

Mathematics (MEI)

Advanced GCE A2 7895-8

Advanced Subsidiary GCE AS 3895-8

Mark Schemes for the Units

January 2010

3895-8/7895-8/MS/10J

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

CONTENTS

Advanced GCE Further Mathematics (MEI) (7896) Advanced GCE Further Mathematics (Additional) (MEI) (7897) Advanced GCE Mathematics (MEI) (7895) Advanced GCE Pure Mathematics (MEI) (7898)

Advanced Subsidiary GCE Further Mathematics (MEI) (3896) Advanced Subsidiary GCE Further Mathematics (Additional) (MEI) (3897) Advanced Subsidiary GCE Mathematics (MEI) (3895) Advanced Subsidiary GCE Pure Mathematics (MEI) (3898)

MARK SCHEMES FOR THE UNITS

Unit/Content	Page
4751 (C1) Introduction to Advanced Mathematics	1
4752 (C2) Concepts for Advanced Mathematics	7
4753 (C3) Methods for Advanced Mathematics	10
4754 (C4) Applications of Advanced Mathematics	14
4755 (FP1) Further Concepts for Advanced Mathematics	19
4756 (FP2) Further Methods for Advanced Mathematics	24
4758 Differential Equations	29
4761 Mechanics 1	33
4762 Mechanics 2	38
4763 Mechanics 3	42
4766 Statistics 1	46
4767 Statistics 2	50
4768 Statistics 3	54
4771 Decision Mathematics 1	59
4776 Numerical Methods	64
Grade Thresholds	67

4751 (C1) Introduction to Advanced Mathematics

			r	1
1		$[a=]2c^2-b \text{ www o.e.}$	3	M1 for each of 3 complete correct steps, ft from previous error if
				equivalent difficulty
2		5x - 3 < 2x + 10	M1	condone '=' used for first two Ms M0 for just $5x - 3 < 2(x + 5)$
		3x < 13	1411	
			M1	or $-13 < -3x$ or ft
		$x < \frac{13}{3}$ o.e.	M1	or ft; isw further simplification of 13/3; M0 for just $x < 4.3$
3	(i)	(4, 0)	1	allow $y = 0$, $x = 4$ bod B1 for $x = 4$ but do not isw: 0 for (0, 4) seen 0 for (4, 0) and (0, 10) both given (choice) unless (4, 0) clearly identified as the <i>x</i> -axis intercept
3	(ii)	5x + 2(5 - x) = 20 o.e.	M1	for subst or for multn to make coeffts same and appropriate addn/subtn; condone one error
		(10/3, 5/3) www isw	A2	or A1 for $x = 10/3$ and A1 for $y = 5/3$ o.e. isw; condone 3.33 or better and 1.67 or better
				A1 for (3.3, 1.7)
4	(i)	translation	B1	0 for shift/move
		by $\begin{pmatrix} -4 \\ 0 \end{pmatrix}$ or 4 [units] to left	B1	or 4 units in negative <i>x</i> direction o.e.
4	(ii)	sketch of parabola right way up and with minimum on negative <i>y</i> -axis	B1	mark intent for both marks
		min at $(0, -4)$ and graph through -2 and 2 on <i>x</i> -axis	B1	must be labelled or shown nearby
5	(i)	$\frac{1}{12}$ or $\pm \frac{1}{12}$	2	M1 for $\frac{1}{144^{\frac{1}{2}}}$ o.e. or for $\sqrt{144} = 12$ soi
5	(ii)	denominator = 18	B1	B0 if 36 after addition
		numerator = $5 - \sqrt{7} + 4(5 + \sqrt{7})$	M1	for M1, allow in separate fractions
		$= 25 + 3\sqrt{7}$ as final answer	A1	allow B3 for $\frac{25+3\sqrt{7}}{18}$ as final answer
				www

4751	Mark	e January 2010	
6 (i)	cubic correct way up and with two turning pts touching <i>x</i> -axis at -1 , and through it at 2.5 and no other intersections	B1 B1	intns must be shown labelled or worked out nearby
	<i>y</i> - axis intersection at -5	B 1	
6 (ii)	$2x^3 - x^2 - 8x - 5$	2	B1 for 3 terms correct or M1 for correct expansion of product of two of the given factors
7	attempt at $f(-3)$ -27 + 18 - 15 + $k = 6$ k = 30	M1 A1 A1	or M1 for long division by $(x + 3)$ as far as obtaining $x^2 - x$ and A1 for obtaining remainder as $k - 24$ (but see below) equating coefficients method: M2 for $(x + 3)(x^2 - x + 8)$ [+6] o.e. (from inspection or division) eg M2 for obtaining $x^2 - x + 8$ as quotient in division
8	$x^{3} + 15x + \frac{75}{x} + \frac{125}{x^{3}}$ www isw or $x^{3} + 15x + 75x^{-1} + 125x^{-3}$ www isw	4	B1 for both of x^3 and $\frac{125}{x^3}$ or $125x^{-3}$ isw and M1 for 1 3 3 1 soi; A1 for each of $15x$ and $\frac{75}{x}$ or $75x^{-1}$ isw or SC2 for completely correct unsimplified answer

Mark Scheme

			•
9	$x^2 - 5x + 7 = 3x - 10$	M1	or attempt to subst $(y + 10)/3$ for x
	$x^{2} - 8x + 17 = 0$ o.e or $y^{2} - 4y + 13 = 0$ o.e	M1	condone one error; allow M1 for $x^2 - 8x = -17$ [oe for y] only if they go on to completing square method
	use of $b^2 - 4ac$ with numbers subst (condone one error in substitution) (may be in quadratic formula)	M1	or $(x-4)^2 = 16 - 17$ or $(x-4)^2 + 1 = 0$ (condone one error)
	$b^2 - 4ac = 64 - 68 \text{ or } -4 \text{ cao}$ [or 16 - 52 or -36 if y used]	A1	or $(x-4)^2 = -1$ or $x = 4 \pm \sqrt{-1}$ [or $(y-2)^2 = -9$ or $y = 2 \pm \sqrt{-9}$]
	[< 0] so no [real] roots [so line and curve do not intersect]	A1	or conclusion from comp. square; needs to be explicit correct conclusion and correct ft; allow '< 0 so no intersection' o.e.; allow '-4 so no roots' etc
			allow A2 for full argument from sum of two squares = 0; A1 for weaker correct conclusion
			some may use the condition $b^2 < 4ac$ for no real roots; allow equivalent marks, with first A1 for 64 < 68 o.e.
10 (i)	grad CD = $\frac{5-3}{3-(-1)} \left[= \frac{2}{4} \text{ o.e.} \right]$ isw	M1	NB needs to be obtained independently of grad AB
	grad AB = $\frac{3-(-1)}{6-(-2)}$ or $\frac{4}{8}$ isw	M1	
	same gradient so parallel www	A1	must be explicit conclusion mentioning 'same gradient' or 'parallel'
			if M0, allow B1 for 'parallel lines have same gradient' o.e.
10 (ii)	$[BC2=] 32 + 22[BC2 =] 13showing AD2 = 12 + 42 [=17] [\neqBC2]isw$	M1 A1 A1	accept $(6-3)^2 + (3-5)^2$ o.e. or [BC =] $\sqrt{13}$ or [AD =] $\sqrt{17}$
			or equivalent marks for finding AD or AD ² first
			alt method: showing $AC \neq BD - mark$ equivalently

4751	Mark	Scheme	e January 2010
10 (iii)	[BD eqn is] y = 3	M1	eg allow for 'at M, $y = 3$ ' or for 3 subst in eqn of AC
	eqn of AC is $y - 5 = \frac{6}{5} \times (x - 3)$ o.e [$y = 1.2x + 1.4$ o.e.]	M2	or M1 for grad AC = $6/5$ o.e. (accept unsimplified) and M1 for using their grad of AC with coords of A(-2 , -1) or C (3, 5) in eqn of line or M1 for 'stepping' method to reach M
	M is (4/3, 3) o.e. isw	A1	allow : at M, $x = 16/12$ o.e. [eg =4/3] isw A0 for 1.3 without a fraction answer seen
10 (iv)	midpt of BD = $(5/2, 3)$ or equivalent simplified form cao	M1	or showing $BM \neq MD$ oe [BM = 14/3, MD = 7/3]
	midpt AC = $(1/2, 2)$ or equivalent simplified form cao or 'M is 2/3 of way from A to C'	M1	or showing $AM \neq MC$ or $AM^2 \neq MC^2$
	conclusion 'neither diagonal bisects the other'	A1	in these methods A1 is dependent on coords of M having been obtained in part (iii) or in this part; the coordinates of M need not be correct; it is also dependent on midpts of both AC and BD attempted, at least one correct
			alt method: show that mid point of BD does not lie on AC (M1) and vice-versa (M1), A1 for both and conclusion

11 (i)	centre C' = $(3, -2)$ radius 5	1 1	0 for ±5 or -5
11 (ii)	showing $(6-3)^2 + (-6+2)^2 = 25$	B 1	interim step needed
	showing that $\overrightarrow{AC'} = \overrightarrow{C'B} = \begin{pmatrix} -3\\ 4 \end{pmatrix}$ o.e.	B2	or B1 each for two of: showing midpoint of $AB = (3, -2)$; showing B (0, 2) is on circle; showing $AB = 10$
			or B2 for showing midpoint of $AB = (3, -2)$ and saying this is centre of circle
			or B1 for finding eqn of AB as y = -4/3 x + 2 o.e. and B1 for finding one of its intersections with the circle is (0, 2)
			or B1 for showing C'B = 5 and B1 for showing AB = 10 or that AC' and BC' have the same gradient
			or B1 for showing that AC' and BC' have the same gradient and B1 for showing that B (0, 2) is on the circle
11 (iii)	grad AC' or AB = $-4/3$ o.e.	M1	or ft from their C', must be evaluated
	grad tgt = -1 /their AC' grad	M1	may be seen in eqn for tgt; allow M2 for grad tgt = $\frac{3}{4}$ oe soi as first step
	y - (-6) = their $m(x - 6)$ o.e.	M1	or M1 for $y =$ their $m \times x + c$ then subst (6, -6)
	y = 0.75x - 10.5 o.e. isw	A1	eg A1 for $4y = 3x - 42$
			allow B4 for correct equation www isw
11 (iv)	centre C is at (12, -14) cao	B2	B1 for each coord
	circle is $(x - 12)^2 + (y + 14)^2 = 100$	B 1	ft their C if at least one coord correct

12 (i)	10	1	
12 (ii)	$[x =] 5 \text{ or ft their } (i) \div 2$	1	not necessarily ft from (i) eg they may start again with calculus to get $x = 5$
	ht = 5[m] cao	1	
12 (iii)	d = 7/2 o.e.	M1	or ft their (ii) -1.5 or their (i) $\div 2 - 1.5$ o.e.
	$[y =] 1/5 \times 3.5 \times (10 - 3.5)$ o.e. or ft	M1	or $7 - 1/5 \times 3.5^2$ or ft
	= 91/20 o.e. cao isw	A1	or showing $y - 4 = 11/20$ o.e. cao
12 (iv)	$4.5 = 1/5 \times x(10 - x)$ o.e.	M1	
	22.5 = x(10 - x) o.e.	M1	eg $4.5 = x(2 - 0.2x)$ etc
	$2x^2 - 20x + 45 = 0$ o.e. eg $x^2 - 10x + 22.5 = 0$ or $(x - 5)^2 = 2.5$	A1	cao; accept versions with fractional coefficients of x^2 , isw
	$[x=]\frac{20\pm\sqrt{40}}{4}$ or $5\pm\frac{1}{2}\sqrt{10}$ o.e.	M1	or $x-5 = [\pm]\sqrt{2.5}$ o.e.; ft their quadratic eqn provided at least M1 gained already; condone one error in formula or substitution; need not be simplified or be real
	width = $\sqrt{10}$ o.e. eg $2\sqrt{2.5}$ cao	A1	accept simple equivalents only

4752 (C2) Concepts for Advanced Mathematics

1		$\frac{1}{2}x^2 + 3x^{-1} + c$ o.e.	3	1 for each term	3
2	(i)	5 with valid method	1	eg sequence has period of 4 nos.	
	(ii)	165 www	2	M1 for $13 \times (1 + 3 + 5 + 3) + 1 + 3 + 5$ or for $14 \times (1 + 3 + 5 + 3) - 3$	3
3		rt angled triangle with $\sqrt{2}$ on one side and 3 on hyp Pythag. used to obtain remaining side $=\sqrt{7}$ $\tan \theta = \frac{opp}{adj} = \frac{\sqrt{2}}{\sqrt{7}}$ o.e.	1 1 1	or M1 for $\cos^2 \theta = 1 - \sin^2 \theta$ used A1 for $\cos \theta = \frac{\sqrt{7}}{\sqrt{9}}$ A1 for $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sqrt{2}}{\sqrt{7}}$ o.e.	3
4		radius = 6.5 [cm]	3	M1 for $\frac{1}{2} \times r^2 \times 0.4$ [= 8.45] o.e. and M1 for $r^2 = \frac{169}{4}$ o.e. [= 42.25]	3
5	(i)	sketch of correct shape with P $(-0.5,2)$ Q $(0,4)$ and R $(2,2)$	2	1 if Q and one other are correct	
	(ii)	sketch of correct shape with P (-1,0.5) Q (0,1) and R (4,0.5)	2	1 if Q and one other are correct	4
6	(i)	205	3	M1 for AP identified with $d = 4$ and M1 for $5 + 50 d$ used	
	(ii)	$\frac{25}{3}$ o.e.	2	M1 for $r = \frac{2}{5}$ o.e.	5
7	(i) (ii)	$\frac{\sin A}{5.6} = \frac{\sin 79}{8.4} \text{ s.o.i.}$ [A =] 40.87 to 41 [BC ² =] 5.6 ² + 7.8 ² - 2 × 5.6 × 7.8 × cos ("180-79") = 108.8 to 108.9 [BC =] 10.4()	M1 A1 M1 A1 A1		5
8		$y' = 3x^{-\frac{1}{2}}$ ³ / ₄ when x = 16 y = 24 when x = 16 y - their 24 = their ³ / ₄ (x - 16) y - 24 = ³ / ₄ (x - 16) o.e.	M1 A1 B1 M1 A1	condone if unsimplified dependent on $\frac{dy}{dx}$ used for <i>m</i>	5

