (i)	$\sin\theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$	B1	z may be used for $e^{i\theta}$ throughout For expression for $\sin\theta$ seen or implied
		M1	For expanding $\left(e^{i\theta} - e^{-i\theta}\right)^6$
	$\sin^6 \theta =$		At least 4 terms and 3 binomial coefficients required.
	$-\frac{1}{64} \left(e^{6i\theta} - 6e^{4i\theta} + 15e^{2i\theta} - 20 + 15e^{-2i\theta} - 6e^{-4\theta} \right)$,	For correct expansion. Allow $\frac{\pm(i)}{64}(\cdots)$
	$= -\frac{1}{64} (2\cos 6\theta - 12\cos 4\theta + 30\cos 2\theta - 20)$	A1 M1	For grouping terms and using multiple angles
	$\sin^6 \theta = -\frac{1}{32} (\cos 6\theta - 6\cos 4\theta + 15\cos 2\theta - 10)$	A1 5	For answer obtained correctly AG
(ii)	$\cos^6\theta = OR\sin^6\left(\frac{1}{2}\pi - \theta\right) =$	M1	For substituting $\left(\frac{1}{2}\pi - \theta\right)$ for θ throughout
	$-\frac{1}{32}(\cos(3\pi-6\theta)-6\cos(2\pi-4\theta)+15\cos(\pi-6\theta))$	-20)-10	
		A1	For correct unsimplified expression
	$\cos^6 \theta = \frac{1}{32} \left(\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10 \right)$	A1 3	For correct expression with $\cos n\theta$ terms AEF
(iii)	$\int_0^{\frac{1}{4}\pi} \frac{1}{32} \left(-2\cos 6\theta - 30\cos 2\theta \right) d\theta$	В1√	For correct integral. f.t. from $\sin^6 \theta - \cos^6 \theta$
	$=-\frac{1}{16}\left[\frac{1}{6}\sin 6\theta + \frac{15}{2}\sin 2\theta\right]_{0}^{\frac{1}{4}\pi}$	M1	For integrating $\cos n\theta$, $\sin n\theta$ or $e^{in\theta}$
	$16 \lfloor 6 \rfloor 0$ $2 \rfloor 0$	A1	For correct integration. f.t. from integrand
	$=-\frac{11}{24}$	A1 4	For correct answer www
		12	

4728 Mechanics 1

1 (i)		M1	Uses CoLM
	0.5x6 = 0.5x0.8 + 4m	A1	
	m = 0.65	A1	If g used throughout, possible 3 marks
		[3]	
(**)	0.5.6	M1	After momentums opposite signs
(ii)	0.5x6 = -0.5x0.8 + 4m	A1	
	m = 0.85	A1	If g used throughout, 0 marks
2 (i)	T = 400 N	[3] B1	Order immaterial
2 (1)	D = 400 N D = 400 + 900	M1	Or T + 900; sign correct
	= 1300 N	A1	Of 1 + 900, sign correct
	- 1300 N	[3]	
(ii)		[-]	(Award M marks even if g included in ma terms.
(11)			M marks require correct number forces)
		M1	Uses N2L one object only
	$500 \times 0.6 = T - 400$	A1	Oses 14212 one object only
	T = 700 N	A1	
	7001	M1	Uses N2L other object
	1250x0.6 = D - 900 - 700	A1ft	ft cv(T from (ii)); allow T instead of its value
	D = 2350 N	A1	Trev(1 from (fr)), who will instead of its value
	OR		
		M1	Uses N2L for both objects
	(500 + 1250)x0.6 = D - 400 - 900	A1	
	D = 2350 N	A1	
		[6]	
3 (i)	5cos30 or 5 sin 60 or 4.33	B1	Order immaterial, accept +/ May be awarded in
	5cos 60 or 5sin30 or 2.5	B1	(ii) if no attempt in (i)
		[2]	
(::)		N/1±	C. land de cida de cida de cida de cida de constituir de cida
(ii)	7 4 22 (- 2 67) and 0 2 5 (- 6 5)	M1* A1	Subtracts either component from either force
	7-4.33 (= 2.67) and 9 - 2.5 (= 6.5) $R^2 = 2.67^2 + 6.5^2$	D*M	
	R = 7.03	1 D · M	3sf or better
	$\tan \theta = 6.5/2.67$	A1	Valid trig for correct angle
	$\theta = 67.6, 67.7 \text{degrees}$	D*M	3sf or better
	0 - 07.0, 07.7degrees	1 1 N	381 of better
		A1	
		[6]	
4 (i)	20cos 30	M1	Resolves 20 (accept 20 sin30)
(-)	$20\cos 30 = 3a$	M1	Uses N2L horizontally, accept g in ma term
	$a = 5.77 \text{ ms}^{-2}$	A1	,,r · <u>G</u>
		[3]	
(ii)		M1	Resolves vertically (accept -, cos if sin in i);
	$R = 3x9.8 + 20 \sin 30 (= 39.4)$	A1	correct no. terms
	$F = 20\cos 30 (= 17.3)$	B1	Correct (Neither R nor <i>F</i> need be evaluated)
	$17.3 = 39.4 \mu$	M1	Uses $F = \mu R$
	$\mu = 0.44$	A 1	·
		[5]	

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$v = 0.4 \times 6^2 (+c)$	
D 1111	
$v = 27.4 \text{ ms}^{-1}$ A1	
[5]	
(ii) $s = \int 0.4t^2$ (+c)dt M1* Attempt at integration of v((t)
$s = 0.4t^3/3 + 13t (+k)$ A1ft ft cv(v(t) in (i))	
t=0, s=0, (k=0) M1	
$s = 0.4x6^3/3 + 13x6$ D*M1	
s = 106.8 m Allow if k=0 assumed. Acc	ept 107 m.
[5]	
(iii) Fig. 2 B1	
Fig.1 has zero initial velocity/gradient B1	
Fig. 3 does not have a increasing B1	
velocity/gradient [2]	
6 (i) $2.5 = 9.8t^2/2$ M1 Uses $s = 0 + -gt^2/2$	
a $t = 0.714$ s or better or 5/7 A1 Not awarded if - sign "lost"	,
b [2] [2] [1]	
$v^2 = 2x9.8x2.5 \ OR \ v = 9.8 \ x \ 0.714$ M1 Uses $v^2 = 0 + /-2gs \ or \ v = u$	
$v = 7 \text{ ms}^{-1} \text{ or } 6.99 \text{ or art } 7.00$ A1 Not awarded if - sign "lost"	,
(ii) $R = 2x9.8\sin 60 (= 16.97 = 17)$ B1 With incorrect angle, e.g M1 $R = 2x9.8\cos 60 (= 9.8)$ B0	
	J
Cmpt weight = $2x9.8\cos 60 = 9.8$ B1 Cmpt wt = $2x9.8\sin 60 = 16$ 2a = 9.8 - 3.395 M1 $2a = 16.97 - 1.96$ M1	0.97) BU
$\begin{vmatrix} 2a - 9.8 - 3.393 \\ a = 3.2 \text{ ms}^{-2} \end{vmatrix}$ A1ft $\begin{vmatrix} 2a - 16.97 - 1.96 \text{ M}1 \\ a = 7.5 \text{ A}1\sqrt{\text{ ft cv(R and M)}} \end{vmatrix}$	Cont weight)
Distance down ramp = 5 m $B1$ $A TR = a - 7.5 ATV = R CV(R and R CV)$	Chipt weight)
$v^2 = 2x3.2x5$ $M1$ $v^2 = 2x7.5x5$	
	$cv(\sqrt{10a})$
[9]	CV(V (10a))
7 (i) $M1$ Use of $v = u - 0.4t$	
p = 4 - 2x0.4 (= 3.2)	
q = 1 - 2x0.4 (= 0.2) A1 Accept $q = -0.2$ from $-1+2*$	0.4
M1 Uses CoLM on reduced vel	
0.7x3.2 - 0.3x0.2 = (1x)v A1	
$v = 2.18 \text{ ms}^{-1}$	
[6]	

(ii)		B1	Straight line with larger y intercept slopes
a			towards t axis, but does not reach it.
		B1	Straight line with negative y intercept slopes
			towards t axis,
		B1	and gets to t axis before other line ends.
		[3]	SR if t=2 in ii give B1 if line stops before axis
b	0 = 1 - 0.4t	M1	Finds when Q comes to rest (any method)
	t = 2.5 s	A1	
		M1	Uses $s = ut - 0.4t^2/2$
	$P = 4x3 - 0.5x0.4x3^2$	A1	
	$Q = 1x2.5 - 0.5x0.4x2.5^2$	A1	(nb $0^{(2)} = 1^{(2)} - 0.4Q^2/2$ B1; convincing
	PQ = 10.2 + 1.25 = 11.45 m	A1	evidence (graph to scale, or calculation that Q
	•	[6]	comes to rest and remains at rest at t less than
			3, M1A1;graph A1 needs –ve v intercept)
			SR if t=2 in iib, allow M1 for s= ut - $0.4t^2/2$
			And A1 for PQ=8.4