4752	2	Mar	k Sche	me January	2010
9	(i)	y A J	G1	for curve of correct shape in both quadrants	
			DG1	must go through $(0, 1)$ shown	
		×			
	(ii)	$2x + 1 = \frac{\log 10}{\log 13} \text{o.e.}$	M1 A2	or M1 for $2x + 1 = \log_3 10$ A1 for other versions of 0.547or 0.548	5
		[x =] 0.55 $3x^2 - 6x - 9$			
10	(i)		M1 M1		
		use of their $y' = 0$ x = -1	M1 A1		
		$\begin{array}{c} x = -1 \\ x = 3 \end{array}$	A1 A1		
		x - 5 valid method for determining nature	M1		
		of turning point	1,11		
		max at $x = -1$ and min at $x = 3$	A1	c.a.o.	6
	(ii)	$\frac{x(x^2 - 3x - 9)}{\frac{3 \pm \sqrt{45}}{2}} \text{ or } (x - \frac{3}{2})^2 = 9 + \frac{9}{4}$	M1		
		$\frac{3\pm\sqrt{45}}{2}$ or $(x-\frac{3}{2})^2 = 9 + \frac{9}{4}$	M1		
		$0, \frac{3}{2} \pm \frac{\sqrt{45}}{2}$ o.e.	A1		3
	(iii)	sketch of cubic with two turning	G1		
		points correct way up x-intercepts – negative, 0, positive shown	DG1		2
11	(i)	47.625 [m ²] to 3 sf or more, with correct method shown	4	M3 for $\frac{1.5}{2} \times (2.3 + 2 + 2[2.7 + 3.3 + 4 +$	4
				4.8 + 5.2 + 5.2 + 4.4])	
	(ii)	43.05	2	M1 for $1.5 \times (2.3+2.7+3.3+4+4.8+5.2+4.4+2)$	2
	(iii)	$-0.013x^4/4 + 0.16x^3/3 - 0.082x^2/2 +$	M2	$1.3 \times (2.3+2.7+3.3+4+4.8+3.2+4.4+2)$ M1 for three terms correct	2
	(111)	2.4 <i>x</i> o.e.			
		their integral evaluated at $x = 12$ (and 0) only	M1	dep on integration attempted	
		47.6 to 47.7	A1		4
	(iv)	5.30 found compared with 5.2 s.o.i.	1 D1		2
12	(i)	$\log P = \log a + bt \text{www}$	1		
		comparison with $y = mx + c$ s.o.i. intercept = $\log_{10} a$	1 1	must be with correct equation dependent on correct equation	3
	(ii)	[2.12, 2.21], 2.32, 2.44, 2.57, 2.69	1		
		plots ft ruled line of best fit	1 1	Between (10, 2.08) and (10, 2.12)	3

(iii)	$0.0100 \le m < 0.0125$	B2	M1 for $\frac{y - \text{step}}{x - \text{step}}$	
	$a = 10^{c}$ or $loga = c$	B1	$1.96 \le c \le 2.02$	
	$P = 10^{\rm c} \times 10^{\rm mt} \text{ or } 10^{\rm mt+c}$	B1	f.t. their m and a	4
(iv)	use of $t = 105$ 1.0 – 2.0 billion approx unreliable since extrapolation o.e.	B1 B1 E1		3

4753 (C3) Methods for Advanced Mathematics

	-		1 1
$1 \qquad e^{2x} - 5e^{x} = 1$ $\Rightarrow \qquad e^{x} (e^{x} - 5) = 1$ $\Rightarrow \qquad e^{x} = 5$ $\Rightarrow \qquad x = \ln 5 \text{ or}$	= 0	M1 M1 A1 A1 [4]	factoring out e^x or dividing $e^{2x} = 5e^x$ by e^x $e^{2x} / e^x = e^x$ ln 5 or 1.61 or better, mark final answer -1 for additional solutions, e.g. $x = 0$
$\begin{array}{ccc} \boldsymbol{or} & \ln(e^{2x}) = \ln \\ \Rightarrow & 2x & = \ln \\ \Rightarrow & x = \ln 5 \text{ or} \end{array}$	15+x	M1 A1 A1 A1 [4]	taking lns on $e^{2x} = 5e^x$ 2x, ln 5 + x ln 5 or 1.61 or better, mark final answer -1 for additional solutions, e.g. $x = 0$
2 (i) When $t = 0$, $\Rightarrow 100 = 20 + t$ $\Rightarrow b = 80$ When $t = 5$ $\Rightarrow 60 = 20 + 8$ $\Rightarrow e^{-5k} = \frac{1}{2}$ $\Rightarrow k = \ln 2 / 5 = t$	b , $T = 60$ $80 e^{-5k}$	M1 A1 M1 A1 [4]	substituting $t = 0$, $T = 100$ cao substituting $t = 5$, $T = 60$ $1/5 \ln 2$ or 0.14 or better
(ii) $50 = 20 + 8$ $\Rightarrow e^{-kt} = 3/8$ $\Rightarrow t = \ln(8/3)$	$k^{30} e^{-kt}$ k = 7.075 mins	M1 A1 [2]	Re-arranging and taking lns correctly – ft their <i>b</i> and <i>k</i> answers in range 7 to 7.1
	$(1+3x^2)^{-2/3}.6x$ $(1+3x^2)^{-2/3}$	M1 B1 A1 [3]	chain rule $1/3 \ u^{-2/3}$ or $\frac{1}{3}(1+3x^2)^{-2/3}$ o.e but must be '2' (not 6/3) mark final answer
(ii) $3y^2 \frac{dy}{dx} = 6x$ $\Rightarrow dy/dx = 6x/$ $= \frac{1}{(1+x)^2}$		M1 A1 A1 E1 [4]	$3y^{2} \frac{dy}{dx}$ = 6x if deriving $2x(1+3x^{2})^{-2/3}$, needs a step of working

4(i) $\int_0^1 \frac{2x}{x^2 + 1} dx = \left[\ln(x^2 + 1) \right]_0^1$ = ln 2	M2 A1 [3]	$[\ln(x^2 + 1)]$ cao (must be exact)
or let $u = x^2 + 1$, $du = 2x dx$ $\Rightarrow \int_0^1 \frac{2x}{x^2 + 1} dx = \int_1^2 \frac{1}{u} du$ $= [\ln u]_1^2$ $= \ln 2$	M1 A1 A1 [3]	$\int \frac{1}{u} du$ or $\left[\ln(1+x^2) \right]_0^1$ with correct limits cao (must be exact)
(ii) $\int_{0}^{1} \frac{2x}{x+1} dx = \int_{0}^{1} \frac{2x+2-2}{x+1} dx = \int_{0}^{1} (2-\frac{2}{x+1}) dx$ = $[2x-2\ln(x+1)]_{0}^{1}$ = $2-2\ln 2$	M1 A1, A1 A1 [5]	dividing by $(x + 1)$ 2, $-2/(x+1)$
or $\int_{0}^{1} \frac{2x}{x+1} dx$ let $u = x + 1$, $\Rightarrow du = dx$ $= \int_{1}^{2} \frac{2(u-1)}{u} du$ $= \int_{1}^{2} (2 - \frac{2}{u}) du$ $= [2u - 2 \ln u]_{1}^{2}$ $= 4 - 2 \ln 2 - (2 - 2 \ln 1)$ $= 2 - 2 \ln 2$	M1 B1 M1 A1 A1 [5]	substituting $u = x + 1$ and $du = dx$ (or du/dx = 1) and correct limits used for u or x 2(u - 1)/u dividing through by u $2u - 2\ln u$ allow ft on $(u - 1)/u$ (i.e. with 2 omitted) o.e. cao (must be exact)
5 (i) $a = 0, b = 3, c = 2$	B(2,1,0)	or $a = 0, b = -3, c = -2$
(ii) $a = 1, b = -1, c = 1$ or $a = 1, b = 1, c = -1$	B(2,1,0) [4]	
6 $f(-x) = -f(x), g(-x) = g(x)$ g f(-x) = g [-f(x)] = g f(x) \Rightarrow g f is even	B1B1 M1 E1 [4]	condone f and g interchanged forming $gf(-x)$ or $gf(x)$ and using f(-x) = -f(x) www
7 Let $\arcsin x = \theta$ $\Rightarrow x = \sin \theta$ $\theta = \arccos y \Rightarrow y = \cos \theta$ $\sin^2 \theta + \cos^2 \theta = 1$ $\Rightarrow x^2 + y^2 = 1$	M1 M1 E1 [3]	

8(i) At P, $x \cos 3x = 0$ $\Rightarrow \cos 3x = 0$ $\Rightarrow 3x = \pi/2, 3\pi/2$ $\Rightarrow x = \pi/6, \pi/2$ So P is $(\pi/6, 0)$ and Q is $(\pi/2, 0)$	M1 M1 A1 A1 [4]	or verification $3x = \pi/2$, $(3\pi/2)$ dep both Ms condone degrees here
(ii) $\frac{dy}{dx} = -3x \sin 3x + \cos 3x$ At P, $\frac{dy}{dx} = -\frac{\pi}{2} \sin \frac{\pi}{2} + \cos \frac{\pi}{2} = -\frac{\pi}{2}$ At TPs $\frac{dy}{dx} = -3x \sin 3x + \cos 3x = 0$ $\Rightarrow \cos 3x = 3x \sin 3x$ $\Rightarrow 1 = 3x \sin 3x / \cos 3x = 3x \tan 3x$ $\Rightarrow x \tan 3x = 1/3 *$	M1 B1 A1 M1 A1cao M1 E1 [7]	Product rule $d/dx (\cos 3x) = -3 \sin 3x$ cao (so for $dy/dx = -3x\sin 3x$ allow B1) mark final answer substituting their $-\pi/6$ (must be rads) $-\pi/2$ $dy/dx = 0$ and $\sin 3x / \cos 3x = \tan 3x$ used www
(iii) $A = \int_{0}^{\pi/6} x \cos 3x dx$ Parts with $u = x$, $dv/dx = \cos 3x$ $du/dx = 1$, $v = 1/3 \sin 3x$ $\Rightarrow \qquad A = \left[\frac{1}{3}x \sin 3x\right]_{0}^{\frac{\pi}{6}} - \int_{0}^{\pi/6} \frac{1}{3} \sin 3x dx$	B1 M1 A1	Correct integral and limits (soi) – ft their P, but must be in radians can be without limits
$= \left[\frac{1}{3}x\sin 3x + \frac{1}{9}\cos 3x\right]_{0}^{\frac{\pi}{6}}$ $= \frac{\pi}{18} - \frac{1}{9}$	A1 M1dep A1 cao [6]	dep previous A1. substituting correct limits, dep 1 st M1: ft their P provided in radians o.e. but must be exact

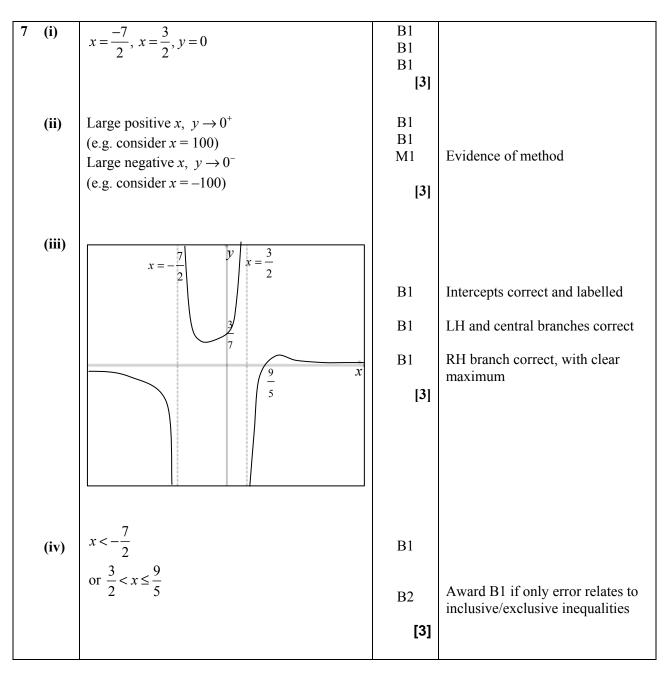
r			1
9(i) ⇒	$f'(x) = \frac{(x^2 + 1)4x - (2x^2 - 1)2x}{(x^2 + 1)^2}$ = $\frac{4x^3 + 4x - 4x^3 + 2x}{(x^2 + 1)^2} = \frac{6x}{(x^2 + 1)^2} *$ When $x > 0$, $6x > 0$ and $(x^2 + 1)^2 > 0$ f'(x) > 0	M1 A1 E1 M1 E1 [5]	Quotient or product rule correct expression www attempt to show or solve $f'(x) > 0$ numerator > 0 and denominator > 0 or, if solving, $6x > 0 \Rightarrow x > 0$
(ii)	$f(2) = \frac{8-1}{4+1} = 1\frac{2}{5}$ Range is $-1 \le y \le 1\frac{2}{5}$	B1 B1 [2]	must be \leq , <i>y</i> or f(<i>x</i>)
\Rightarrow	f'(x) max when f''(x) = 0 6 - 18 x ² = 0 x ² = 1/3, x = 1/\sqrt{3} f'(x) = $\frac{6/\sqrt{3}}{(1\frac{1}{3})^2} = \frac{6}{\sqrt{3}} \cdot \frac{9}{16} = \frac{9\sqrt{3}}{8} = 1.95$	M1 A1 M1 A1 [4]	$(\pm)1/\sqrt{3}$ oe (0.577 or better) substituting $1/\sqrt{3}$ into f'(x) $9\sqrt{3}/8$ o.e. or 1.95 or better (1.948557)
(iv)	Domain is $-1 < x < 1\frac{2}{5}$ Range is $0 \le y \le 2$	B1 B1 M1 A1 cao [4]	ft their 1.4 but not $x \ge -1$ or $0 \le g(x) \le 2$ (not f) Reasonable reflection in $y = x$ from (-1, 0) to (1.4, 2), through (0, $\sqrt{2}/2$) allow omission of one of -1, 1.4, 2, $\sqrt{2}/2$
	$y = \frac{2x^2 - 1}{x^2 + 1} x \leftrightarrow y$ $x = \frac{2y^2 - 1}{y^2 + 1}$ $xy^2 + x = 2y^2 - 1$ $x + 1 = 2y^2 - xy^2 = y^2(2 - x)$ $y^2 = \frac{x + 1}{2 - x}$ $y = \sqrt{\frac{x + 1}{2 - x}} *$	M1 M1 M1 E1 [4]	(could start from g) Attempt to invert clearing fractions collecting terms in y^2 and factorising www

4754 (C4) Applications of Advanced Mathematics

1		$\frac{1+2x}{(1-2x)^2} = (1+2x)(1-2x)^{-2}$ = $(1+2x)[1+(-2)(-2x) + \frac{(-2)(-3)}{1.2}(-2x)^2 +]$ = $(1+2x)[1+4x+12x^2 +]$ = $1+4x+12x^2+2x+8x^2 +$ = $1+6x+20x^2 +$ Valid for $-1 < -2x < 1$ $\Rightarrow -\frac{1}{2} < x < \frac{1}{2}$	M1 A1 A1 M1 A1 M1 A1 [7]	binomial expansion power -2 unsimplified,correct sufficient terms
2		$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$ $\Rightarrow \cot 2\theta = \frac{1}{\tan 2\theta} = \frac{1 - \tan^2 \theta}{2 \tan \theta} *$ $\cot 2\theta = 1 + \tan \theta$ $\Rightarrow \frac{1 - \tan^2 \theta}{2 \tan \theta} = 1 + \tan \theta$ $\Rightarrow 1 - \tan^2 \theta = 2 \tan \theta + 2 \tan^2 \theta$ $\Rightarrow 3 \tan^2 \theta + 2 \tan \theta - 1 = 0$ $\Rightarrow (3 \tan \theta - 1)(\tan \theta + 1) = 0$ $\Rightarrow \tan \theta = 1/3, \ \theta = 18.43^\circ, \ 198.43^\circ$ $\operatorname{or} \tan \theta = -1, \ \theta = 135^\circ, \ 315^\circ$	M1 E1 M1 M1 A3,2,1, 0 [7]	oe eg converting either side into a one line fraction(s) involving sin θ and cos θ . quadratic = 0 factorising or solving 18.43°, 198.43°, 135°, 315° -1 extra solutions in the range
3	(i)	$\frac{d y}{d t} = \frac{(1+t) \cdot 2 - 2t \cdot 1}{(1+t)^2} = \frac{2}{(1+t)^2}$ $\frac{d x}{d t} = 2e^{2t}$ $\frac{d y}{d x} = \frac{d y / d t}{d x / d t}$ $\Rightarrow \frac{d y}{d x} = \frac{2}{(1+t)^2} = \frac{1}{e^{2t}(1+t)^2}$ $t = 0 \Rightarrow dy/dx = 1$	M1A1 B1 M1 A1 B1ft [6]	

	(ii)	$\Rightarrow 2t = \ln x \Rightarrow t = \frac{1}{2} \ln x$ $\Rightarrow y = \frac{\ln x}{1 + \frac{1}{2} \ln x} = \frac{2 \ln x}{2 + \ln x}$	M1 A1 [2]	or <i>t</i> in terms of <i>y</i>
4	(i)	$\overline{AB} = \begin{pmatrix} -2\\ -1\\ -1 \end{pmatrix}, \overline{AC} = \begin{pmatrix} -1\\ -11\\ 3 \end{pmatrix}$	B1 B1 [2]	
	(ii)	$\mathbf{n}.\overrightarrow{AB} = \begin{pmatrix} 2\\-1\\-3 \end{pmatrix} \begin{pmatrix} -2\\-1\\-1 \\-1 \end{pmatrix} = -4 + 1 + 3 = 0$ $\mathbf{n}.\overrightarrow{AC} = \begin{pmatrix} 2\\-1\\-3 \end{pmatrix} \begin{pmatrix} -1\\-11\\3 \end{pmatrix} = -2 + 11 - 9 = 0$ $\Rightarrow \text{ plane is } 2x - y - 3z = d$ $x = 1, y = 3, z = -2 \Rightarrow d = 2 - 3 + 6 = 5$ $\Rightarrow \text{ plane is } 2x - y - 3z = 5$	M1 E1 M1 A1 [5]	scalar product
5	(i)	$x = -5 + 3\lambda = 1 \implies \lambda = 2$ $y = 3 + 2 \times 0 = 3$ z = 4 - 2 = 2, so (1, 3, 2) lies on 1st line. $x = -1 + 2\mu = 1 \implies \mu = 1$ y = 4 - 1 = 3 $z = 2 + 0 = 2, \text{ so } (1, 3, 2) \text{ lies on } 2^{\text{nd}} \text{ line.}$	M1 E1 E1 [3]	finding λ or μ verifying two other coordinates for line 1 verifying two other coordinates for line 2
	(ii)	Angle between $\begin{pmatrix} 3\\0\\-1 \end{pmatrix}$ and $\begin{pmatrix} 2\\-1\\0 \end{pmatrix}$ $\cos \theta = \frac{3 \times 2 + 0 \times (-1) + (-1) \times 0}{\sqrt{10}\sqrt{5}}$ = 0.8485 $\Rightarrow \theta = 31.9^{\circ}$	M1 M1 A1 [4]	direction vectors only allow M1 for any vectors or 0.558 radians

6	(i)	$BAC = 120 - 90 - (90 - \theta)$ = $\theta - 60$ $\Rightarrow BC = b \sin(\theta - 60)$ $CD = AE = a \sin \theta$ $\Rightarrow h = BC + CD = a \sin \theta + b \sin (\theta - 60^{\circ}) *$	B1 M1 E1 [3]	
	(ii)	$h = a \sin \theta + b \sin (\theta - 60^{\circ})$ = $a \sin \theta + b (\sin \theta \cos 60 - \cos \theta \sin 60)$ = $a \sin \theta + \frac{1}{2} b \sin \theta - \frac{\sqrt{3}}{2} b \cos \theta$ = $(a + \frac{1}{2}b) \sin \theta - \frac{\sqrt{3}}{2} b \cos \theta *$	M1 M1 E1 [3]	corr compound angle formula $\sin 60 = \sqrt{3/2}, \cos 60 = \frac{1}{2}$ used
	(iii)	OB horizontal when $h = 0$ $\Rightarrow (a + \frac{1}{2}b)\sin\theta - \frac{\sqrt{3}}{2}b\cos\theta = 0$ $\Rightarrow (a + \frac{1}{2}b)\sin\theta = \frac{\sqrt{3}}{2}b\cos\theta$ $\Rightarrow \frac{\sin\theta}{\cos\theta} = \frac{\frac{\sqrt{3}}{2}b}{a + \frac{1}{2}b}$ $\Rightarrow \tan\theta = \frac{\sqrt{3}b}{2a + b} *$	M1 M1 E1 [3]	$\frac{\sin\theta}{\cos\theta} = \tan\theta$
	(iv)	$2\sin\theta - \sqrt{3}\cos\theta = R\sin(\theta - \alpha)$ = $R(\sin\theta\cos\alpha - \cos\theta\sin\alpha)$ $\Rightarrow R\cos\alpha = 2, R\sin\alpha = \sqrt{3}$ $\Rightarrow R^2 = 2^2 + (\sqrt{3})^2 = 7, R = \sqrt{7} = 2.646 \text{ m}$ $\tan\alpha = \sqrt{3}/2, \alpha = 40.9^\circ$ So $h = \sqrt{7}\sin(\theta - 40.9^\circ)$ $\Rightarrow h_{\text{max}} = \sqrt{7} = 2.646 \text{ m}$ when $\theta - 40.9^\circ = 90^\circ$ $\Rightarrow \theta = 130.9^\circ$	M1 B1 M1A1 B1ft M1 A1 [7]	


7	(i)	$\frac{dx}{dt} = -1(1 + e^{-t})^{-2} - e^{-t}$ $= \frac{e^{-t}}{(1 + e^{-t})^2}$ $1 - x = 1 - \frac{1}{1 + e^{-t}}$	M1 A1	chain rule
		$1-x = \frac{1+e^{-t}-1}{1+e^{-t}} = \frac{e^{-t}}{1+e^{-t}}$ $\Rightarrow x(1-x) = \frac{1}{1+e^{-t}} \frac{e^{-t}}{1+e^{-t}} = \frac{e^{-t}}{(1+e^{-t})^2}$	M1 A1	substituting for $x(1-x)$ $1-x = \frac{1+e^{-t}-1}{1+e^{-t}} = \frac{e^{-t}}{1+e^{-t}}$
		$\Rightarrow \frac{dx}{dt} = x(1-x)$ When $t = 0$, $x = \frac{1}{1+e^0} = 0.5$	E1 B1 [6]	[OR,M1 A1 for solving differential equation for <i>t</i> , B1 use of initial condition, M1 A1 making <i>x</i> the subject, E1 required form]
	(ii)	$\frac{1}{(1+e^{-t})} = \frac{3}{4}$ $\Rightarrow e^{-t} = \frac{1}{3}$ $\Rightarrow t = -\ln \frac{1}{3} = 1.10 \text{ years}$	M1 M1 A1 [3]	correct log rules
	(iii)	$\frac{1}{x^2(1-x)} = \frac{A}{x^2} + \frac{B}{x} + \frac{C}{1-x}$ $\Rightarrow 1 = A(1-x) + Bx(1-x) + Cx^2$ $x = 0 \Rightarrow A = 1$ $x = 1 \Rightarrow C = 1$ coefft of x^2 : $0 = -B + C \Rightarrow B = 1$	M1 M1 B(2,1,0) [4]	clearing fractions substituting or equating coeffs for A,B or C A = 1, B = 1, C = 1 www
	(iv)	$\int \frac{\mathrm{d}x}{x^2(1-x)} \mathrm{d}x = \int \mathrm{d}t$ $\Rightarrow t = \int (\frac{1}{x^2} + \frac{1}{x} + \frac{1}{1-x}) \mathrm{d}x$ $= -1/x + \ln x - \ln(1-x) + c$ When $t = 0, x = \frac{1}{2} \Rightarrow 0 = -2 + \ln \frac{1}{2} - \ln \frac{1}{2} + c$	M1 B1 B1 M1	separating variables -1/x + $\ln x - \ln(1 - x)$ ft their A,B,C substituting initial conditions
		$\Rightarrow c = 2.$ $\Rightarrow t = -1/x + \ln x - \ln(1 - x) + 2$ $= 2 + \ln \frac{x}{1 - x} - \frac{1}{x} *$	E1 [5]	
	(v)	$t = 2 + \ln \frac{3/4}{1 - 3/4} - \frac{1}{3/4} = \ln 3 + \frac{2}{3} = 1.77 \text{ yrs}$	M1A1 [2]	

1	15	B1	
2	THE MATHEMATICIAN	B1	
3	M H X I Q 3 or 4 correct – award 1 mark	B2	
4	Two from Ciphertext N has high frequency E would then correspond to ciphertext R which also has high frequency T would then correspond to ciphertext G which also has high frequency A is preceded by a string of six letters displaying low frequency	B1 B1	oe oe
5	The length of the keyword is a factor of both 84 and 40. The <u>only</u> common factors of 84 and 40 are 1,2 and 4 (and a keyword of length 1 can be dismissed in this context)	M1 E1	
6	Longer strings to analyse so letter frequency more transparent. Or there are fewer 2-letter keywords to check	B2	
7	OQH DRR EBG One or two accurate – award 1 mark	B2	
8 (i) (ii)	Evidence of intermediate H FACE Evidence of intermediate HCEG – award 2 marks Evidence of accurate application of one of the two decoding ciphers - award 1 mark	B1 B3	
(iii)	$800 = (3 \times 266) + 2$; the second row gives T so plaintext is R	M1 A1	Use of second row

4755 (FP1) Further Concepts for Advanced Mathematics

1	$\alpha\beta = (-3+j)(5-2j) = -13+11j$	M1 A1 [2]	Use of $j^2 = -1$
	$\frac{\alpha}{\beta} = \frac{-3+j}{5-2j} = \frac{(-3+j)(5+2j)}{29} = \frac{-17}{29} - \frac{1}{29}j$	M1 A1 A1 [3]	Use of conjugate 29 in denominator All correct
2 (i)	AB is impossible	B1	
	$\mathbf{CA} = (50)$	B1	
	$\mathbf{B} + \mathbf{D} = \begin{pmatrix} 3 & 1 \\ 6 & -2 \end{pmatrix}$	B1	
	$\mathbf{AC} = \begin{pmatrix} 20 & 4 & 32 \\ -10 & -2 & -16 \\ 20 & 4 & 32 \end{pmatrix}$	B2	-1 each error
		[5]	
(ii)	$\mathbf{DB} = \begin{pmatrix} -2 & 0 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} 5 & 1 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} -10 & -2 \\ 22 & 1 \end{pmatrix}$	M1	Attempt to multiply in correct order
		A1 [2]	c.a.o.
3	$\alpha + \beta + \gamma = a - d + a + a + d = \frac{12}{4} \Longrightarrow a = 1$	M1 A1	Valid attempt to use sum of roots $a = 1$, c.a.o.
	$(a-d)a(a+d) = \frac{3}{4} \Rightarrow d = \pm \frac{1}{2}$	M1	Valid attempt to use product of roots
	So the roots are $\frac{1}{2}$, 1 and $\frac{3}{2}$	A1	All three roots
	$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{k}{4} = \frac{11}{4} \Longrightarrow k = 11$	M1	Valid attempt to use $\alpha\beta + \alpha\gamma + \beta\gamma$, or to multiply out factors, or to substitute a root
		A1 [6]	k = 11 c.a.o.