Alternative for Q3 where 7 N and 9N forces combined initially

3 (i)	5cos30 or 5 sin 60 or 4.33	B1	Order immaterial, accept +/ May be awarded
	5cos 60 or 5sin30 or 2.5	B1	in (ii) if no attempt in (i)
		[2]	
(ii)	$Z^2 = 7^2 + 9^2 (= 130, Z = 11.4017)$		Z is resultant of 7N and 9N forces only
	cos(angle of Z with y axis) = 9/11.4017		
	angle of Z with y axis = 37.8746		
	Angle opposite R in triangle of forces =		R is resultant of all 3 forces
	180 -(37.8746+90+30)	M1*	Complete method
	= 22.125 (Accept 22)	A1	_
	$R^2 = 5^2 + 11.4017^2 - 2x5x11.4017\cos 22.125$	D*M1	Cosine rule to find R
	R (= 7.0269) = 7.03 N	A 1	
	$11.4017^2 = 5^2 + 7.0269^2 - 2x5x7.0269\cos A$		Or Sine Rule. A is angle between R and 5N
	(A = 142.33)		forces
	Angle between R and y axis = $142.33-30$ -	D*M1	
	90 (=22.33)		Complete method
	θ (= 90-22.33) =67.7 degrees	A1	θ is angle between R and x axis
	()	[6]	5

4729 Mechanics 2

1	$(20\sin\theta)^2 = 2 \times 9.8 \times 17$	M1	or B2 for
		A1	$\max ht = v^2 \sin^2 \theta / 2g$
	$\sin\theta = \sqrt{(2x9.8x17) \div 20}$	M1	subst. values in above
	$\theta = 65.9^{\circ}$	A1 4	4

2	$\overline{x} = 8$	B1	
	$T \sin 30^{\circ} x 12 = 8 x 2 x 9.8$	M1	ok if g omitted
		A1 ft	ft their \bar{x}
	T = 26.1	A1 4	4

3 (i)	$140 \times X = 40 \times 70$	M1	
	X = 20 N	A1	
	at F 20 N to the right	B1	inspect diagram
	at G 20 N to the left	B1 4	SR B1 for correct directions only
(ii)	$d = (2x40\sin\Pi/2) \div 3\Pi/2$	M1	must be radians
		A1	
	d = 17.0	A1	16.98 160/3Π (8/15Π m)
	$70\overline{y} = 100x60 + 217 \times 10$	M1	
		A1 ft	ft 200 + their d or 2 + their d (m)
	$\overline{y} = 117$	A1 6	116.7 10

4 (i)	$P/10 - 800x9.8\sin 12^{\circ} - 100k = 800x0.25$	M1	$P/10 = D_1 \text{ ok}$
		A1	D_1 ok
	$P/20 - 400k = 800 \times 0.75$	M1	$P/20 = D_2 \text{ ok}$
		A1	$D_1 = 2D_2$ needed for this A1
	solving above	M1	
	k = 0.900	A1	AG 0.9000395
	$P = 19\ 200$	A1 7	or 19.2 kW (maybe in part (ii))
(ii)	$0.9 v^2 = 28 800/v$	M1	ok if 19200/v
	solving above	M1 *	$(v^3 = 32\ 000)$
	$v = 31.7 \text{ m s}^{-1}$	A1 3	10

5 (i)	0.8 S	B1	vert comp of S
	0.6 T	B1	vert comp of T
	$S\cos\alpha = T\cos\beta + 0.2 \times 9.8$	M1	
	0.8 S = 0.6 T + 1.96 aef	A1 4	AG $4S = 3T + 9.8$
(ii)	0.6 S	B1	
	0.8 T	B1	
	$0.2 \times 0.24 \times 8^2$	B1	3.072 384/125
	$S\sin\alpha + T\sin\beta = 0.2 \times 0.24 \times 8^2$	M1	must be $mr\omega^2$
	6S + 8T = 30.72	A1	aef
	eliminate <i>S</i> or <i>T</i>	M1	
	S = 3.4 N	A1	3.411
	T = 1.3 N	A1 8	1.282

6 (i)	$x = v\cos\theta t$	B1	
	$y = v \sin\theta t - \frac{1}{2} x 9.8 t^2$	B1	or g
	substitute $t = x/v\cos\theta$	M1	
	$y = x \tan\theta - 4.9x^2/v^2 \cos^2\theta$	A1 4	AG
(ii)	Sub y = $-h$, x = h , v = 14, θ = 30	M1	signs must be correct
	$-h = h/\sqrt{3 - h^2/30}$	A1	aef
	solving above	M1	
	h = 47.3	A1 4	
(iii)	$v_v^2 = (14\sin 30^\circ)^2 - 2x9.8x(-47.3)$	M1	14cos30° t=47.3 ft & v _v =14sin30°-9.8t
	(double negative needed) ft their -47.3	A1 ft	$t = 3.90$ (or dy/dx=1/ $\sqrt{3}$ - x/15 etc ft)
	$v_{\rm v} = \pm 31.2$	A1	$v_v = \pm 31.2 \text{ (tan}\alpha = 1/\sqrt{3} - 47.3/15)$
	tan ⁻¹ (31.2/14cos30°)	M1	tan ⁻¹ (31.2/14cos30°)
	α = 68.8° below horiz/21.2° to d'vert.	A1 5	68.8°/
(iv)	$\frac{1}{2}$ mx14 ² + mx9.8x47.3 = $\frac{1}{2}$ mv ²	M1	ft $(12.1^2 + 31.2^2)$
	v = 33.5	A1 2	33.5 15

7 (i)	$p = 4 \text{ m s}^{-1}$	B1	P's first speed
	$0.8 = 0.2p_1 + 0.3q_1$	M1	
		A1	
	$0.5 = (q_1 - p_1)/4$	M1	
		A1	
	solving above	M1	
	$q_1 = 2.4$ 12/5	A1	
			Q's first speed
	$p_1 = 0.4$ 2/5	A1 8	
			may be in (ii). SR 1 for both negative
(ii)	$0.8 = 0.2p_2 + 0.3q_2$	M1	
		A1	
	$0.5 = (p_2 - q_2)/2$	M1	
		A1	
	solving above	M1	
	$p_2 = 2.2$ 11/5	A1	
	$q_2 = 1.2$ 6/5	A1 7	
(iii)	$R = 0.3 \times 1.2^2 / 0.4$	M1	
	R = 1.08 N	A1 2	17

4730 Mechanics 3

1 (i)	For triangle sketched with sides (0.5)2.5 and		
	$(0.5)6.3$ and angle θ correctly marked OR		
	Changes of velocity in i and j directions		
	$2.5\cos\theta - 6.3$ and $2.5\sin\theta$, respectively.	B1	May be implied in subsequent working.
	For sides 0.5x2.5, 0.5x6.3 and 2.6 (or 2.5, 6.3		
	and 5.2) OR		
	$-2.6\cos\alpha = 0.5(2.5\cos\theta - 6.3)$ and	B1ft	May be implied in subsequent working.
	$2.6\sin\alpha = 0.5(2.5\sin\theta)$	DIII	way be implied in subsequent working.
	$[5.2^2 = 2.5^2 + 6.3^2 - 2x2.5x6.3\cos\theta \text{ OR}]$		For using cosine rule in triangle or eliminating
	$2.6^{2} = 0.5^{2} \{ (2.5\cos\theta - 6.3)^{2} + (2.5\sin\theta)^{2} \}$	M1	α .
	$\cos \theta = 0.6$	A1	AG
		[4]	
(ii)			For appropriate use of the sine rule or
		3.54	substituting for θ in one of the above
	25 0.0/52 OD	M1	equations in θ and α
	$\sin \alpha = 2.5 \times 0.8/5.2$ OR	A1	
	$-2.6\cos\alpha = 0.5(2.5\times0.6 - 6.3)$	M1	F 1 ((100 - 1)0 (- 11)0
	Impulse makes angle of 157° or 2.75° with	1711	For evaluating $(180 - \alpha)^{\circ}$ or $(\pi - \alpha)^{\circ}$
	original direction of motion of P.	A1	
	original another or moner of f.	[4]	SR (relating to previous 2 marks; max 1 mark
			out of 2)
			$\alpha = 23^{\circ} \text{ or } 0.395^{\circ}$ B1

2 (i)	[70x2 = 4X - 4Y]	M1	For taking moments about A for AB (3 terms
	[[,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,11	needed)
	X - Y = 35	A1	needed)
	71 1 33	[2]	
(ii)	[110x3 = -4X + 6Y]	M1	For taking moments about C for BC (3 terms
	-		needed)
	2X - 3Y + 165 = 0	A1	AG
		[2]	
(iii)		M1	For attempting to solve for X and Y
			ft any (X, Y) satisfying the equation given in
	X = 270, Y = 235	A1ft	(ii)
		M1	For using magnitude = $\sqrt{X^2 + Y^2}$
	Magnitude is 358N	A1ft	ft depends on all 4 Ms
		[4]	_

30

3 (i)	$[T_A = (24x0.45)/0.6, T_B = (24x0.15)/0.6]$ $T_A - T_B = 18 - 6 = 12 = W \rightarrow P \text{ in equil'm.}$	M1 A1 [2]	For using $T = \lambda x/L$ for PA or PB
(ii)	Extensions are $0.45 + x$ and $0.15 - x$ Tensions are $18 + 40x$ and $6 - 40x$	B1 B1 [2]	AG From T = λ x/L for PA and PB
(iii)	[12 + (6 - 40x) - (18 + 40x) = 12 \ddot{x} /g] \ddot{x} = -80gx/12 \Rightarrow SHM Period is 0.777s	M1 A1 A1 [3]	For using Newton's second law (4 terms required) AG From Period = $2 \pi \sqrt{12 /(80 g)}$
(iv)	$[v_{max} = 0.15 \sqrt{80 g / 12}]$ or $v_{max} = 2 \pi x 0.15 / 0.777$ or $\frac{1}{2} (12/g) v_{max}^2 + mg(0.15)$ $+24 \{0.45^2 + 0.15^2 - 0.6^2\} / (2x0.6) = 0]$ Speed is 1.21ms^{-1}	M1 A1 [2]	For using $v_{max} = An$ or $v_{max} = 2 \pi A/T$ or conservation of energy (5 terms needed)