4			
4	$\mathbf{M}\mathbf{M}^{-1} = \frac{1}{k} \begin{pmatrix} 4 & 0 & 1 \\ -6 & 1 & 1 \\ 5 & 2 & 5 \end{pmatrix} \begin{pmatrix} -3 & -2 & 1 \\ -35 & -15 & 10 \\ 17 & 8 & -4 \end{pmatrix}$	M1	Attempt to consider $\mathbf{M}\mathbf{M}^{-1}$ or $\mathbf{M}^{-1}\mathbf{M}$ (may be implied)
	$=\frac{1}{k} \begin{pmatrix} 5 & 0 & 0\\ 0 & 5 & 0\\ 0 & 0 & 5 \end{pmatrix} \Longrightarrow k = 5$	A1 [2]	c.a.o.
	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{5} \begin{pmatrix} -3 & -2 & 1 \\ -35 & -15 & 10 \\ 17 & 8 & -4 \end{pmatrix} \begin{pmatrix} 9 \\ 32 \\ 81 \end{pmatrix}$	M1 M1	Attempt to pre-multiply by \mathbf{M}^{-1} Attempt to multiply matrices
	$\frac{1}{5} \begin{pmatrix} -3 & -2 & 1 \\ -35 & -15 & 10 \\ 17 & 8 & -4 \end{pmatrix} \begin{pmatrix} 9 \\ 32 \\ 81 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} -10 \\ 15 \\ 85 \end{pmatrix}$	A1	Correct
	$\Rightarrow x = -2, y = 3, z = 17$	A1 [4]	All 3 correct s.c. B1 if matrices not used
5	$\sum_{r=1}^{n} (r+2)(r-3) = \sum_{r=1}^{n} (r^{2}-r-6)$		
	$=\sum_{r=1}^{n}r^{2}-\sum_{r=1}^{n}r-6n$	M1	Separate into 3 sums
	$=\frac{1}{6}n(n+1)(2n+1)-\frac{1}{2}n(n+1)-6n$	A2	-1 each error
	$= \frac{1}{6}n[(n+1)(2n+1) - 3(n+1) - 36]$	M1	Valid attempt to factorise (with <i>n</i> as
	$=\frac{1}{6}n(2n^{2}-38)=\frac{1}{3}n(n^{2}-19)$	A1 A1 [6]	a factor) Correct expression c.a.o. Complete, convincing argument
6	When $n = 1$, $\frac{n(n+1)(n+2)}{3} = 2$,	B1	
	so true for $n = 1$ Assume true for $n = k$	E1	Assume true for <i>k</i>
	$2+6++k(k+1) = \frac{k(k+1)(k+2)}{3}$		
	$\Rightarrow 2+6++(k+1)(k+2) = \frac{k(k+1)(k+2)}{3} + (k+1)(k+2)$	M1	Add $(k+1)$ th term to both sides
	$= \frac{1}{3} + \frac{1}{2} + $	A1	c.a.o. with correct simplification
	$=\frac{(k+1)((k+1)+1)((k+1)+2)}{3}$		e.a.o. with correct simplification
	But this is the given result with $k + 1$ replacing k . Therefore if it is true for $n = k$ it is true for	E1	Dependent on A1 and previous E1
	n = k + 1. Since it is true for $n = 1$, it is true for $n = 1, 2, 3$ and so true for all positive integers.	E1 [6]	Dependent on B1 and previous E1

8(a) (i)	$\left z - (2 + 6j)\right = 4$	B1	2 + 6j seen
		B1	(expression in z) = 4
		B1	Correct equation
		[3]	
(ii)	z - (2 + 6j) < 4 and $ z - (3 + 7j) > 1$	B1	$\left z - (2 + 6j)\right < 4$
(11)		B1	z - (3 + 7j) > 1
			(allow errors in inequality signs)
		B1	Both inequalities correct
		[3]	
(b)(i)	Im		
(~)(-)			
	2 + j		
	Re		
		B1	Any straight line through $2 + j$
		B1	Both correct half lines
		B1	Region between their two half lines indicated
		[3]	ines indicated
		[3]	
(ii)	43 + 47j - (2 + j) = 41 + 46j	M1	Attempt to calculate argument, or
(11)	(16)		other valid method such as
	$\arg(41+46j) = \arctan(\frac{46}{41}) = 0.843$		comparison with $y = x - 1$
	(41)		
	$\frac{\pi}{4} < 0.843 < \frac{3\pi}{4}$	A1	Correct
	4 4	111	
	so $43 + 47j$ does fall within the region	E1	Justified
		[3]	

Mark Scheme

9	(i)	2 3 1		
	(-)	$\frac{2}{r} - \frac{3}{r+1} + \frac{1}{r+2}$		
			N (1	1 · · ·
		$=\frac{2(r+1)(r+2)-3r(r+2)+r(r+1)}{r(r+1)(r+2)}$	M1	Attempt a common denominator
		$=\frac{2r^{2}+6r+4-3r^{2}-6r+r^{2}+r}{r(r+1)(r+2)}=\frac{4+r}{r(r+1)(r+2)}$	A1	Convincingly shown
		r(r+1)(r+2) $r(r+1)(r+2)$	[2]	
	(ii)	$\sum_{r=1}^{n} \frac{4+r}{r(r+1)(r+2)} = \sum_{r=1}^{n} \left[\frac{2}{r} - \frac{3}{r+1} + \frac{1}{r+2} \right]$	M1	Use of the given result (may be
		$\sum_{r=1}^{\infty} r(r+1)(r+2) \sum_{r=1}^{\infty} \lfloor r r+1 r+2 \rfloor$		implied)
		$= \left(\frac{2}{1} - \frac{3}{2} + \frac{1}{3}\right) + \left(\frac{2}{2} - \frac{3}{3} + \frac{1}{4}\right) + \left(\frac{2}{3} - \frac{3}{4} + \frac{1}{5}\right) + \dots$	M1	Terms in full (at least first and
		$(1 \ 2 \ 3)^{1}(2 \ 3 \ 4)^{1}(3 \ 4 \ 5)^{1}$		one other)
		$+\left(\frac{2}{n-1}-\frac{3}{n}+\frac{1}{n+1}\right)+\left(\frac{2}{n}-\frac{3}{n+1}+\frac{1}{n+2}\right)$	A2	At least 3 consecutive terms
				correct, -1 each error
		$=\frac{2}{1}-\frac{3}{2}+\frac{2}{2}+\frac{1}{n+1}-\frac{3}{n+1}+\frac{1}{n+2}$	M1	Attempt to cancel, including
			1011	algebraic terms
		$=\frac{3}{2}-\frac{2}{n+1}+\frac{1}{n+2}$ as required	A1	Convincingly shown
			[6]	
	(iii)	3	D1	
	(III)	$\frac{3}{2}$	B1 [1]	
			[*]	
	(i -r)	100 4 .		
	(iv)	$\sum_{r=50}^{100} \frac{4+r}{r(r+1)(r+2)}$		
		r=50 · (· · · ·)(· · · ·)		
		$=\sum_{r=1}^{100} \frac{4+r}{r(r+1)(r+2)} - \sum_{r=1}^{49} \frac{4+r}{r(r+1)(r+2)}$	M1	Splitting into two parts
		r=1 ($r=1$)($r=2$) $r=1$ ($r=2$)($r=2$)		
		$=\left(\frac{3}{2}-\frac{2}{101}+\frac{1}{102}\right)-\left(\frac{3}{2}-\frac{2}{50}+\frac{1}{51}\right)$	M1	Use of result from (ii)
		(2 101 102) (2 30 31) = 0.0104 (3s.f.)	A1	c.a.o.
		0.0101 (55.1.)	[3]	

4756 Mark Scheme 4756 (FP2) Further Methods for Advanced Mathematics

1 (a)	$y = \arctan \sqrt{x}$		
	$u = \sqrt{x}$, $y = \arctan u$		
	$\Rightarrow \frac{du}{dx} = \frac{1}{2\sqrt{x}}, \frac{dy}{du} = \frac{1}{1+u^2}$		
	•	2.41	
	$\Rightarrow \frac{dy}{dx} = \frac{1}{1+u^2} \times \frac{1}{2\sqrt{x}}$	M1 A1	Using Chain Rule Correct derivative in any form
	$= \frac{1}{1+x} \times \frac{1}{2\sqrt{x}} = \frac{1}{2\sqrt{x}(x+1)}$	A1	Correct derivative in terms of <i>x</i>
	OR $\tan y = \sqrt{x}$		
	$\Rightarrow \sec^2 y \frac{dy}{dx} = \frac{1}{2\sqrt{x}}$ M1A1		Rearranging for \sqrt{x} or x and
	$dx 2\sqrt{x}$ $\sec^2 y = 1 + \tan^2 y = 1 + x$		differentiating implicitly
	$\Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}(x+1)} $ A1		
	$\Rightarrow \int_{0}^{1} \frac{1}{\sqrt{x}(x+1)} dx = \left[2 \arctan \sqrt{x}\right]_{0}^{1}$	M1	Integral in form k arctan \sqrt{x}
	$\rightarrow \int_{0} \frac{1}{\sqrt{x}(x+1)} dx - \left[2 \arctan \sqrt{x}\right]_{0}$	A1	<i>k</i> = 2
	$= 2 \arctan 1 - 2 \arctan 0$		
	$=2\times\frac{\pi}{4}=\frac{\pi}{2}$	A1 (ag)	
	7 2		
(b)(i)	$x = r \cos \theta, y = r \sin \theta, x^2 + y^2 = r^2$	M1	Using at least one of these
	$x^2 + y^2 = xy + 1$	A1	LHS
	$\Rightarrow r^2 = r^2 \cos \theta \sin \theta + 1$	Al	RHS
	$\Rightarrow r^2 = \frac{1}{2}r^2 \sin 2\theta + 1$		
	$\Rightarrow 2r^2 = r^2 \sin 2\theta + 2$ $\Rightarrow r^2(2 - \sin 2\theta) = 2$		
			Clearly obtained
	$\Rightarrow r^2 = \frac{2}{2 - \sin 2\theta}$	A1 (ag)	SR: $x = r \sin \theta$, $y = r \cos \theta$ used
		4	M1A1A0A0 max.
(ii)	Max <i>r</i> is $\sqrt{2}$	B1	
	Occurs when $\sin 2\theta = 1$	M1	Attempting to solve
	$\Rightarrow \theta = \frac{\pi}{4}, \frac{5\pi}{4}$	A1	Both. Accept degrees. A0 if extras in range
	$\frac{4}{12}$		÷.
	$\operatorname{Min} r = \sqrt{\frac{2}{3}}$	B1	$\frac{\sqrt{6}}{3}$
	Occurs when $\sin 2\theta = -1$	M1	Attempting to solve (must be -1)
	$\Rightarrow \theta = \frac{3\pi}{4}, \frac{7\pi}{4}$	A1	Both. Accept degrees.
	4 4	6	A0 if extras in range
		U	<u> </u>

56	Mark Scher	ne	January 201
(iii)	7		
	05		
	n <u></u>		
	- 45	G1	Closed curve, roughly elliptical, with
		01	no points or dents
		G1	Major axis along $y = x$
		2	
2 (a)	$\cos 5\theta + j \sin 5\theta = (\cos \theta + j \sin \theta)^{5}$ $= \cos^{5}\theta + 5 \cos^{4}\theta j \sin \theta + 10 \cos^{3}\theta j^{2} \sin^{2}\theta$	M1	Using de Moivre
	$+ 10\cos^2\theta j^3 \sin^3\theta + 5\cos\theta j^4 \sin^4\theta + j^5 \sin^5\theta$	M1	Using binomial theorem appropriate
	$= \cos^5\theta - 10\cos^3\theta \sin^2\theta + 5\cos\theta \sin^4\theta + j()$	A1	Correct real part. Must evaluate
	$\cos 5\theta = \cos^5\theta - 10\cos^3\theta \sin^2\theta + 5\cos\theta \sin^4\theta$	M1	powers of <i>j</i>
	$= \cos^5\theta - 10\cos^3\theta(1 - \cos^2\theta) + 5\cos^2\theta(1 - \cos^2\theta)^2$	M1 M1	Equating real parts Replacing $\sin^2\theta$ by $1 - \cos^2\theta$
	$= 16\cos^5\theta - 20\cos^3\theta + 5\cos^2\theta$	A1	a = 16, b = -20, c = 5
	a 18	6	
(b)	C + jS	M1	Forming series $C + jS$ as exponential
	$=e^{j\theta}+e^{j\left(\theta+\frac{2\pi}{n}\right)}+\ldots+e^{j\left(\theta+\frac{(2\pi-2)\pi}{n}\right)}$	A1	Need not see whole series
	This is a G.P.	M1	Attempting to sum finite or infinite
		1411	G.P.
	$a=e^{\mathrm{j} heta}$, $r=e^{\mathrm{j}rac{2\pi}{n}}$	A1	Correct a, r used or stated, and n terr Must see j
	$\left(\left(\frac{2\pi}{2\pi} \right)^n \right)$		
	$\operatorname{Sum} = \frac{e^{j\theta} \left(1 - \left(e^{j\frac{2\pi}{n}} \right)^n \right)}{\frac{i^{2\pi}}{2\pi}}$	A1	
	$Sum = \frac{(\sqrt{2\pi})^2}{i^{2\pi}}$	111	
	$1 - e^{i\pi}$		
	Numerator = $e^{j\theta} (1 - e^{2\pi j})$ and $e^{2\pi j} = 1$	D 1	Convincing combination that some - 0
	so sum = 0 $\Rightarrow C = 0$ and $S = 0$	E1 E1	Convincing explanation that sum = $C = S = 0$. Dep. on previous E1
		21	Both E marks dep. on 5 marks above
		7	-
(c)	$e^t \approx 1 + t + \frac{1}{2}t^2$	B1	Ignore terms in higher powers
	$\frac{t}{e^t - 1} \approx \frac{t}{t + \frac{1}{2}t^2}$	M1	Substituting Maclaurin series
	2	A1	
	$\frac{t}{t + \frac{1}{2}t^2} = \frac{1}{1 + \frac{1}{2}t} = \left(1 + \frac{1}{2}t\right)^{-1} = 1 - \frac{1}{2}t + \dots$	M1	Suitable manipulation and use of binomial theorem
	OR $\frac{1}{1+\frac{1}{2}t} = \frac{1}{1+\frac{1}{2}t} \times \frac{1-\frac{1}{2}t}{1-\frac{1}{2}t} = \frac{1-\frac{1}{2}t}{1-\frac{1}{4}t^2}$ M1		
	2 2 2 7		
	Hence $\frac{t}{e^t - 1} \approx 1 - \frac{1}{2}t$	A1 (ag)	
	OR $(e^{t}-1)(1-\frac{1}{2}t) = (t+\frac{1}{2}t^{2}+)(1-\frac{1}{2}t)$ M1		Substituting Maclaurin series
	A1		Correct expression
	$\approx t + \text{terms in } t^3$ M1		Multiplying out
	$\Rightarrow \frac{t}{e^t - 1} \approx 1 - \frac{1}{2}t \tag{A1}$		Convincing explanation
	e' -1 -	5	<u> </u>

4756	Mark Sch	eme	January 2010
3 (i)		M1	Evaluating determinant
5(1)	$\begin{pmatrix} 2 & -2-2a & 2+a \end{pmatrix}$	A1	4-a
	$\mathbf{M}^{-1} = \frac{1}{4-a} \begin{pmatrix} 2 & -2-2a & 2+a \\ 2 & 2-3a & 2a-2 \\ -1 & 5 & -3 \end{pmatrix}$	M1	Finding at least four cofactors
	$\begin{vmatrix} 4-a \\ -1 \end{vmatrix} = \begin{bmatrix} -2 & -3 \\ -3 \end{bmatrix}$	A1	Six signed cofactors correct
	$\begin{pmatrix} -1 & 5 & -5 \end{pmatrix}$	M1	Transposing and dividing by det
	When $a = -1$, $\mathbf{M}^{-1} = \frac{1}{5} \begin{pmatrix} 2 & 0 & 1 \\ 2 & 5 & -4 \\ -1 & 5 & -3 \end{pmatrix}$	A1	\mathbf{M}^{-1} correct (in terms of <i>a</i>) and result for $a = -1$ stated <i>SR</i> : After 0 scored, SC1 for \mathbf{M}^{-1} when
		6	a = -1, obtained correctly with some working
(ii)	(r) $(2 0 1)(-2)$,
	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 2 & 0 & 1 \\ 2 & 5 & -4 \\ -1 & 5 & -3 \end{pmatrix} \begin{pmatrix} -2 \\ b \\ 1 \end{pmatrix} $	M2	Attempting to multiply $(-2 \ b \ 1)^{T}$ by given matrix (M0 if wrong order)
		M1	Multiplying out
	$\Rightarrow x = -\frac{3}{5}, y = b - \frac{8}{5}, z = b - \frac{1}{5}$	A2	A1 for one correct
	OR 4x + y = b - 4		
	$x - y = 1 - b \text{o.e.} \qquad \qquad \mathbf{N}$	11	Eliminating one unknown in 2 ways Or e.g. $3x + z = b - 2$, $5x = -3$
	Ν	11	Or e.g. $3y - 4z = -b - 4$, $5y - 5z = -7$ Solve to obtain one value. Dep. on M1 above
	$\Rightarrow x = -\frac{3}{5}$	1	One unknown correct
	5		After M0, SC1 for value of x
		11	Finding the other two unknowns
	$\Rightarrow y = b - \frac{8}{5}, z = b - \frac{1}{5}$	<u>\1</u>	Both correct
		5	5
(iii)	e.g. $3x - 3y = 2b + 2$ 5x - 5y = 4	M1 A1A1	Eliminating one unknown in 2 ways Two correct equations Or e.g. $3x + 6z = b - 2$, $5x + 10z = -3$
	Consistent if $\frac{2b+2}{3} = \frac{4}{5}$	M1	Or e.g. $3y + 6z = -b - 4$, $5y + 10z = -7$ Attempting to find <i>b</i>
	$\Rightarrow b = \frac{1}{5}$	A1	
	5		
	Solution is a line	B2	10
			18

4756	Mark Scher	ne	January 2010
4 (i)	$\sinh x = \frac{e^{x} - e^{-x}}{2} \Longrightarrow \sinh^{2} x = \frac{\left(e^{x} - e^{-x}\right)^{2}}{4}$ $= \frac{e^{2x} - 2 + e^{-2x}}{4}$ $\Rightarrow 2 \sinh^{2} x + 1 = \frac{e^{2x} - 2 + e^{-2x}}{2} + 1$	B1	$e^{2x}-2+e^{-2x}$
	$= \frac{e^{2x} + e^{-2x}}{2} = \cosh 2x$ $\Rightarrow 2 \sinh 2x = 4 \sinh x \cosh x$ $\Rightarrow \sinh 2x = 2 \sinh x \cosh x$	B1 B1 B1	Correct completion Both correct derivatives Correct completion
(ii)	$2 \cosh 2x + 3 \sinh x = 3$ $\Rightarrow 2(1 + 2 \sinh^2 x) + 3 \sinh x = 3$ $\Rightarrow 4 \sinh^2 x + 3 \sinh x - 1 = 0$ $\Rightarrow (4 \sinh x - 1)(\sinh x + 1) = 0$ $\Rightarrow \sinh x = \frac{1}{4}, -1$	4 M1 A1 M1 A1 M1	Using identity Correct quadratic Solving quadratic Both Use of arsinh $x = \ln(x + \sqrt{x^2 + 1})$ o.e. Must obtain at least one value of x
	$\Rightarrow x = \operatorname{arsinh}(\frac{1}{4}) = \ln(\frac{1+\sqrt{17}}{4})$ $x = \operatorname{arsinh}(-1) = \ln(-1+\sqrt{2})$	A1 A1	Must evaluate $\sqrt{x^2 + 1}$
	$ \overrightarrow{OR} 2e^{4x} + 3e^{3x} - 6e^{2x} - 3e^{x} + 2 = 0 \Rightarrow (2e^{2x} - e^{x} - 2)(e^{2x} + 2e^{x} - 1) = 0 $ $ M1A1 \Rightarrow e^{x} = \frac{1 \pm \sqrt{17}}{4} \text{ or } -1 \pm \sqrt{2} $ $ M1A1 $		Factorising quartic Solving either quadratic
	$\Rightarrow x = \ln(\frac{1+\sqrt{17}}{4}) \text{ or } \ln(-1+\sqrt{2}) \text{ M1A1A1}$	7	Using ln (dependent on first M1)
(iii)	$\cosh t = \frac{5}{4} \Rightarrow \frac{e^t + e^{-t}}{2} = \frac{5}{4}$ $\Rightarrow 2e^{2t} - 5e^t + 2 = 0$ $\Rightarrow (2e^t - 1)(e^t - 2) = 0$ $\Rightarrow e^t = \frac{1}{2}, 2$ $\Rightarrow t = \pm \ln 2$ $\int_{4}^{5} \frac{1}{\sqrt{x^2 - 16}} dx = \left[\operatorname{arcosh} \frac{x}{4}\right]_{4}^{5}$	M1 M1 A1 A1 (ag) B1	Forming quadratic in <i>e</i> ^t Solving quadratic Convincing working
	$= \operatorname{arcosh} \frac{5}{4} - \operatorname{arcosh} 1$ $= \ln 2$	M1 A1	Substituting limits A0 for ±ln 2
	OR $\int_{4}^{5} \frac{1}{\sqrt{x^2 - 16}} dx = \left[\ln \left(x + \sqrt{x^2 - 16} \right) \right]_{4}^{5}$ B1 = $\ln 8 - \ln 4$ M1 = $\ln 2$ A1	7	Substituting limits
L		· · ·	

5 (i)	Horz. projection of $QP = k \cos \theta$	B1		
	Vert. projection of $QP = k \sin \theta$	B1		
	Subtract $OQ = \tan \theta$	B1		Clearly obtained
			3	
	k=2 $k=1$ $k=1$ $k=1/2$ $k=-1$ $k=-1$	G1 G1 G1 G1		Loop Cusp
			4	
(iii)(A)	for all k, y axis is an asymptote	B1	-	Both
(B)	k = 1	B1		
(C)	<i>k</i> > 1	B1		
			3	
(iv)	Crosses itself at $(1, 0)$	N/1		Obtaining a value of 0
	$k = 2 \Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = 60^{\circ}$ \Rightarrow curve crosses itself at 120°	M1 A1		Obtaining a value of θ Accept 240°
	\rightarrow curve crosses usen at 120		2	Accept 240
(v)	$y = 8 \sin \theta - \tan \theta$		4	
	$\Rightarrow \frac{dy}{d\theta} = 8\cos\theta - \sec^2\theta$			
	$\Rightarrow 8 \cos \theta - \frac{1}{\cos^2 \theta} = 0$ at highest point			
	$\Rightarrow \cos^3\theta = \frac{1}{8} \Rightarrow \cos\theta = \pm \frac{1}{2} \Rightarrow \theta = 60^\circ \text{ at top}$	M1 A1		Complete method giving θ
	$\Rightarrow x = 4$ $y = 3\sqrt{3}$. 1		
	-	A1	3	Both
(vi)	RHS = $\frac{\left(k\cos\theta - 1\right)^2}{k^2\cos^2\theta} \left(k^2 - k^2\cos^2\theta\right)$	M1		Expressing one side in terms of θ
	$=\frac{\left(k\cos\theta-1\right)^2}{k^2\cos^2\theta}\times k^2\sin^2\theta$			
	$= (k\cos\theta - 1)^2 \tan^2\theta$	M1		Using trig identities
	$= \left(\left(k \cos \theta - 1 \right) \tan \theta \right)^2$			
	$= (k\sin\theta - \tan\theta)^2 = LHS$	E1		
			3	18

4758 Differential Equations

1(i)	$\alpha^2 + 6\alpha + 9 = 0$	M1	Auxiliary equation	
	$\alpha = -3$ (repeated)	A1		
	$y = e^{-3t} \left(A + Bt \right)$	F1	CF for their roots	
	PI $y = a \sin t + b \cos t$	B1		
	$\dot{y} = a\cos t - b\sin t$			
	$\ddot{y} = -a\sin t - b\cos t$			
	$-a\sin t - b\cos t + 6(a\cos t - b\sin t)$			
	$+9(a\sin t + b\cos t) = 0.5\sin t$	M1	Differentiate twice and substitute	
	8a - 6b = 0.5	M1	Compare coefficients	
	8b + 6a = 0	M1	Solve	
	Solving gives $a = 0.04, b = -0.03$	A1		
	GS $y = e^{-3t} (A + Bt) + 0.04 \sin t - 0.03 \cos t$	F1	PI + CF with two arbitrary constants	
				9
(ii)	$t = 0, y = 0 \Longrightarrow A = 0.03$	M1	Use condition	
	$\dot{y} = e^{-3t} (B - 3A - 3Bt) + 0.04 \cos t + 0.03 \sin t$	M1	Differentiate	
		F1	Follows their GS	
	$t = 0, \ \dot{y} = 0 \Longrightarrow 0 = B - 3A + 0.04$	M1	Use condition	
	$y = 0.01 \left(e^{-3t} \left(3 + 5t \right) + 4\sin t - 3\cos t \right)$	A1	Cao	
				5
(iii)	For large t , the particle oscillates	B1	Oscillates	
	With amplitude constant (≈ 0.05)	B1	Amplitude approximately constant	
				2
(iv)	$t = 20\pi \Rightarrow e^{-60\pi}$ very small	M1		
	$y \approx -0.03$	A1		
	$\dot{y} \approx 0.04$	A1		
	-3t(Q, D)			3
(v)	$y = e^{-3t} \left(C + Dt \right)$	M1	CF of correct type or same type as in (i)	ĺ
	▲	A1	Must use new arbitrary constants	
	20π	B 1√	$y \approx -0.03$ at $t = 20\pi$	
		B1 V	Gradient at 20π consistent with (iv)	
	-0.03	B1	Shape consistent	
			^	
				5