4 (i)	Loss in PE = mg(0.5sin θ) [$\frac{1}{2}$ mv ² - $\frac{1}{2}$ m3 ² = mg(0.5sin θ)] v ² = 9 + 9.8sin θ	B1 M1 A1 [3]	For using KE gain = PE loss (3 terms required) AG
(ii)	$a_{r} = 18 + 19.6\sin\theta$ $[ma_{t} = mg\cos\theta]$ $a_{t} = 9.8\cos\theta$	B1 M1 A1 [3]	Using $a_r = v^2/0.5$ For using Newton's second law tangentially
(iii)	[T - mg sin θ = ma _r] T - 1.96sin θ = 0.2(18 + 19.6sin θ) T = 3.6 + 5.88sin θ θ = 3.8	M1 A1 A1 B1 [4]	For using Newton's second law radially (3 terms required) AG

5	Initial i components of velocity for A and B		
	are 4ms ⁻¹ and 3ms ⁻¹ respectively.	B1	May be implied.
		M1	For using p.c.mmtm. parallel to l.o.c.
	3x4 + 4x3 = 3a + 4b	A 1	
		M1	For using NEL
	0.75(4-3) = b - a	A1	
		M1	For attempting to find a
	a = 3	A1	Depends on all three M marks
	Final j component of velocity for A is 3ms ⁻¹	B1	May be implied
		M1	For using $tan^{-1}(v_j/v_i)$ for A
	Angle with l.o.c. is 45° or 135°	A1ft	ft incorrect value of a $(\neq 0)$ only
		[10]	
			SR for consistent sin/cos mix (max 8/10)
			3x3 + 4x4 = 3a + 4b and
			b - a = 0.75(3 - 4)
			M1 M1 as scheme and A1 for <i>both</i> equ's
			a = 4 M1 as scheme A1
			j component for A is 4ms ⁻¹ B1
			Angle $tan^{-1}(4/4) = 45^{\circ} M1$ as scheme A1

6(i)	Initial speed in medium is $\sqrt{2 g \times 10}$ (= 14)	B1	
	[0.125 dv/dt = 0.125 g - 0.025 v]	M1	For using Newton's second law with a = dv/dt (3 terms required) For separating variables and attempt to
	$\int \frac{5dv}{5g - v} = \int dt$	M1	integrate
	$-5 \ln(5g - v) = t (+A)$	A1	
	$[-5 \ln 35 = A]$	M1	For using $v(0) = 14$
	$t = 5 \ln{35/(49 - v)}$	A 1	
		M1	For method of transposition
	$v = 49 - 35e^{-0.2t}$	A1	AG
		[8]	
(ii)		M1	For integrating to find $x(t)$
	$x = 49t + 175e^{-0.2t}$ (+B)	A1	
			For using limits 0 to 3 or for using
	$[x(3) = (49x3 + 175e^{-0.6}) - (0 + 175)]$	M1	x(0) = 0 and evaluating $x(3)$
	Distance is 68.0m	A1	
		[4]	

7(i)	Gain in EE = $20x^2/(2x^2)$	B1	
	,		Accept 0.8gx if gain in KE is
	Loss in GPE = $0.8g(2 + x)$	B1	$\frac{1}{2} 0.8(v^2 - 19.6)$
	$\begin{bmatrix} \frac{1}{2} \cdot 0.8v^2 = (15.68 + 7.84x) - 5x^2 \\ v^2 = 39.2 + 19.6x - 12.5x^2 \end{bmatrix}$	M1	For using the p.c.energy
	$v^2 = 39.2 + 19.6x - 12.5x^2$	A1	AG
		[4]	
(ii)	(a)	M1	For attempting to solve $v^2 = 0$
	Maximum extension is 2.72m	A1	
		[2]	
	(b)		For solving $20x/2 = 0.8g$ or for
			differentiating and attempting to solve
	[19.6 - 25x = 0,		$d(v^2)/dx = 0 \text{ or } dv/dx = 0 \text{ or for}$
	$v^2 = 46.8832 - 12.5(x - 0.784)^2$	M1	expressing v^2 in the form $c - a(x - b)^2$.
	x = 0.784 or c = 46.9	A1	D 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	7 20 2 1 15 2 ((4 7 () 2)	3.41	For substituting $x = 0.784$ in the
	$[v_{\text{max}}^2 = 39.2 + 15.3664 - 7.6832]$	M1	expression for v^2 or for evaluating \sqrt{c}
	Maximum speed is 6.85ms ⁻¹	A1	
	(a)	[4]	
	(c)	M1	For using Newton's second law (3 terms
	$\pm (0.8g - 20x/2) = 0.8a$	101 1	required) or $a = v \frac{dv}{dx}$
	or $2v dv/dx = 19.6 - 25x$	A1	
	$a = \pm (9.8 - 12.5x)$	711	
	or $\ddot{y} = -12.5$ y where $y = x - 0.784$	A1	
	, , , , , , , , , , , , , , , , , , , ,	111	For substituting $x = ans(ii)(a)$ into $a(x)$ or
	$[a _{\text{max}} = 9.8 - 12.5 \text{x} 2.72 $	M1	$y = ans(ii)(a) - 0.784$ into $\ddot{y}(y)$
	or $ \ddot{y}_{\text{max}} = -12.5(2.72 - 0.784]$	A1	y = ans(n)(a) = 0.764 into y (y)
	Maximum magnitude is 24.2ms ⁻²	[5]	

4732 Probability & Statistics 1

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding. Penalise over-rounding only once in <u>paper</u>.

1 (i)	$0.2^2 + 0.7 \times 0.1 \times 2$	M2	$0.2^2 \text{ or } 0.7 \times 0.1$: M1
	= 0.18 AG	A1 3	no errors seen NB $2 \times 0.9 \times 0.1 = 0.18$ M0A0
(ii)	$0.28 + 2 \times 0.18 + 3 \times 0.04 + 4 \times 0.01$	M1	\geq 2 terms correct (excl 0×0.49)
			÷ 5 (or 4 or 10 etc): M0
	$ = 0.8 \text{ oe} 0.28 + 2^2 \times 0.18 + 3^2 \times 0.04 + 4^2 \times 0.01 $	A1	24
	0.28 + 2 ⁻ ×0.18 + 3 ⁻ ×0.04 + 4 ⁻ ×0.01 - "0.8" ²	M1 M1	≥ 2 terms correct (excl $0^2 \times 0.49$) dep +ve result
	= 0.88 oe	A1 5	cao
			$\Sigma(x-\mu)^2$: 2 terms: M1; 5 terms M2
			$0.8^{2} \times 0.49 + 0.2^{2} \times 0.28 + 1.2^{2} \times 0.18 + 2.2^{2} \times 0.04 + 3.2^{2} \times 0.01$
			0.8 × 0.49+0.2 × 0.28+1.2 × 0.18+2.2 × 0.04+3.2 × 0.01 SC Use original table, 0.4:B1 0.44: B1
Total		8	Se ose original more, o. r. br
2(i)(a)	$8736.9 - \frac{202 \times 245.3}{1659.24}$		correct sub in any correct formula for b
	$\frac{8730.9 - \frac{7}{7}}{\text{or}} \text{ or } \frac{1658.24}{7}$	M1	$eg \frac{236.8921}{210.1249}$
	$\frac{\frac{8736.9 - \frac{7}{7}}{7300 - \frac{202^2}{7}} \text{ or } \frac{1658.24}{1470.86}$		210.1249
	= 1.127 $(= 1.13 AG)$	A1 2	must see 1.127; 1.127 alone: M1A1
(b)	$y - \frac{245.3}{7} = 1.13(x - \frac{202}{7})$	M1	or $a = \frac{245.3}{7} - 1.13 \times \frac{202}{7}$
	y = 1.1x + 2.5 (or 2.4) or $y = 1.13x + 2.43$	A1 2	2 sfs suff.
(ii)(a)	$(1.1() \times 30 + 2.5()) = 35.5 \text{ to } 36.5$	B1f 1	(exact: $y = 1.127399.x + 2.50934$)
(b)	$(1.1() \times 100 + 2.5()) = 112.4 \text{ to } 115.6$	B1f 1	
(iii)	(a) Reliable	B1	Both reliable: B1 (a) more reliable than (b) B1
		D1 2	because (a) within data
	(b) Unreliable because extrapolated	B1 2	or (b) outside data B1 Ignore extras
Total		8	3.10.10 4.11.11.11
3(i)(a)	Geo stated	M1	or impl. by $(^{7}/_{8})^{n}(^{1}/_{8})$ or $(^{1}/_{8})^{n}(^{7}/_{8})$ alone
	$\binom{7}{8}^{2}\binom{1}{8}$	M1 A1 3	
(b)	$\frac{^{49}}{_{512}}$ or 0.0957 (3 sfs) $(\frac{^{7}}{_{8}})^3$ alone	M2	or $1-(^{1}/_{8}+^{7}/_{8\times})^{7}/_{8}+(^{7}/_{8})^{2}\times ^{1}/_{8})$: M2
	(18) 310110		one term incorrect, omit or extra: M1
	343		$1 - (\frac{7}{8})^3$ or $(\frac{7}{8})^2$ alone: M1
	³⁴³ / ₅₁₂ or 0.670 (3 sfs) allow 0.67	A1 3 B1 1	
(ii) (iii)	Binomial stated or implied	B1 1 M1	eg by $(^{7}/_{8})^{a}(^{1}/_{8})^{b}$ $(a+b=15, a,b \neq 1)$, not just $^{n}C_{r}$
	$^{15}\text{C}_2(^{7}/_8)^{13}(^{1}/_8)^2$	M1	-5-5 (10) (10) (10 5 15, 45,0 / 1), not just of
	= 0.289 (3 sfs)	A1 3	
Total 4 (i)	1 2 3 4 5 or 5 4 3 2 1	10 M1	attampt ranks
4 (1)	1 2 3 4 5 or 5 4 3 2 1 3 5 4 1 2 3 1 2 5 3	A1	attempt ranks correct ranks
	$\sum d^2$ (= 32)	Mldep	S_{xx} or $S_{yy} = 55 - 15^2 /_5 (=10)$ or $S_{yy} = 39 - 15^2 /_5 (=-6)$
	$1 - \frac{6 \times 32}{5(25-1)}$	M1dep	$-6/\sqrt{(10\times10)}$
	= - 0.6	A 1 5	
L	– - 0.0	A1 5	J