2(a)(i)	$I = \exp \int -\tan x \mathrm{d}x$	M1	Attempt IF	
-(*)(*)	$= \exp(-\ln \sec x)$	A1	Correct IF	
	$=(\sec x)^{-1}=\cos x$	A1	Simplified	
	$\cos x \frac{\mathrm{d}y}{\mathrm{d}x} - y \sin x = \sin x$	M1	Multiply by IF	
	$\frac{\mathrm{d}}{\mathrm{d}x}(y\cos x) = \sin x$	M1	Recognise derivative	
	. 4	M1	Integrate	
	$y\cos x = -\cos x + A$ (y = A sec x - 1)	A1 A1	RHS (including constant) LHS	8
	(y = 11500 x 1)	AI		0
		M1	Rearrange equation	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = (1+y)\tan x$	A1 M1	Separate variables	
	dx ()) and	A1	-	
	$\ln(1+y) = \ln\sec x + A$	M1 A1	RHS	
		M1	LHS	8
(**)	$x = 0, y = 0 \Longrightarrow 0 = A - 1$	A1	TT d'Al	0
(ii)	$x = 0, y = 0 \implies 0 = A - 1$ $y = \sec x - 1$	M1 A1	Use condition	
		B1	Shape and through origin	
		B1	Behaviour at $\pm \frac{1}{2}\pi$	
	$-\pi/2$ $\pi/2$ x			
				4
(b)(i)		M1	Attempt one curve	
		A1 M1	Reasonable attempt at one curve Attempt second curve	
		A1	Reasonable attempt at both curves	
	1 (1 , 2).			4
(ii)	$y' = (1 + y^2) \tan x$	M1	Rearrange	
	$x = 0, y = 1 \Longrightarrow y' = 0$ $y(0.1) = 1 + 0.1 \times 0 = 1$	M1	Use of algorithm	
	$y(0.1) = 1 + 0.1 \times 0 = 1$ $x = 0.1, y = 1 \Rightarrow y' = 0.201$	A1		
	$y(0.2) = 1 + 0.1 \times 0.201$	M1	Use of algorithm for second step	
	=1.0201	E1		
				5
(iii)	$\tan\frac{\pi}{2}$ undefined so cannot go past $\frac{\pi}{2}$	M1		
	So approximation cannot continue to $1.6 > \frac{\pi}{2}$	A1		
				2
(iv)	Reduce step length	B1		1
				1

		1		<u> </u>
3(i)	$\dot{x} = A e^{-kt}$	M1	Any valid method (or no method shown)	
		A1	5110 (11)	
	$t = 0, \dot{x} = v_1 \Longrightarrow A = v_1$	M1	Use condition	
	$\dot{x} = v_1 e^{-kt}$	A1		
	$x = \int v_1 e^{-kt} dt$	M1	Integrate	
	$= -\frac{v_1}{k}e^{-kt} + B$	A1		
	$t = 0, x = 0 \Longrightarrow B = \frac{v_1}{k}$	M1	Use condition	
	$x = \frac{v_1}{k} \left(1 - e^{-kt} \right)$	E1		
	K ` '			8
(ii)	$\int \frac{\mathrm{d}\dot{y}}{\dot{y} + g/k} = \int -k\mathrm{d}t$	M1	Separate and integrate	0
	$\ln\left(\dot{y} + \frac{g}{k}\right) = -kt + C$	A1	LHS	
		A1	RHS	
	$\dot{y} + \frac{g}{k} = De^{-kt}$	M1	Rearrange, dealing properly with constant	
	$t = 0, \dot{y} = v_2 \Longrightarrow D = v_2 + \frac{g}{k}$	M1	Use condition	
	$\dot{y} = \left(v_2 + \frac{g}{k}\right)e^{-kt} - \frac{g}{k}$	A1		
	$y = \int \left(\left(v_2 + \frac{g}{k} \right) e^{-kt} - \frac{g}{k} \right) dt$	M1	Integrate	
	$= -\frac{1}{k} \left(v_2 + \frac{g}{k} \right) e^{-kt} - \frac{g}{k}t + E$	A1		
	$t = 0, y = 0 \Longrightarrow 0 = -\frac{1}{k} \left(v_2 + \frac{g}{k} \right) + E$	M1	Use condition	
	$y = \frac{1}{k^2} (kv_2 + g) (1 - e^{-kt}) - \frac{g}{k} t$	E1		
				1 0
(iii)	$1 - e^{-kt} = \frac{kx}{v_1}$	M1		
	$t = -\frac{1}{k} \ln \left(1 - \frac{kx}{v_1} \right)$	A1		
	$(kv_{0}+g)$ g , (kx)	M1	Substitute	
	$y = \left(\frac{kv_2 + g}{kv_1}\right)x + \frac{g}{k^2}\ln\left(1 - \frac{kx}{v_1}\right)$	E1	Convincingly shown	
				4
(iv)	$x = 8 \Longrightarrow y = 4.686$	M1		
	Hence will not clear wall	A1		
				2

4(i)	$4y = -3x + 23 - \dot{x}$	M1	y or 4y in terms of x, \dot{x}	
	$4\dot{y} = -3\dot{x} - \ddot{x}$	M1	Differentiate	
	$\frac{1}{4}(-3\dot{x}-\ddot{x}) = 2x + \frac{1}{4}(-3x + 23 - \dot{x}) - 7$	M1	Substitute for <i>y</i>	
	$-3\dot{x} - \ddot{x} = 8x - 3x + 23 - \dot{x} - 28$	M1	Substitute for \dot{y}	
	$\Rightarrow \ddot{x} + 2\dot{x} + 5x = 5$	E1		
				5
(ii)	$\alpha^{2} + 2\alpha + 5 = 0$ $\Rightarrow \alpha = -1 \pm 2i$	M1	Auxiliary equation	
	$\rightarrow \alpha = -1 \pm 2i$	A1 M1	CF for complex roots	
	CF $e^{-t} (A \cos 2t + B \sin 2t)$	F1	CF for their roots	
		••		
	PI $x = \frac{5}{5} = 1$	B1	Constant PI	
		B1	Correct PI	
	GS $x = 1 + e^{-t} (A \cos 2t + B \sin 2t)$	F1	PI + CF with two arbitrary	
			constants	7
	1			/
(iii)	$y = \frac{1}{4}(-3x + 23 - \dot{x})$	M1		
	$=\frac{1}{4}\left[-3-3e^{-t}\left(A\cos 2t+B\sin 2t\right)+23\right]$			
	$+e^{-t}(A\cos 2t + B\sin 2t)$	M1 F1	Differentiate and substitute Expression for \dot{x} follows their GS	
	$-e^{-t}(-2A\sin 2t + 2B\cos 2t)$	1.1	Expression for x follows then GB	
	$y = 5 - \frac{1}{2} e^{-t} \left((A+B) \cos 2t + (B-A) \sin 2t \right)$	A1		
				4
(iv)	$t = 0, x = 8 \Longrightarrow 1 + A = 8 \Longrightarrow A = 7$	M1	Use condition	
	$t = 0, y = 0 \Longrightarrow 5 - \frac{1}{2}(A+B) = 0 \Longrightarrow B = 3$	M1	Use condition	
	$x = 1 + \mathrm{e}^{-t} \left(7 \cos 2t + 3 \sin 2t \right)$	A1		
	$y = 5 - e^{-t} (5 \cos 2t - 2 \sin 2t)$	A1		
				4
(v)	For large t , e^{-t} tends to 0	M1 P1		
	$\begin{array}{c} y \rightarrow 5\\ x \rightarrow 1 \end{array}$	B1 B1		
	$\Rightarrow y > x$	E1	Complete argument	
				4

4761 Mechanics 1

1 (i)	0 < t < 2, v = 2 2 < t < 3.5 v = -5	B1 B1	Condone '5 downwards' and ' – 5 downwards'	2
(ii)	s 2 2 3.5 t -5 -		Condone intent – e.g. straight lines free-hand and scales not labelled; accept non-vertical sections at $t = 2 \& 3.5$.	
		B1 B1	Only horizontal lines used and 1 st two parts present. BOD <i>t</i> -axis section. One of 1 st 2 sections correct. FT (i) and allow if answer correct with (i) wrong All correct. Accept correct answer with (i) wrong. FT (i) only if 2 nd section –ve in (i)	2
(iii)	(A) upwards; (B) and (C) downwards	E1	All correct. Accept +/- ve but not towards/away from O Accept forwards/backwards. Condone additional wrong statements about position.	1
				5
2 (i)	$\binom{12}{9} = \binom{2}{-3} + 4\mathbf{a}$	M1	Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$	
	$ \begin{pmatrix} 12\\9 \end{pmatrix} = \begin{pmatrix} 2\\-3 \end{pmatrix} + 4\mathbf{a} $ so $\mathbf{a} = \begin{pmatrix} 2.5\\3 \end{pmatrix} $	A1	If vector a seen, isw.	
(**)				2
(ii)	either $\mathbf{r} = \begin{pmatrix} -1 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ -3 \end{pmatrix} \times 4 + \frac{1}{2}\mathbf{a} \times 4^2$	M1	For use of $\mathbf{s} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ with their a. Initial position may be omitted.	
	$\mathbf{r} = \begin{pmatrix} 27\\14 \end{pmatrix} \text{so} \begin{pmatrix} 27\\14 \end{pmatrix} \text{m}$	A1 A1	FT their a. Initial position may be omitted. cao. Do not condone magnitude as final answer.	
	or	M1	Use of $\mathbf{s} = 0.5t(\mathbf{u} + \mathbf{v})$ Initial position may be	
		A1	omitted. Correct substitution. Initial position may be omitted.	
		A1	cao Do not condone mag as final answer. SC2 for $\begin{pmatrix} 28\\12 \end{pmatrix}$	

(iii)	Using N2L			
		10		
	$\mathbf{F} = 5\mathbf{a} = \begin{pmatrix} 12.5\\15 \end{pmatrix} \text{ so } \begin{pmatrix} 12.5\\15 \end{pmatrix} \text{ N}$	M1	Use of $\mathbf{F} = m\mathbf{a}$ or $\mathbf{F} = mg\mathbf{a}$.	
		F1	FT their a only. Do not accept magnitude as final	
			ans.	2
				7
20		N/1		
3 (1)	$\left \mathbf{F}\right = \sqrt{\left(-1\right)^2 + 5^2}$	M1	Accept $\sqrt{-1^2 + 5^2}$ even if taken to be $\sqrt{24}$	
	$=\sqrt{26} = 5.0990 = 5.10$ (3 s. f.)	A1		
	Angle with \mathbf{j} is arctan(0.2)	M1	accept arctan(p) where $p = \pm 0.2$ or ± 5 o.e.	
	so 11.309 so 11.3° (3 s. f.)	A1	cao	
	· · · ·			4
(ii)	(-2) (-1) $(2a)$			
(11)	$ \begin{pmatrix} -2\\ 3b \end{pmatrix} = 4 \begin{pmatrix} -1\\ 5 \end{pmatrix} + \begin{pmatrix} 2a\\ a \end{pmatrix} $	M1	$\mathbf{H} = 4\mathbf{F} + \mathbf{G}$ soi	
		M1	Formulating at least 1 scalar equation from their	
			vector equation soi	
	a = 1, b = 7 (2)	A1	a correct or G follows from their wrong a	
	so $\mathbf{G} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $\mathbf{H} = \begin{pmatrix} -2 \\ 21 \end{pmatrix}$	A1	H cao	
	or $\mathbf{G} = 2\mathbf{i} + \mathbf{j}$ and $\mathbf{H} = -2\mathbf{i} + 21\mathbf{j}$			
				4
				8
4(i)	20cos 15 = 19.3185			
-(-)	so 19.3 N (3 s. f.) in direction BC	B1	Accept no direction. Must be evaluated	
				1
(ii)	Let the tension be <i>T</i>			
()	$T \sin 50 = 19.3185$	M1	Accept $sin \leftrightarrow cos$ but not (i) $\times sin 50$	
	so $T = 25.2185$ so $25.2 \text{ N} (3 \text{ s. f.})$	F1	FT their 19.3 only. cwo	2
				2
(iii)	$R + 20 \sin 15 - 2.5g - 25.2185 \times$	M1	Allow 1 force missing or 1 tension not resolved.	
	$\cos 50 = 0$		FT <i>T</i> . No extra forces. Accept mass used.	
			Accept sin \leftrightarrow cos.	
		B1	Weight correct	
	D 05 5007 05 501 (0 6)	A1	All correct except sign errors. FT their <i>T</i>	
	R = 35.5337 so 35.5 N (3 s. f.)	A1	cao. Accept 35 or 36 for 2. s.f.	4
		г.1		
(iv)	The horizontal resolved part of the 20 N force is not changed.	E1	Accept no reference to vertical component but do not accept 'no change' to both components.	
	serve is not enunged.		No need to be explicit that value of tension in AB	
			depends only on horizontal component of force at C	
				1 8
<u> </u>		<u> </u>		0