(ii)	1 & 3	Blind	ft if $-1 < (i) < -0.9$, ans 1 & 2
	Largest neg r_s or large neg r_s or strong neg corr'n or close(st) to -1		NOT: furthest from 0 or closest to ±1 little corr'n most disagreement
	or lowest r_s	B1dep 2	
Total		7	
		•	,
5 (i)	68 75 – 59 = 16	B1 M1 A1 3	attempt 6 th & 18 th or 58-60, 74-76 & subtr must be from 75 – 59
(ii)	Unaffected by outliers or extremes (allow less affected by outliers) sd can be skewed by one value	B1 1	NOT: by anomalies or freaks easier to calculate
(iii)	Shows each data item, retains orig data can see how many data items can find (or easier to read) mode or modal class can find (or easier to read) freque	B1	NOT: shows freqs shows results more clearly B&W does not show freqs
	can find mean Harder to read med (or Qs or IQR) Doesn't show med (or Qs or IQR) B&W shows med (or Qs or IQR) B&W easier to compare meds	B1 2	NOT: B&W easier to compare B&W shows spread or variance or skew B&W shows highest & lowest Assume in order: Adv, Disadv, unless told Allow disadv of B&W for adv of S&L & vice versa Ignore extras
(iv)	m = 68.1 NOT by restart	B1	0 1

В1 B1 2

8

Restart mean or mean & sd:

68.1 or 68.087 & 9.7 or 9.73 B1 only

NOT by restart

Total

sd = 9.7 (or same)

<i>(</i> () ()	01	3.61	1 4n 03n 1 1 0
6 (i) (a)	8! 40220	M1	Allow ⁴ P ₄ & ³ P ₃ instead of
(I -)	$= 40320$ $\frac{4}{\sqrt{8} \times \sqrt[4]{7} \times \sqrt[3]{6} \times \sqrt[3]{5} \times \sqrt[2]{4} \times \sqrt[2]{3} \times \sqrt[1]{2}}$	A1 2	3! & 4! thro'out Q6
(b)		M1	$4! \times 4! \div 8!$ $4! \times 4! + 4! \times 4!$
	$\times 2$	M1dep	×2 ÷8!
	$= \frac{1}{35}$ or 0.0286 (3 sfs)	A1 3	allow 1 – above for M1 only oe, eg $^{1152}/_{40320}$
	- / ₃₅ or 0.0280 (3 SIS)	AI 3	oe, eg /40320
(ii)(a)	4! × 4!	M1	allow 4! × 4! × 2: M1
. , , ,	= 576	A1 2	
(b)	$^{1}/_{16}$ or 0.0625	B1 1	
(c)	Separated by 5 or 6 qus stated or illus	M1	allow 5 only or 6 only or (4, 5 or 6)
			can be impl by next M2 or M1
	$1/_4 \times 1/_4 \times 3 \text{ or } 1/_{16} \times 3$	M2	$3! \times 3! \times 3$
	$(^{1}/_{4} \times ^{1}/_{4} \text{ or } ^{1}/_{16} \text{ alone or } \times (2 \text{ or } 6):$		$(3! \times 3! \text{ alone or } \times (2 \text{ or } 6); \text{ or } (3! + 3!) \times 3: \text{M1})$
	M1)		(÷ 576)
	3, 0,1077	A1 4	
	³ / ₁₆ or 0.1875 or 0.188		correct ans, but clearly B, J sep by 4: M0M2A0
			1- P(sep by 0, 1, 2, 3, (4)) M1
			$1 - (\frac{1}{4} + \frac{1}{4} + \frac{1}{4} \times \frac{3}{4} + \frac{1}{4} \times \frac{1}{2})$
			or $1-(\frac{1}{4}\times\frac{1}{4}+\frac{1}{4}+\frac{1}{4}\times\frac{1}{4}+\frac{1}{4}\times\frac{1}{4}+\frac{1}{4}\times\frac{1}{4}+1\times\frac{1}{4}+\frac{3}{4}\times\frac{1}{4})$ M2
			(one omit: M1)
Total		12	
Total	<u> </u>	12	
7 (i)	Binomial	B1	
- (-)	n = 12, p = 0.1	B1	B(12, 0.1): B2
	Plates (or seconds) independent oe	B1	NOT: batches indep
	Prob of fault same for each plate oe	B1 4	Comments must be in context
	•		Ignore incorrect or irrelevant
(ii)(a)	$0.9744 - 0.8891 \text{ or } {}^{12}C_3 \times 0.9^9 \times 0.1^3$	M1	
(II)(a)	= 0.0852 or 0.0853 (3 sfs)	A1 2	
(b)	1 – 0.0832 of 0.0833 (3 SIS) 1 – 0.2824 or 1- 0.9 ¹²	M1 2	allow 1 – 0.6590 or 1 – 0.9 ¹¹
(D)	=0.718 (3 sfs)	$\begin{bmatrix} M11 \\ A1 \end{bmatrix}$	anow 1 – 0.0370 01 1 – 0.7
(iii)	"0.718" and 1 – "0.718" used	B1	ft (b) for B1M1M1
(111)	$(1-0.718)^4 + 4(1-0.718)^3 \times 0.718$	וטו	
	$+ {}^{4}C_{2}(1-0.718)^{2} \times 0.718^{2}$	M2	M1 for any one term correct
	C ₂ (1 0.710) ^0.710	1712	(eg opp tail or no coeffs)
			(eg opp un or no coens)
			1 – P(3 or 4) follow similar scheme M2 or M1
			1 - correct wking (= 0.623) B1M2
		1	

8 (i)	$^{1}/_{6} + 3 \times (^{1}/_{6})^{2}$	M2		or $3 \times ({}^{1}/_{6})^{2}$ or ${}^{1}/_{6} + ({}^{1}/_{6})^{2}$ or ${}^{1}/_{6} + 2({}^{1}/_{6})^{2}$ or ${}^{1}/_{6} + 4({}^{1}/_{6})^{2}$	
	•			or $\frac{1}{6} + 4(\frac{1}{6})^2$	M1
	$= \frac{1}{4}$	A 1	3		
(ii)	1/3	B1	1		
(iii)	3 routes clearly implied	M1			
	out of 18 possible (equiprobable) routes	M1		$1 \text{ or } ^{1}/_{3} \times ^{1}/_{6} \times 3$	M2
				or $\frac{1}{3} \times \frac{1}{6}$ or $\frac{1}{6} \times \frac{1}{6} \times 3$ or $\frac{1}{3} \times \frac{1}{3} \times 3$ or $\frac{1}{4}$ -	$^{1}/_{6}$ M1
				but $^{1}/_{6} \times ^{1}/_{6} \times 2$	M0
				$\frac{(\frac{1}{6})^2 \times 3}{\frac{1}{2}}$ or $\frac{\frac{1}{4} - \frac{1}{6}}{\frac{1}{2}}$ or $\frac{\frac{1}{2} \times \frac{1}{6}}{\frac{1}{2}}$ oe	M2
				or $\frac{P(4\&twice)}{P(twice)}$ stated or $\frac{prob}{\frac{1}{2}}$	M1
				Whatever 1 st , only one possibility on 2 nd	M2
				$^{1}/_{6}$, no wking M1M	[1A1
	1/6			¹ / ₁₂ , no wking	M0
	v	A1	3		
Total		7			