5(i)	a = 6t - 12	M1 A1	Differentiating cao	2
(ii)	We need $\int_{1}^{3} (3t^{2} - 12t + 14)dt$ = $[t^{3} - 6t^{2} + 14t]_{1}^{3}$ either = $(27 - 54 + 42) - (1 - 6 + 14)$ = $15 - 9 = 6$ so 6 m or $s = t^{3} - 6t^{2} + 14t + C$ s = 0 when $t = 1$ gives	M1 A1 M1 A1 M1	Integrating. Neglect limits. At least two terms correct. Neglect limits. Dep on 1 st M1. Use of limits with attempt at subtraction seen. cao Dep on 1 st M1. An attempt to find <i>C</i> using $s(1) = 0$	
	0 = 1 - 6 + 14 + C so C = -9 Put $t = 3$ to give s = 27 - 54 + 42 - 9 = 6 so 6 m.	A1	and then evaluating $s(3)$. cao	4
(iii)	v > 0 so the particle always travels in the same (+ve) direction As the particle never changes direction, the final distance from the starting point is the displacement.	E1 E1	Only award if explicit Complete argument	
				2 8
6 (i)	Component of weight down the plane is $1.5 \times 9.8 \times \frac{2}{7} = 4.2 \text{ N}$	M1 E1	Use of <i>mgk</i> where <i>k</i> involves an attempt at resolution Accept $1.5 \times 9.8 \times \frac{2}{7} = 4.2$ or $14.7 \times \frac{2}{7} = 4.2$ seen	2
(ii)	Down the plane. Take <i>F</i> down the plane. 4.2 - 6.4 + F = 0 so $F = 2.2$. Friction is 2.2 N down the plane	M1 A1	Allow sign errors. All forces present. No extra forces. Must have direction. [Award 1 for 2.2 N seen and 2 for 2.2 N down plane seen]	2
(iii) (iv)	F up the plane N2L down the plane $4.2 - F = 1.5 \times 1.2$ so $F = 4.2 - 1.8 = 2.4$ Friction is 2.4 N up the plane $2^2 = 0.8^2 + 2 \times 1.2 \times s$ s = 1.4 so 1.4 m	M1 A1 A1 A1 A1 M1 A1 A1	N2L. $F = ma$. No extra forces. Allow weight term missing or wrong Allow only sign errors ± 2.4 cao. Accept no reference to direction if $F = 2.4$. Use of $v^2 = u^2 + 2as$ or sequence All correct in 1 or 2-step method	4
	<u> </u>	J	J	3

either Up the planeB1All forces present and properly labelled with arrows. $10-3.5 \times 9.8 \times \frac{2}{7} - (2.3 + 0.7) = 3.5a$ M1N2L. $F = ma$. No extra forces. Condone sign errors. Allow total/part weight or total/part friction omitted (but not both). Allow mass instead of weight and mass/weight not or wrongly resolved. $a = -0.8$ so 0.8 m s ⁻² . down the plane $T - 2 \times 9.8 \times \frac{2}{7} - 0.7 = 2 \times (-0.8)$ B1Clear description or diagram $T = 4.7$ so 4.7 N. TensionA1Clear description or ballow weight or friction missing and also allow mass used instead of weight and with not or wrongly resolved. In other equipment, No extra forces. Condone sign errors.Barge AM1N2L. Do not allow $F = mga$. No extra forces. Condone sign errors.Barge BM1N2L. Do not allow $F = mga$. No extra forces. Condone sign errors. $a = -0.8$ so 0.8 m s ⁻² . down the planeM1 $T = 4.7$ so 4.7 N. TensionA1Clear description or diagram $a = -0.8$ so 0.8 m s ⁻² . down the planeM1 $A = -0.8$ so 0.8 m s ⁻² . down the planeM1 $A = -0.8$ so 0.8 m s ⁻² . down the planeM1 $A = -0.8$ so 0.8 m s ⁻² . down the planeM1 $A = -0.8$ so 0.8 m s ⁻² . down the planeA1 $A = -0.8$ so 0.8 m s ⁻² . down the planeA1 $A = -0.8$ so 0.8 m s ⁻² . down the planeA1 $A = -0.8$ so 0.8 m s ⁻² . down the planeA1 $A = -0.8$ so 0.8 m s ⁻² . down the planeA1 $A = -0.8$ so 0.8 m s ⁻² . down the planeA1 $A = -0.8$ so 0.8 m	(v)	Diagrams	B1	Frictions and coupling force correctly labelled with arrows.	
either Up the planeMIN2L. $F = ma$. No extra forces. Condone sign errors. Allow total/part friction omited (but not both). Allow mass instead of weight and mass/weight not or wrongly resolved. $a = -0.8 \text{ so } 0.8 \text{ m s}^{-2}$. down the plane For barge B up the planeB1Correct overall mass and friction $T = 4.7 \text{ so } 4.7 \text{ N. Tension}$ M1N2L. on one barge with their $\pm a$ ($\pm 1.2 \text{ or } 0$). All forces present and weight component attempted. No extra forces. Condone sign errors. $T = 4.7 \text{ so } 4.7 \text{ N. Tension}$ A1Clear description or diagramor (separate equations of motion)A1cao In com for A or B allow weight or friction missing and also allow mass used instead of weight and wt not or wrongly resolved. In other equn weight component attempted and friction term present.Barge AM1N2L. Do not allow $F = mga$. No extra forces. Condone sign errors.Barge BM1N2L. Do not allow $F = mga$. No extra forces. Condone sign errors. $a = -0.8 \text{ so } 0.8 \text{ m s}^{-2}$. down the plane $T = 4.7 \text{ so } 4.7 \text{ N. Tension}$ M1Contract or wrongly resolved.Notallama and also allow mass used instead of weight and wt not or wrongly resolved. In other equn weight component attempted and friction term present.Barge AM1N2L. Do not allow $F = mga$. No extra forces. Condone sign errors.M1N2L. Do not allow $F = mga$. No extra forces. Condone sign errors. $a = -0.8 \text{ so } 0.8 \text{ m s}^{-2}$. down the plane $T = 4.7 \text{ so } 4.7 \text{ N. Tension}$ M1Contract or woIntervent or transition or diagram $T = 4.7 \text{ so } 4.7 N. Tension$			B1	All forces present and properly labelled with	
10-3.5×9.8× \ddagger -(2.3+0.7)=3.5aerrors. Allow total/part weight or total/part friction omitted (but not both). Allow mass instead of weight and mass/weight not or wrongly resolved. $a = -0.8$ so 0.8 m s ⁻² . down the plane $T - 2 \times 9.8 \times \ddagger -0.7 = 2 \times (-0.8)$ B1Correct overall mass and friction $T = 4.7$ so 4.7 N. Tension or (separate equations of motion)A1Clear description or diagramA1N2L on one barge with their $\pm a$ (± 1.2 or 0). All forces present and weight component attempted. No extra forces. Condone sign errors.Barge AA1cao In eom for A or B allow weight or friction missing and also allow mass used instead of weight and wt not or wrongly resolved. In other equn weight component attempted and friction term present. N2L. Do not allow $F = mga$. No extra forces. Condone sign errors.Barge BM1N2L. Do not allow $F = mga$. No extra forces. Condone sign errors.M1N2L. Do not allow $F = mga$. No extra forces. Condone sign errors.M1N2L. Do not allow $F = mga$. No extra forces. Condone sign errors.M1N2L. Do not allow $F = mga$. No extra forces. Condone sign errors.M1N2L. Do not allow $F = mga$. No extra forces. Condone sign errors.M1N2L be of symmetry e.g. use of $\frac{1}{2}(20+5)$ (ii) $\frac{1}{2}(20+5)-5=7.5$ M1Use of symmetry e.g. use of $\frac{1}{2}(20+5)$ N2L 12.5 o.e. scen A1 $7(0)$ $y(0)=1$ $y(7.5) = \frac{1}{100}(100+15\times7.5-7.5^2)$ $= \frac{36}{10}(1.5625)$ so 1.5625 mE1AG		either			
$10-3.5 \times 9.8 \times \frac{3}{2} - (2.3 + 0.7) = 3.5a$ Allow total/part weight or total/part friction omitted (but not both). Allow mass instead of weight and mass/weight not or wrongly resolved. $a = -0.8 \text{ so } 0.8 \text{ m s}^{-2}$. down the plane $T - 2 \times 9.8 \times \frac{3}{2} - 0.7 = 2 \times (-0.8)$ B1Correct overall mass and friction $A1$ Clear description or diagram fore barge B up the plane $T - 2 \times 9.8 \times \frac{3}{2} - 0.7 = 2 \times (-0.8)$ A1Clear description or diagram fores present and weight component attempted. No extra forces. Condone sign errors. $T = 4.7$ so 4.7 N. Tension or (separate equations of motion)A1cao n eom for A or B allow weight or friction missing and also allow mass used instead of weight and wt not or wrongly resolved. In other equivelyth component attempted and friction term present. N2L. Do not allow $F = mga$. No extra forces. Condone sign errors.Barge A $a = -0.8$ so 0.8 m s ⁻² . down the plane $T = 4.7$ so 4.7 N. TensionA1Clear description or diagram $a = -0.8$ so 0.8 m s ⁻² . down the plane $T = 4.7$ so 4.7 N. TensionA1Clear description or diagram cao evoA1(ii)Either $\frac{1}{2}(20+5) - 5 = 7.5$ M1(iii)Either $1/2(0+5) - 5 = 7.5$ M1(iii)Use of symmetry e.g. use of $\frac{1}{2}(20+5)$ 1 12.5 o.e. seen $A1$ 7.5 cao, seen as final answer $A1$ $9(7.5) = \frac{1}{10}(100+15 \times 7.5 - 7.5^2)$ M1 12.5 o.s. seen as final answer $M1$ $9(7.5) = \frac{1}{10}(100+15 \times 7.5 - 7.5^2)$ E1AG		Up the plane	M1	N2L. $F = ma$. No extra forces. Condone sign	
$a = -0.8 \text{ so } 0.8 \text{ m s}^{-2}$. down the plane For barge B up the plane $T - 2 \times 9.8 \times \frac{2}{7} - 0.7 = 2 \times (-0.8)$ A1Clear description or diagram $T - 2 \times 9.8 \times \frac{2}{7} - 0.7 = 2 \times (-0.8)$ M1N2L on one barge with their $\pm a$ (± 1.2 or 0). All forces present and weight component attempted. No extra forces. Condone sign errors. $T = 4.7$ so 4.7 N. Tension or (separate equations of motion)A1caoBarge AM1N2L. Do not allow weight or friction missing and also allow mass used instead of weight and wt not or wrongly resolved. In other equn weight component attempted and friction term present. N2L. Do not allow $F = mga$. No extra forces. Condone sign errors.Barge BM1N2L. Do not allow $F = mga$. No extra forces. Condone sign errors. $a = -0.8$ so 0.8 m s ⁻² . down the plane $T = 4.7$ so 4.7 N. TensionM1Clear description or diagram cao evwo1T(i) $y(0) = 1$ B1Either $\frac{1}{2}(20+5) - 5 = 7.5$ M1Use of symmetry e.g. use of $\frac{1}{2}(20+5)$ 1 12.5 o.e. seen 7.5 cao $1.7.5$ cao $1.12, 5$ o.e. seen 7.5 cao $1.12, 5$ o.e. seen 7.5 cao $1.12, 5$ o.e. seen 7.5 cao $1.12, 5$ o.e. seen as final answer 7.5 cao, seen as final answer 7.5 cao, seen as final answer 7.5 cao, seen as final answer $y(7.5) = \frac{1}{100}(100+15 \times 7.5-7.5^2)$ E1AG		$10 - 3.5 \times 9.8 \times \frac{2}{7} - (2.3 + 0.7) = 3.5a$		Allow total/part weight or total/part friction omitted (but not both). Allow mass instead of	
down the plane For barge B up the plane $T = 2 \times 9.8 \times \frac{1}{2} = 0.7 = 2 \times (-0.8)$ A1Clear description or diagram $T = 4.7 \text{ so } 4.7 \text{ N}. \text{ Tension}$ or (separate equations of motion)A1N2L on one barge with their $\pm a \ (\neq 1.2 \text{ or } 0)$. All 		a = -0.8 so 0.8 m s ⁻² .	B1	Correct overall mass and friction	
$T-2\times9.8\times\frac{3}{2}-0.7=2\times(-0.8)$ M1N2L on one barge with their $\pm a \ (\pm 1.2 \text{ or } 0)$. All forces present and weight component attempted. No extra forces. Condone sign errors. $T=4.7 \text{ so } 4.7 \text{ N}$. Tension or (separate equations of motion)A1cao In eom for A or B allow weight or friction missing and also allow mass used instead of weight and wt not or wrongly resolved. In other equn weight component attempted and friction term present.Barge AM1N2L. Do not allow $F = mga$. No extra forces. Condone sign errors.Barge BM1N2L. Do not allow $F = mga$. No extra forces. Condone sign errors. $a = -0.8 \text{ so } 0.8 \text{ m s}^{-2}$. down the plane $T = 4.7 \text{ so } 4.7 \text{ N}$. TensionA1Clear description or diagram cao cwo1To i $y(0) = 1$ B1 iii $\frac{1}{2}(20+5)-5=7.5$ M1Use of symmetry e.g. use of $\frac{1}{2}(20+5)$ 1 17 (i) $y(0) = 1$ B1 $y(7.5) = \frac{1}{100}(100+15\times7.5-7.5^2)$ M1 $y(7.5) = \frac{1}{100}(100+15\times7.5-7.5^2)$ E1 AG AG		down the plane	A1	Clear description or diagram	
or (separate equations of motion)In eom for A or B allow weight or friction missing and also allow mass used instead of weight and wt not or wrongly resolved. In other equin weight component attempted and friction term present.Barge AM1N2L. Do not allow $F = mga$. No extra forces. Condone sign errors.Barge BM1N2L. Do not allow $F = mga$. No extra forces. Condone sign errors. $a = -0.8$ so 0.8 m s ⁻² . down the planeA1 $T = 4.7$ so 4.7 N. TensionClear description or diagram cao cwo $a = -0.8$ so 0.8 m s ⁻¹ .M1v(0) = 1B1Either1 $\frac{1}{2}(20+5)-5=7.5$ M1Use of symmetry e.g. use of $\frac{1}{2}(20+5)$ $A1$ 7.5 cao $A1$ 7.5 cao, seen $y(7.5) = \frac{1}{100}(100+15\times7.5-7.5^2)$ M1 $Y(7.5) = \frac{1}{16}(1.5625)$ so 1.5625 mE1AG			M1	forces present and weight component attempted.	
and also allow mass used instead of weight and wt not or wrongly resolved. In other equn weight component attempted and friction term present.Barge AM1N2L. Do not allow $F = mga$. No extra forces. Condone sign errors.Barge BM1N2L. Do not allow $F = mga$. No extra forces. Condone sign errors. $a = -0.8$ so 0.8 m s ⁻² . down the planeM1Clear description or diagram cao cwo $T = 4.7$ so 4.7 N. TensionA1Clear description or diagram cao cwo7 (i) $y(0) = 1$ B1M1Use of symmetry e.g. use of $\frac{1}{2}(20+5) - 5 = 7.5$ $A1$ 12.5 o.e. seen A1 $A1$ 7.5 cao A1 $y(7.5) = \frac{1}{100}(100+15\times7.5-7.5^2)$ M1 $y(7.5) = \frac{1}{100}(100+15\times7.5-7.5^2)$ E1 AG AG		T = 4.7 so 4.7 N. Tension	A1	cao	
Barge BM1Condone sign errors. N2L. Do not allow $F = mga$. No extra forces. Condone sign errors. Solving a pair of equns in a and T $a = -0.8$ so 0.8 m s ⁻² . down the plane $T = 4.7$ so 4.7 N. TensionA1Clear description or diagram cao cwo7 (i) $y(0) = 1$ B1M1Use of symmetry e.g. use of $\frac{1}{2}(20+5) - 5 = 7.5$ orA112.5 o.e. seen A1 $12.5 o.e.$ seen A1A1 $7.5 cao$ M1Use of symmetry e.g. use of $\frac{1}{2}(20+5)$ $12.5 o.e.$ seen A1A1 $7.5 cao$, seen as final answer $y(7.5) = \frac{1}{100}(100+15\times7.5-7.5^2)$ A1 $= \frac{25}{16}(1.5625)$ so 1.5625 mE1		or (separate equations of motion)		and also allow mass used instead of weight and wt not or wrongly resolved. In other equn weight	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Barge A	M1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Barge B	M1		
down the plane $T=4.7 \text{ so } 4.7 \text{ N. Tension}$ A1Clear description or diagram cao cwo7 (i) $y(0) = 1$ B11 Either $\frac{1}{2}(20+5)-5=7.5$ (ii) $\frac{1}{2}(20+5)-5=7.5$ M1Use of symmetry e.g. use of $\frac{1}{2}(20+5)$ orA112.5 o.e. seen 			M1	Solving a pair of equns in <i>a</i> and <i>T</i>	
T = 4.7 so 4.7 N. Tension A1 cao cwo Image: constraint of the symplectic constraint of the sympleconstraint of the symplectic constraint of the sympleco					
Image: symmetry of the symmetry is and the symmetry is the symmetry is the sym				Clear description or diagram	
7 (i) $y(0) = 1$ B1 1 (ii) Either $\frac{1}{2}(20+5)-5=7.5$ M1 Use of symmetry e.g. use of $\frac{1}{2}(20+5)$ 1 (iii) $\frac{1}{2}(20+5)-5=7.5$ M1 Use of symmetry e.g. use of $\frac{1}{2}(20+5)$ 1 (iii) $\frac{1}{2}(20+5)-5=7.5$ M1 Use of symmetry e.g. use of $\frac{1}{2}(20+5)$ 1 (iii) $\frac{1}{2}(20+5)-5=7.5$ M1 12.5 o.e. seen A1 7.5 cao or A1 7.5 cao A1 12.5 o.e. seen A1 7.5 cao $y(7.5) = \frac{1}{100}(100+15\times7.5-7.5^2)$ A1 7.5 cao, seen as final answer A1 $y(7.5) = \frac{1}{100}(100+15\times7.5-7.5^2)$ E1 AG AG		T = 4.7 so 4.7 N. Tension	A1	cao cwo	
7 (i) $y(0) = 1$ B1 Either M1 Use of symmetry e.g. use of $\frac{1}{2}(20+5)$ $\frac{1}{2}(20+5)-5=7.5$ M1 Use of symmetry e.g. use of $\frac{1}{2}(20+5)$ A1 12.5 o.e. seen A1 7.5 cao M1 Attempt at y' and to solve y' = 0 A1 $k(15-2x)$ where $k = 1$ or $\frac{1}{100}$ Y(7.5) = $\frac{1}{100}(100+15\times7.5-7.5^2)$ A1 7.5 cao, seen as final answer Y(7.5) = $\frac{1}{100}(100+15\times7.5-7.5^2)$ E1 AG					7
(ii) $\frac{1}{2}(20+5)-5=7.5$ or $y(7.5) = \frac{1}{100}(100+15\times7.5-7.5^2)$ $= \frac{25}{16}(1.5625)$ so 1.5625 m M1 M1 M1 M1 M1 Use of symmetry e.g. use of $\frac{1}{2}(20+5)$ A1 M1 A1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M	7 (i)	y(0) = 1	B1		18
(ii) $\frac{1}{2}(20+5)-5=7.5$ or $y(7.5) = \frac{1}{100}(100+15\times7.5-7.5^2)$ $= \frac{25}{16}(1.5625)$ so 1.5625 m M1 M1 M1 M1 Use of symmetry e.g. use of $\frac{1}{2}(20+5)$ A1 12.5 o.e. seen A1 7.5 cao M1 A1 7.5 cao M1 A1 7.5 cao M1 A1 7.5 cao, seen as final answer FT their 7.5 E1 AG		Etth an			1
$y_2(20+0) = 0$ $y_2(20+0) = 0$ or A1 $y_1(7.5) = \frac{1}{100} (100+15 \times 7.5-7.5^2)$ $y_1(7.5) = \frac{1}{100} (100+15 \times 7.5-7.5^2)$ $y_1(7.5) = \frac{1}{100} (100+15 \times 7.5-7.5^2)$ $y_2(7.5) = \frac{1}{100} (100+15 \times 7.5-7.5^2)$ $y_1(7.5) = \frac{1}{100} (100+15 \times 7.5-7.5^2)$ $y_1(7.5) = \frac{1}{100} (100+15 \times 7.5-7.5^2)$ $y_1(7.5) = \frac{1}{100} (100+15 \times 7.5-7.5^2)$ $y_2(7.5) = \frac{1}{100} (100+15 \times 7.5-7.5^2)$ $y_1(7.5) = \frac{1}{100} (100+15 \times 7.5-7.5^2)$ $y_1(7.5) = \frac{1}{100} (100+15 \times 7.5-7.5^2)$ $y_1(7.5) = \frac{1}{100} (100+15 \times 7.5-7.5^2)$ $y_2(7.5) = \frac{1}{100} (100+15 \times 7.5-7.5^2)$ $y_1(7.5) = \frac{1}{100} (100+15 \times 7.5-7.5^2)$ $y_1(7$	(ii)		M1	$1 \log_2 2 \int dx m m dx = 2 \log_2 2 \int dx = 1 (20 + 5)$	
orA1 M1 A17.5 cao Attempt at y' and to solve y' = 0 $k(15 - 2x)$ where $k = 1$ or $\frac{1}{100}$ $y(7.5) = \frac{1}{100} (100 + 15 \times 7.5 - 7.5^2)$ A1 M1 FT their 7.5 $= \frac{25}{16} (1.5625)$ so 1.5625 mE1	(11)	$\frac{1}{2}(20+3) - 3 = 7.5$			
orM1 A1Attempt at y' and to solve y' = 0 $k(15 - 2x)$ where $k = 1$ or $\frac{1}{100}$ $y(7.5) = \frac{1}{100}(100 + 15 \times 7.5 - 7.5^2)$ A1 M17.5 cao, seen as final answer FT their 7.5 $= \frac{25}{16}(1.5625)$ so 1.5625 mE1AG					
A1 $k(15-2x)$ where $k = 1$ or $\frac{1}{100}$ $y(7.5) = \frac{1}{100} (100+15 \times 7.5-7.5^2)$ A1 $= \frac{25}{16} (1.5625)$ so 1.5625 m A1 $K(15-2x)$ where $k = 1$ or $\frac{1}{100}$ A1 7.5 cao, seen as final answer FT their 7.5 E1 AG		AH			
$y(7.5) = \frac{1}{100} (100 + 15 \times 7.5 - 7.5^{2})$ = $\frac{25}{16} (1.5625)$ so 1.5625 m A1 M1 FT their 7.5 E1 AG		or			
$y(7.5) = \frac{1}{100} (100 + 15 \times 7.5 - 7.5^{2})$ $= \frac{25}{16} (1.5625) \text{ so } 1.5625 \text{ m}$ $\text{M1} \text{FT their } 7.5$ $\text{E1} \text{AG}$					
		$y(7.5) = \frac{1}{100} (100 + 15 \times 7.5 - 7.5^2)$			
		$=\frac{25}{16}$ (1.5625) so 1.5625 m	E1	AG	
		10 4 7 7 7 7		[SC2 only showing 1.5625 leads to $x = 7.5$]	5