Total 72 marks

4733 Probability & Statistics 2

1		$U \sim B(800, 0.005) \approx Po(4)$	B1		Po(<i>np</i>) stated or implied
		$P(U \le 6)$	M1		Tables or formula ± 1 term, e.g. 0.7851, 0.9489, 0.1107, not 1–
		= 0.8893	A1		Answer 0.889 or a.r.t. 0.8893
		n > 50/large, $np < 5/p$ small	B1	4	Both conditions
2		23.625 – 23	M1		Standardise with \sqrt{n} , allow \sqrt{n} errors
		$\frac{23.625 - 23}{5/\sqrt{n}} = 2$	A1		Equate to 2 or a.r.t. 2.00, signs correct
		$\sqrt{n} = 16$	M1		Solve for \sqrt{n} , needs Φ^{-1} , <i>not</i> from $/n$
		n = 256	A1	4	256 only, allow from wrong signs
3	(i)	(a) $e^{-0.42}$	M1		Correct formula for $R = 0$ or 1
3	(1)	= 0.657	Al		P(0), a.r.t. 0.657
		(b) $0.42 e^{-0.42} = 0.276$	A1	3	P(1), a.r.t. 0.276
	(ii)	Po(2.1):	M1		Po(2.1) stated or implied
	(11)	$1 - P(\le 3) = 1 - 0.8386$	M1		Tables or formula, e.g. 0.8386 or 0.6496 or 0.9379 or
		= 0.1614	Al	3	complement; Answer, in range [0.161, 0.162]
	(iii)	- 0.1014	B2	2	At least 3 separate bars, all decreasing
	(111)		D2	4	Allow histogram. Allow convex
					P(0) < P(1) but otherwise OK: B1
					Curve: B1
					[no hint of normal allowed]
					The time of normal allowed
4	(i)	$H_0: p = 0.14$	B2		Both correct. 1 error, B1, but x or r or \bar{x} etc: 0
		$H_1: p < 0.14$			
		B(22, 0.14)	M1		B(22, 0.14) stated or implied, e.g. N(3.08, 2.6488) or Po(3.08)
		$P(\le 2) = .86^{22} + (22 \times .86^{21} \times .14) +$	A1		Correct formula for 2 or 3 terms, $or P(\le 0) = 0.036$ and CR
		$(231\times.86^{20}\times.14^2) = $ 0.3877	A1		Correct answer, a.r.t. 0.388, or CR is $= 0$
		> 0.1	B1		Explicitly compare 0.1 or CR with 2, OK from Po but <i>not</i> from N
		Do not reject H ₀ . Insufficient	M1		Correct comparison type and conclusion, needs binomial, at least
		evidence that company			2 terms, <i>not</i> from $P(<2)$
		overestimates viewing proportion	A1	8	Contextualised, some acknowledgement of uncertainty
					[SR: Normal: B2 M1 A0 B0 M0]
			ļ		[SR: 2-tailed, or $p > 0.14$, $P(\ge 2)$: B1M1A2B0M1A1]
1	(ii)	Selected independently	B1	_	Independent selection
		Each adult equally likely to be	B1	2	Choice of sample elements equally likely (no credit if not
		chosen			focussed on selection)
					[Only "All samples of size <i>n</i> equally likely": B1 only unless
_	40)				related to Binomial conditions]
5	(i)	\ /	B1		Horizontal straight line
		\	B1	_	Symmetrical U-shaped curve
		\ /	B1	3	Both correct, including relationship between the two and not
					extending beyond [–2, 2], curve through (0,0)
	(;:)	Cig aqually likely to take any	D2	····	Common of relations and all and had be distributions and an efficiency of
	(ii)	S is equally likely to take any value	B2	2	Correct statement about both distributions, $$ on their graph
		T is more likely at extremities			[Correct for one only, or partial description: B1]
	(iii)		M1		Not "probability of S is constant", etc.
	(111)	$\frac{5}{64} \int_{-2}^{2} x^{6} dx = \frac{5}{64} \left[\frac{x^{7}}{7} \right]_{-2}^{2} = \frac{20}{7}$			Integrate $x^2g(x)$, limits -2 , 2
		$\left \frac{64}{64} \int_{-2}^{3} x dx - \frac{64}{64} \left \frac{7}{7} \right _{3} \right = \frac{7}{7}$	A1 B1		Correct indefinite integral $[=5x^7/448]$
		-0^2	DI		0 or 0^2 subtracted or $E(X) = 0$ seen, $not \int x^2 f(x) dx - \int x f(x) dx$
			A1	4	Answer $\frac{20}{7}$ or $2\frac{6}{7}$ or a.r.t. 2.86, don't need 0
		$=\frac{20}{7}$	Λ1	-	/

6	(i)	$\sqrt{20.25} = 50.0 \pm 0.09$	M1		$50.0 \pm z\sqrt{(1.96/81)}$, allow one sign only, allow $$ errors
		$50.0 \pm 1.96 \sqrt{\frac{20.25}{81}} = 50.0 \pm 0.98$	B1		z = 1.96 in equation (<i>not</i> just stated)
		= 49.02, 50.98	A 1 A 1		Both critical values, min 4 SF at some stage (if both 3SF, A1)
			A1A1	_	CR, allow \leq / \geq , don't need \overline{W} , $$ on their CVs, can't recover
		\overline{W} < 49.02 and \overline{W} > 50.98	A1√	5	
					[Ans 50 ± 0.98 : A1 only]
					[SR: 1 tail, M1B0A0; 50.8225 or 49. 1775: A1]
	(ii)	$\frac{50.98 - 50.2}{0.5} = 1.56$	M1		Standardise one limit with same SD as in (i)
		0.5	A1		A.r.t. 1.56, allow – Can allow $\sqrt{\text{here}}$
			A1		A.r.t2.36, allow + J if very unfair
		$\frac{49.02 - 50.2}{0.5} = -2.36$	M1		Correct handling of tails for Type II error
			A1	5	Answer in range [0.931, 0.932]
		$\Phi(1.56) - \Phi(-2.36) = $ 0.9315		_	[SR 1-tail M1; -1.245 or 2.045 A1; 0.893 or 0.9795 A1]
	(222)	It would get smaller	B1	1	
	(iii)	it would get smaller	DI	1	No reason needed, but withhold if definitely wrong reason seen.
					Allow from 1-tail
7	(i)	$\hat{\mu} = \bar{t} = 13.7$	B1		13.7 stated
		12657.28	M1		Correct formula for biased estimate
		$\frac{12657.28}{64}$ - 13.7 ² [= 10.08]; $\times \frac{64}{63}$	M1		$\times \frac{64}{63}$ used, or equivalent, can come in later
					**
		= 10.24	A1		Variance or SD 10.24 or 10.2
		$H_0: \mu = 13.1, H_1: \mu > 13.1$	B2		Both correct.
		$\frac{13.7 - 13.1}{\sqrt{10.24/64}} = 1.5 \text{ or } p = 0.0668$			[SR: One error, B1, but x or t or \bar{x} or \bar{t} , 0]
		$\sqrt{\frac{10.24/64}{10.00000000000000000000000000000000000$	M1		Standardise, or find CV, with $\sqrt{64}$ or 64
		V10.21, 01	A1		$z = \text{a.r.t. } 1.50, \text{ or } p = 0.0668, \text{ or CV } 13.758 [\sqrt{\text{ on } z}]$
		1.5 < 1.645 or $0.0668 > 0.05$	B1		Compare $z \& 1.645$, or $p \& 0.05$ (must be correct tail),
					or $z = 1.645 \& 13$ with CV
		Do not reject H ₀ . Insufficient	M1		Correct comparison & conclusion, needs 64, <i>not</i> μ = 13.7
		evidence that time taken on		11	Contextualised, some acknowledgement of uncertainty
		average is greater than 13.1 min	711	11	
	(::)		D1	1	[13.1 – 13.7: (6), M1 A0 B1 M0]
	(ii)	Yes, not told that dist is normal	B1	1	Equivalent statement, <i>not</i> " <i>n</i> is large", don't need "yes"
8	(i)	N(14.7, 4.41)	M1		Normal, attempt at <i>np</i>
		Valid because	A 1		Both parameters correct
		np = 14.7 > 5; $nq = 6.3 > 5$	B1		Check $np > 5$; If both asserted but not both
		$_{\star}$ $_{\star}$ $(15.5-14.7) = 1 - \Phi(0.381)$	B1		ng or $npq > 5$ 14.7 and 6.3 seen: B1 only
		$1 - \Phi\left(\frac{15.5 - 14.7}{\sqrt{4.41}}\right) = 1 - \Phi(0.381)$			[Allow " <i>n</i> large, <i>p</i> close to $\frac{1}{2}$ "]
		((, , , , , , , , , , , , , , , , , ,	M1		Standardise, answer < 0.5 , no \sqrt{n}
		= 1 - 0.6484	A1		z, a.r.t. 0.381
		= 0.3516	A1	7	Answer in range [0.351, 0.352] [Exact: M0]
	(ii)	$\overline{K} \sim N(14.7, 4.41/36)$	M1		Normal, their <i>np</i> from (i)
	(H)	[= N(14.7, 4.41736)]	A1√		Their variance/36
		Valid by Central Limit Theorem	B1		Refer to CLT or large n (= 36, not 21), or " $K \sim N$ so $\overline{K} \sim N$ ",
		as 36 is large	3.55		not same as (i), not $np > 5$, $nq > 5$ for \overline{K}
		$\Phi\left(\frac{14.0 + \frac{1}{72} - 14.7}{\sqrt{4.41/36}}\right) = \Phi(-1.96)$	M1		Standardise 14.0 with 36 or $\sqrt{36}$
		$\sqrt{4.41/36}$	A1		cc included, allow 0.5 here, e.g. $14.5 - 14.7$
		= 0.025	A1		z = -1.96 or -2.00 or -2.04 , allow + if answer < 0.5
		- V.V22	A1	7	0.025 or 0.0228
					[0.284 loses last 2] [Po(25.2) etc: probably 0]
	OR:	$B(756, 0.7) \approx N(529.2, 158.76)$	M1M1	A1	×36; N(529.6,); 158.76
			B1		CLT as above, or $np > 5$, $nq > 5$, can be asserted here
		$\Phi\left(\frac{504.5-529.2}{\sqrt{158.76}}\right) = \Phi(-1.96)$	M1		Standardise 14×36
		<i>√</i> 158.76 <i>)</i>	A1		cc correct and \sqrt{npq}
1		= 0.025	A1		0.025 or 0.0228

4734 Probability & Statistics 3

1	T has a Poisson distribution $E(T)=28\times0.75+4\times6.4$ $= 46.6$ $Var(T)=46.6$	B1 M1 A1 B1√ 4	From sum of Poissons Ft $E(T)$ only if Poisson
2 (i) (ii)	Use $F(Q_3)=0.75$ or $\int_{Q_3}^{\infty} \frac{1}{5} e^{-\frac{1}{4}u} du = 0.25$ Solve to obtain $Q_3 = 4.65$ AEF eg 4ln(16/5) $f(u) = \begin{cases} \frac{1}{5} e^u & u < 0, \\ \frac{1}{5} e^{-\frac{1}{4}u} & u \ge 0. \end{cases}$	M1 M1A1 3 B1 B1 2	M1 for solving similar eqn A0 for \geq 4.65
3 (i) (ii)	Use $28 \pm zs$ z=2.326 $s^2 = 28 \times 72/1200$ (25.0, 31.0) $2 \times 2.326 \sqrt{(0.28 \times 0.72/n)} \le 0.05 \text{ AEF}$ Solve to obtain n Smallest $n = 1745$ e.g. Variance is an approximation	M1 B1 B1 A1 4 M1 M1 A1 B1 4	Accept s=c/√n for M1 Accept 0.28 with corresponding s Or 1199 Accept (25, 31) Or = or ≥ Solving similar equn Accept 1746,1750 Or normal is approx or Or p only an estimate
4 (i) (ii)	$c = 1/20$ $\int_{25}^{45} \frac{400\sqrt{x} - 240}{20} dx$ $= \left[\frac{40}{3} x^{3/2} - 12x \right]$ $= 2118(£)$ $$	B1 1	Correct indefinite integral 2120 or better than 2118 Or 31.4 cao

5 (i)	H_0 : $\mu_2 = \mu_1$, H_1 : $\mu_2 > \mu_1$, where μ_1 and μ_2 are the mean concentrations in the lake before and after the spillage respectively	B1 B1	2	For both hypotheses Allow in words if population mean used.
(ii)	$\overline{X}_2 - \overline{X}_1 \ge zs$ $z=1.645$ $s=0.24\sqrt{(1/5+1/6)}$	M1 A1 B1		Accept $>$, $=$, $<$. \le , ts
	≥ 0.2391	A1	4	Or >; 0.239
(***)	$P(\overline{X}_2 - \overline{X}_1 < 0.2391)$	M1		May be implied
(iii)	z = [0.2391 - 0.3]/s $p = 0.3376$ This is a large probability for this error	M1 A1 B1	4	ART 0.337 or 0.338 Relevant comment
6 (i)	Use $B \sim B(29, 0.3)$, $G \sim B(26, 0.2)$ $E(F)=29\times0.3+26\times0.2=13.9$ $Var(F)=29\times0.3\times0.7+26\times0.2\times0.8=10.25$	M1 M1A M1A		
(ii)	B: $np = 8.7$, $nq=20.3$ G: $np = 5.2$, $nq=20.8$ All exceed 5, so normal approximation valid for each $F \sim N(13.9, 10.25)$ (approximately) (Requires P($F \le n$) = 0.99) [$n + 0.5 - 13.9$]/ $\sqrt{(10.25)}$; = 2.326, their 10.25	B2 M1√ M1B		Must check numerically B1 for checking one distribution Use normal. May be implied Standardise M0 if variance has divisors
	n = 20.85 Need to have 21 spares available SR Using B(55, 0.2527): B1; M1(N(13.9, 10.39); M1B1M1A0 (Max 5/8)	A1 M1 A1	8	cc Solving similar No cc, lose last A1 (n = 22) Wrong cc, lose A1A1

7 (i)	Requires population of (2nd mark – 1st mark)		
(1)	to be normally distributed	B1	
	$H_0: \mu_d = 0, H_1: \mu_d > 0$		
	$T_2 - T_1 : -1 -1 \ 2 \ 0 -2 \ 2 \ 3 \ 2$	M1	
	$\overline{d} = 0.625$, $s^2 = 3.411 (3^{23}/_{56} \text{ or }^{191}/_{56})$	B1B1	
		B1	
	Use 2.998	M1	
	EITHER: $t = 0.625/\sqrt{(3.411/8)}$	A1	M0 if clearly z
	= 0.957	711	ivio ii cicarry Z
	OR: CV(CR), $\bar{d} \ge 2.998\sqrt{3.411/8}$	M1	
	= 1.958	A1	
	EITHER 0.957<2.998 OR 0.625 < 1.958	711	
	Do not reject H _o , there is insufficient evidence	M1	
	of improvement	8	With comparison and conclusion
			with comparison and conclusion
(ii)	Use $E(X_2 - X_1 + k) = 0.625 + k$	M1	
(11)	Requires $(0.625+k) / \sqrt{(3.411/8)} \ge 2.998$	A1√	
	Giving $k \ge 1.33$	7 1 1 V	
	Increase each mark by 2	A1 3	Allow 1.33
			7110W 1.55
8 (i)	Mean= $(20+16+9)/75$	M1	
	= 0.6	A1	
	3p = 0.6, p = 0.2 AG	A1 3	
(ii)	H_0 : B(3,p) fits the data	B1	Or: $X \sim B(3,p)$ or $B(3,0.2)$
	$(H_1: B(3,p))$ does not fit the data)		Not 'Data fits model'
	Expected values		7. 7.4.6.0
	38.4 28.8 7.2 0.6	M1	Use B(3,0.2)×75
		A1	At least 2 correct
		A1	All correct
	Combine last two cells	B1	TYP 4
	$\chi^2 = 5.6^2 / 38.4 + 8.8^2 / 28.8 + 3.2^2 / 7.8$	M1	With one correct
	4.010	A1√	At least 2 correct Ft E values
	= 4.818	A1	Accept 4.82 cao
	4.010 > 2.041	D1.	0.4010
	4.818 > 3.841	B1√	ft 4.818
	Reject H_0 and conclude that there is	3.41	SR1 If cells not combined:
	insufficient evidence that $B(3,p)$ fits	M1	B1M1A1A1B0M1A1A0B1(5.991)M1
	the data.	10	SR2:E-values rounded :B1M1A1A1
			B1M1A1A0(4.865)B1M1
(***)	274 < 2.041		A
(iii)	$2.74 < 3.841$, accept H_0 conclude that	D1	Accept with no reason if evidence of method
	B(6, p) fits the data	B1	in (ii)
		1	

4736 Decision Mathematics 1

1	(i)	A	В	C	D		M1	A, B and C correct for first pass		
		614	416	1	198	(A=198)	A 1	D = 198 on first pass		
		198	891	2	693	(A=693)	M1	sca at second and third passes		
		693	396	3	297		A1	Second and third passes correct	[4]	
	(ii)	0					B1	0	[1]	
	(iii)	To make the algorithm terminate					B1	So that it does not get stuck in a loop	[1]	
	Total = 6									

2	(i)	eg		Graph need not be simple or planar	
			M1	A graph with five vertices and at least three correct vertex orders	
			A1	A graph with five vertices of orders 1, 2, 2, 3, 4	
		•			[2]
	(ii)	Semi-Eulerian	M1	Unless their graph was not connected, in which case the answer is 'neither'	
		It has <u>exactly</u> two odd nodes	A1	(Unless their graph was not connected, in which case follow this through)	[2]
	(iii)	A tree with five vertices would only have four arcs, but this graph has six Or A tree must have at least two vertices of order 1	B2	Give B1 for an incomplete reason, eg 'too many arcs' or 'it has a cycle'	[2]
				Total =	6

ANSWERED ON INSERT

					ANSWERED ON INSERT	
3	(i)	AB = 9 $DF = 14$ $BD = 16$	B = E	M1 A1	Not selecting <i>CF</i> (working seen on list) Selecting correct arcs (working seen on list)	
		CD = 18 $FG = 20$ $CF = 22$ $EG = 23$		M1 A1	A spanning tree drawn Correct (minimum) spanning tree drawn	
		$ \begin{array}{rcl} EF & = 26 \\ AC & = 27 \\ DE & = 28 \\ AD & = 29 \end{array} $	Total weight = 100	B1	100 cao	
		$\frac{DG - 31}{BE - 37}$				[5]

(ii)	Delete EG from spanning tree 100 - 23 = 77 Two shortest arcs from E are EG and EF	B1	Follow through from part (i) if possible Weight of MST on reduced network		
	77 + 23 + 26 = 126 Lower bound = 126	M1 A1	Adding two shortest arcs to MST 126 cao		
(iii)	A-B-D-F-G-E - stall Misses out vertex C	M1 A1	A - B - D - F - G - E Cannot continue because B, D and F have	[2]	
			already been visited	[
(iv)	B - A - C - D - F - G - E - B Upper bound = 148	M1 A1 B1	Tour starts $B - A - C - D - F -$ Correct tour, starting and ending at B 148 cao	[3]	
(v)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 B1	(Accept correct working starting from <i>G</i> , if seen) At least three sets of temporary labels correct, with no extras Temporary labels all correct, with no extras Permanent labels correct		
	C	B1	Order of labelling (correct or follow through their permanent labels) 56 cao	[4]	
(vi)	Route = $A - B - D - G$	B1 B1	A - B - D - G cao	[2]	
(vi)	$A, B, C \text{ and } G \text{ are odd}$ $AB = 9 \qquad AC = 27 \qquad AG = 56$ $CG = \underline{42} \qquad BG = \underline{47} \qquad BC = \underline{34}$ $51 \qquad 74 \qquad 90$ Repeat $AB \text{ and } CG (C - F - G) = 51$	M1 A1	At least one correct pairing seen or total seen (not just six weights) All three totals correct, or explanation of how it is known that other pairings are too long		
	Weight = $300 + 51 = 351$	B1	351 cao	[4]	
			Total =	23	

ANSWERED ON INSERT

4	(i)	8	B1	cao	[1]
	(ii)	1 comparison and 1 swap	B1	1 and 1	[1]
	(iii)	76 65 21 13 88 62 67 28 34	B1	Correct list (complete)	
		2 comparisons and 1 swap		2 and 1	[2]
	(iv)	C S 76 65 21 13 88 62 67 28 34 1 0 88 76 65 21 13 62 67 28 34 4 4 88 76 65 62 21 13 67 28 34 3 2 88 76 67 65 62 21 13 28 34 5 4	M1 M1 A1	Underlined values correct in 3 rd and 4 th passes, values not underlined may be left blank Similarly for 5 th and 6 th passes, follow through slips in previous passes Similarly for 7 th and 8 th passes, but cao	[3]
	88 76 67 65 62 28 21 13 34 3 2 88 76 67 65 62 34 28 21 13 4 3		M1 A1 A1	(Dependent on both M marks) Reasonable attempt at Comp <u>and</u> Swap 1 4 3 5 3 4 cao in figures 0 4 2 4 2 3 cao in figures	[3]

(v)	Shuttle sort uses 23 comparisons and 17		Follow through their totals if possible	
	swaps			
	Shuttle sort is more efficient	M1	Choosing shuttle sort with a reason or	
	because		with totals seen (here)	
	although it uses the same number of swaps	A 1	Correct reason stated (comparisons and	
	as bubble sort it uses fewer comparisons		swaps both compared, in words)	[2]
			Total =	12

5	(i)	Katie must spend at least 8 minutes preparing the first batch of cookies so she has at most 52 minutes of baking time. 52 ÷ 12 = 4.3, hence at most 4 batches	M1 A1	Identifying why there is less than 60 minutes of baking time (or seeing 52) Explaining why 4 is the greatest possible number of batches	[2]
	(ii)	The last batch takes 12 minutes to bake, so Katie has (at most) 48 minutes of preparation time	B1	Explaining why total time for preparation cannot exceed 48 minutes	
				$8x + 12y + 10z \le 48$ seen or explicitly referred to	[2]
	(iii)			Integers	[2] [1]
	(iv)			5x + 4y + 3z or any positive multiple of	[1]
	(IV)	Assumes that she sells all the cookies (batches) that she makes		3x + 4y + 3z of any positive multiple of this Assumes she sells them all	
				Assumes she sens them an	[2]
	(v)	P x y z s t 1 -5 -4 -3 0 0 0 0 1 1 1 1 1 0 4 0 4 6 5 0 1 24 4 ÷ 1 = 4, 24 ÷ 4 = 6, 4 < 6 Pivot on the 1 in the <i>x</i> column P x y z s t 1 0 1 2 5 0 20 0 1 1 1 1 0 4 0 0 2 1 -4 1 8 Row 1 = R1 + 5×R2 Row 2 = R2 ÷ 1 Row 3 = R3 - 4×R2 Katie should make 4 batches of plain cookies, and no chocolate chip or fruit cookies, to give a profit of £20.	M1 A1 B1 B1 M1 A1 A1	Correct use of slack variable columns Objective row correct (cao) Constraint rows correct (cao) Working need not be seen Correct pivot choice (row 2) (cao) Follow through their tableau and pivot choice, if possible sca pivoting (x, t cols, P not decreased) Correct tableau (final column contains no negative values) Showing valid method, may imply row 2 Follow through their tableau, if reasonable (non-negative variables) Reading off values from tableau (may be implied from answer) Interpretation: 4 batches of plain cookies	[3]
			A1	(may imply none of others) Interpretation: £20	[3]

	1	1		
(vi)				
	<u>y</u>			
	5	M1	At least two of the lines $y = 2x$, $x+y = 4$ and $4x + 6y = 24$ drawn correctly	
	3	A 1	All three lines drawn correctly and graph has both scales and labels	
	2	A 1	Feasible region identified and correct	
	1 0		Follow through their feasible region if possible	[3]
	0 1 2 3 4 5 6	M1	At least two correct	
	Vertices of feasible region are	A1	All (three) correct (1 dp or better)	[2]
	$(0, 0), (0, 4) \text{ and } (1\frac{1}{3}, 2\frac{2}{3})$	M1	Or a line of constant profit <u>drawn</u> (or gradient discussed) and used correctly on	[-]
	$x = 0, y = 4 \Rightarrow P = 16$		integer-valued coordinates	
	$x = 1, y = 3 \Rightarrow P = 17$	A1	For (1, 3) or 17 chosen (cao)	
	$(x = 1\frac{1}{3}, y = 2\frac{2}{3} \Rightarrow P = 17\frac{1}{3})$	411	1 01 (1, 5) 01 17 01105011 (040)	
	Make 1 batch of plain cookies and 3	B1	Interpretation: 1 batch of plain, 3 batches	[3]
	batches of chocolate chip cookies		of chocolate chip (cao)	
	•		Total =	25

4737 Decision Mathematics 2

1 (i)	Stage	State	Action	Working	Maximin		Answered on insert	
	Siuge	0	0	10	10			
	1	1	0	11	11			
	1	2	0	14	14			
		3	0	15	15			
		0	0	min(12, 10)=10				
			2	min(10, 14)=10	10	M1	Transferring maximin values from stage 1	
			0	min(13, 10)=10			correctly	
	2	1	1	min(10, 11)=10		M1	Completing working column for stage 2 (method)	1
			2	min(11, 14)= 11	11			
			1	min(9, 11)=9	- 70	M1	Calculating maximin values for stage 2 (method)	
		2	2	min(10, 14)=10	10			
		3	3	min(7, 15)=7		A1	Maximin values correct for stage 2 (cao)	
		3	3	min(8, 11)=8 min(12, 15)=12	12	711	waxiimi values correct for stage 2 (cae)	
			0	min(15, 10) = 10	12	M1	Transferring maximin values from stage 2	
	3	0	1	min(14, 11)=11		1711	correctly	
			2	min(16, 10) = 10		A 1	1	
			3	min(13, 12)=12	12	A1	Working column for stage 3 correct (cao)	١.
(ii)	Maximii	ı value =	= 12			B1	12 (cao)	+
((1;3)-(2;3)-(3;3)	3: 0)	M1	Route, or in reverse, follow through their table if	
	171WAIIIII	110010	(0, 0)	(1 , 0) (2 , 0) = (·, ·,	1711	possible, condone omission of (0; 0)	
						A1	Correct route, including (0; 0) (cao)	
						Γ 1	Total =	<u> </u>

2	(i)	Activity	Duration	Immediate		Answered on insert	
	(-)	11000,009	(days)	predecessors			
		A	8	-			
		В	10	-			
		C	12	-	D1	D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		D	1	A B	B1	Precedences correct for D and E	
		E F	3 4	В В С	B1	Precedences correct for F and G	
		G	3	C	DI	Trecedences correct for Tr and O	
		Н	7	DEFG	B1	Precedences correct for H , I and J	
		I	4	F G		, , , , , , , , , , , , , , , , , , , ,	[3]
		J	5	ΗI			
	(ii)						
			10 15				
			10 13	D(1)			
			•	\rightarrow			
				\ _			
		A(8)/	/		6 16		
		7			H(7	7)	
		_ /	<u> </u>		1 1(/	\ 23 23 28 28 	
	0 0	B	(10)	E(3)		J(5)	
			10 12 🗽	Ţ			
				F(4)	<i>l(1</i>)		
		0(40)			/(4)	/	
		C(12)		<u> </u>	6 16		
			7				
			•				
			12 12	G(3)			
			[[
					M1	Substantially correct attempt at forward pass	
						(at most one independent error)	
					M1	Cub stantially, a small attack of the standard of	
					M1	Substantially correct attempt at backward pass (at most one independent error)	
						No follow through, 28 given in question	
						110 follow unrough, 20 given in question	
					A1	Both passes wholly correct	
		Critical act	tivities C F	H J	B1	CFHJ and no others (no follow through)	[4]
	(iii)				B1	J correct	
		A B	C D E	F G H I J 1 2 2 3 4	B1	H and I correct	
		1 1	3 2 1	1 2 2 3 4	B1	F and G correct	
					B1	D and E correct	
					B1 B1	B and C correct	[6]
	(iv)	Minimum	delay 1 day		B1	A correct	[6]
	(17)		delay 1 day delay 3 days		B1	3	[2]
		wiaziiiiulli	aciay 3 days		וטו	Total =	15
						10tai -	13

3	(i)			Answered on insert	
		4+3-2+8-2+7 = 18 litres per second	M1 A1	Imply method mark from 18, 20 or 22 cao	[2]
	(ii)	3 litres per second flow out of <i>B</i> (arc <i>BD</i>) so only 2 litres per second can enter <i>B</i> from <i>E</i> and only 1 litre per second can enter <i>B</i> from <i>S</i> .	B1	At B: 3 out and 1 + 2 in	
		At least 4 litres per second flow out of E to G , 2 litres per second from E to B and 2 litres per second from E to H , so 8 litres per second must flow into E from C .	B1	At E: (at least) 4 + 2 + 2 out	
		8 litres per second flows from C to E and at most 11 litres per second enters C from S, so at most 3 litres per second flows from C to H. Also, 2 litres per second flow from E to H so the most that can enter H is 5 litres per second. But at least 5 litres	M1	Considering C to show flow in CH is at most 3 Must explicitly refer to ≤ 3 , or $2 \leq \text{flow} \leq 3$, not just stating 3	
		per second leave <i>H</i> along <i>HT</i> , hence the flow in <i>HT</i> is 5 litres per second.	A1	At <i>H</i> : 2 + 3 in	[4]
	(iii)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	Substantially correct attempt (at least 12 correct) (Not shown as excess capacities and potential backflows)	
		11 8 2 5 C 3 H	A1	All correct (cao)	
		Flow augmenting route: $SADFT$ or $SADGT$	B1	Either of these (correct) flow augmenting routes	
		Cut: $X = \{S, B\}, Y = \{A, C, D, E, F, G, H, T\}$ Or $X = \{S, A, B\}, Y = \{C, D, E, F, G, H, T\}$	B1	Either of these (correct) cuts described in any way, or marked clearly on diagram	[4]
	(iv)	B would have at most 3 litres per second entering it	M1	Identifying that problem is at B	[2]
	1	and at least 5 litres per second leaving.	A1	A correct explanation Total =	[2] 12

4 (2)			
4 (i)	4 D		
	$A \longrightarrow P$		
		D.1	
	$R \longrightarrow R$	B1	Bipartite graph correct
	$C \longrightarrow S$		
	$D \longrightarrow T$	B1	Incomplete matching correct (clearly shown,
			or shown on a separate bipartite graph)
	E = W		
	2 0 ""		[2]
(ii)	E-P-A-R-B-S	M1	A valid alternating path from E to S, written out
(11)	E-I-A-K-B-S		
		A1	This path written out (not just shown on diagram)
	Anya = restaurant review		4 B B G G B B W B B
	Ben = sports news	B1	A = R $B = S$ $C = T$ $D = W$ $E = P$
	Connie = theatre review		(cao)
	Derek = weather report		
	Emma = problem page		[3]
(iii)	Add a dummy column		
	P R S T W X		
	J 56 56 51 57 58 60	B1	Adding a dummy column of equal 'costs' of at
	K 53 52 53 54 54 60		least 60 minutes
			ioust oo iiiiiutos
	M 59 55 53 59 57 60		
	N 57 57 53 59 60 60		
	O 58 56 51 56 57 60		
	Reduce rows		
	5 5 0 6 7 9		
	1 0 1 2 2 8	M1	Substantially correct attempt at reducing rows
	5 3 0 6 8 8		(at most one error)
	6 2 0 6 4 7		
	7 5 0 5 6 9		
			
	Then reduce columns		
	4 5 0 4 5 2		
	0 0 1 0 0 1	M1	Substantially correct attempt at reducing columns
	4 3 0 4 6 1	1711	(at most one error)
	5 2 0 4 2 0		(at most one error)
	3 4 0 4 5 0		Compating discarding and the control of the control
		A 1	Correct reduced cost matrix, with rows reduced
	6 5 0 3 4 2	A1	first (cao)
			
			
			[4]

ı	(Cross c	out 0's i	using 3 ((minim	ium nur	nber of) lines
ı			_			_		

4	5	0	4	5	2
0	0	1	0	0	1
4	3	0	4	6	1
5	2	0	4	2	0
3	4	0	4	5	0
6	5	0	3	4	2

Augment by 2

2	3	0	2	3	2
0	0	3	0	0	3
2	1	0	2	4	1
3	0	0	2	0	0
1	2	0	2	3	0
4	3	0	1	2	2

Cross out 0's using 4 (minimum number of) lines

2	3	0	2	3	2
0	0	3	0	0	3
2	1	0	2	4	1
3	0	0	2	0	0
1	2	0	2	3	0
4	3	0	1	2	2

Augment by 1

1	2	0	1	2	2
0	0	4	0	0	4
1	0	0	1	3	1
3	0	1	2	0	1
0	1	0	1	2	0
3	2	0	0	1	2

To get a complete allocation

1	2	0	1	2	2
0	0	4	0	0	4
1	0	0	1	3	1
3	0	1	2	0	1
0	1	0	1	2	0
3	2	0	0	1	2

Mohammed Ollie Jeremy Kath Laura Sports Problems Restaurant Weather Theatre 51 + 53 + 55 + 57 + 56 = 272 $272 \times £0.25 = £68$

M1

A1

M1

A1

B1

M1

A1

Follow through their reduced cost matrix for crossing through 0's and augmenting (without errors)

Augment by 2 in a single augmentation (cao)

Alternative

2	3	0	2	3	2
0	0	3	0	0	3
2	1	0	2	4	1
3	0	0	2	0	0
1	2	0	2	3	0
4	3	0	1	2	2

1	2	0	1	2	1
0	0	4	0	0	3
1	0	0	1	3	0
3	0	1	2	0	0
1	2	1	2	3	0
3	2	0	0	1	1

Follow through their matrix for crossing through 0's and augmenting (correct for theirs) (Either) correct final matrix (cao)

0 0 0 3 0 1 3 0 0 0

$$J=S$$
 $K=P$ $L=R$ $M=W$ $O=T$

0

Correct method £68 (cao) with units [4]

Total = 16

5	(i)	5	B1	5			
		(10, 4) : 2	M1	3 or 7			
		$(10 - 4) \div 2$ = 3	A1	3 01 7	[3]		
	(ii)	D E F row min					
		S 0 4 -2 -2	M1	Colculating row minima			
		T	IVII	Calculating row minima			
		col max 2 4 0	M1	Calculating col maxima (or equivalent)			
		Play-safe for rugby club (rows) is Sanjeev Play-safe for cricket club (cols) is Fiona	A1 A1	Sanjeev or S (not just -2 or identifying row) Fiona or F (not just 0 or identifying column)			
		Not stable because -2 ≠ 0	B1	Any correct explanation	[5]		
	(iii)			Follow through their play-safe strategies if possible			
		Fiona	B1	F			
	(*)	Ursula	B1	U	[2]		
	(iv)	Sanjeev's row dominates Tom's row	B1	This or any equivalent statement about Tom and Sanjeev (note: Tom is named in the question)			
		Doug	N/1	Davis			
		Fiona's column dominates Doug's (once Tom's	M1	Doug			
		row has been removed)	A1	This or any equivalent statement about Doug and Fiona			
	(v)	E: $4p - 6(1-p) = 10p - 6$ F: $-2p$	M1	Follow through their choice from part (iv) Both expressions seen in any form (note: D gives $2(1-p) = 2 - 2p$)			
		$ \begin{array}{c} 10p - 6 = -2p \\ p = 0.5 \end{array} $	A1	p = 0.5 (cao)	[2]		
	(vi)	Delete T row					
		0 4 -2 2 -6 0					
		Multiply entries by -1 to show scores for Cricket					
		club					
		0 -4 2 -2 6 0	B1	Delete <i>T</i> row <u>and</u> multiply entries by -1			
		Add 4 to make entries non-negative					
		4 0 6	B1	Add 4 to make entries non-negative			
		2 10 4					
		Choose Doug with probability x , Euan with probability y and Fiona with probability z .	B1	Identifying meaning of x , y , z or implied by reference to S for $4x + 6z$ and U for $2x + 10y + 4z$			
		If Sanjeev plays, expected score = $4x + 6z$ If Ursula plays, expected score = $2x + 10y + 4z$			[3]		
	(vii)	$z = \frac{5}{6}$ maximum value for $m = 5$	M1		[2]		
		Hence, maximum value for $M = 1$	A 1		[2]		
		,	A1	Total =	20		
				Total =	20		

Grade Thresholds

Advanced GCE Mathematics (3890-2, 7890-2) January 2009 Examination Series

Unit Threshold Marks

78	392	Maximum Mark	Α	В	С	D	E	U
4721	Raw	72	57	50	43	37	31	0
4/21	UMS	100	80	70	60	50	40	0
4722	Raw	72	59	51	44	37	30	0
4122	UMS	100	80	70	60	50	40	0
4723	Raw	72	55	48	41	34	28	0
4723	UMS	100	80	70	60	50	40	0
4724	Raw	72	62	54	46	38	31	0
4124	UMS	100	80	70	60	50	40	0
4725	Raw	72	57	49	41	34	27	0
4723	UMS	100	80	70	60	50	40	0
4726	Raw	72	49	44	39	34	30	0
4/20	UMS	100	80	70	60	50	40	0
4727	Raw	72	54	47	40	33	27	0
4121	UMS	100	80	70	60	50	40	0
4728	Raw	72	62	54	46	38	30	0
4720	UMS	100	80	70	60	50	40	0
4729	Raw	72	61	51	41	31	21	0
4729	UMS	100	80	70	60	50	40	0
4730	Raw	72	57	48	40	32	24	0
4730	UMS	100	80	70	60	50	40	0
4732	Raw	72	58	50	43	36	29	0
4/32	UMS	100	80	70	60	50	40	0
4733	Raw	72	58	49	41	33	25	0
4/33	UMS	100	80	70	60	50	40	0
4734	Raw	72	50	43	37	31	25	0
4734	UMS	100	80	70	60	50	40	0
4736	Raw	72	58	51	45	39	33	0
4730	UMS	100	80	70	60	50	40	0
4737	Raw	72	60	53	46	39	33	0
4131	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
3890	300	240	210	180	150	120	0
3891	300	240	210	180	150	120	0
3892	300	240	210	180	150	120	0
7890	600	480	420	360	300	240	0
7891	600	480	420	360	300	240	0
7892	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3890	24.1	50.4	72.7	85.8	95.1	100	960
3892	28.1	59.4	78.1	90.6	93.8	100	32
7890	26.8	58.1	84.4	92.2	96.6	100	205
7892	33.3	75.0	91.7	91.7	100	100	12

For a description of how UMS marks are calculated see: http://www.ocr.org.uk/learners/ums results.html

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