(iii)	$4.9t^{2} = \frac{25}{16} (1.5625)$ $t^{2} = 0.31887 \text{ so } t = \pm 0.56469$ Hence 0.565 s (3 s. f.)	M1 A1 E1	Use of $s = ut + 0.5at^2$ with $u = 0$. Condone use of $\pm 10, \pm 9.8, \pm 9.81$. If sequence of <i>suvat</i> used, complete method required. In any method only error accepted is sign error AG. Condone no reference to –ve value. www. 0.565 must be justified as answer to 3 s. f.	3
(iv)	$\dot{x} = \frac{12.5}{0.56469} = 22.1359$	M1	or 25 / (2×0.56469)	
	so 22.1 m s ⁻¹ (3 s. f.))	B1 E1	Use of 12.5 or equivalent 22.1 must be justified as answer to 3 s. f. Don't penalise if penalty already given in (iii).	
	Either Time is $\frac{20}{12.5} \times 0.56469$ s	M1		
	so 0.904 s (3 s. f.)	A1	cao Accept 0.91 (2 s. f.)	
	Time is $\frac{20}{22.1359}$ s	M1		
	= 0.903507 so 0.904 s (3 s. f.)	A1	cao Accept 0.91 (2 s. f.)	
	or (iii) $+ \frac{7.5}{\text{their }\dot{x}}$	M1		
	so 0.904 s (3 s. f.)	A1	cao Accept 0.91 (2 s. f.)	5
(v)	$v = \sqrt{\dot{x}^2 + \dot{y}^2}$	M1	Must have attempts at both components	
	$\dot{y}^2 = 0^2 + 2 \times 9.8 \times \frac{25}{16}$ or	M1	Or equiv. $u = 0$. Condone use of	
	$\dot{y} = 0 + 9.8 \times 0.5646$		$\pm 10, \pm 9.8, \pm 9.81.$	
	$=\frac{245}{8}$ (30.625) or $\dot{y} = \pm 5.539$	A1	Accept wrong <i>s</i> (or <i>t</i> in alternative method) Or equivalent. May be implied. Could come from (iii) if $v^2 = u^2 + 2as$ used there. Award marks again.	
	so $v = \sqrt{490 + 30.625} = 22.8172 \text{ m s}^{-1}$ so 22.8 m s ⁻¹ (3 s. f.)	A1	cao. www	4
				18

4762 Mechanics 2

1	(a)
1.	`

1 (a) (i)	Let vel of Q be $v \rightarrow 6 \times 1 = 4v + 2 \times 4$ v = -0.5 so 0.5 m s ⁻¹ in opposite direction to R	M1 A1 A1 A1	Use of PCLM Any form Direction must be made clear. Accept – 0.5 only if + ve direction clearly shown	4
(ii)	Let velocities after be R: $v_R \rightarrow$; S: $v_S \rightarrow$ PCLM +ve $\rightarrow 4 \times 2 - 1 \times 3 = 2v_R + 3v_S$ $2v_R + 3v_S = 5$ NEL +ve \rightarrow $\frac{v_S - v_R}{-1 - 4} = -0.1$ so $v_S - v_R = 0.5$ Solving gives $v_R = 0.7 \rightarrow$ $v_S = 1.2 \rightarrow$	M1 A1 M1 A1 A1 A1	PCLM Any form NEL Any form Direction not required Direction not required Award cao for 1 vel and FT second	6
(iii)	R and S separate at 0.5 m s ⁻¹ Time to drop T given by $0.5 \times 9.8T^2 = 0.4$ so $T = \frac{2}{7}$ (0.28571) so distance is $\frac{2}{7} \times 0.5 = \frac{1}{7}$ m (0.142857m)	M1 B1 A1	FT their result above. Either from NEL or from difference in final velocities cao	3
(b)	before after $v \rightarrow u$ $u \rightarrow u$ $v \rightarrow (-)ev$ KE loss is $\frac{1}{2}m(u^2 + v^2) - \frac{1}{2}m(u^2 + e^2v^2)$ $= \frac{1}{2}mu^2 + \frac{1}{2}mv^2 - \frac{1}{2}mu^2 - \frac{1}{2}me^2v^2$ $= \frac{1}{2}mv^2(1-e^2)$	B1 B1 M1 E1	Accept $v \rightarrow ev$ Attempt at difference of KEs Clear expansion and simplification of correct expression	4
				17

2(i)	GPE is 1200 × 9.8 × 60 = 705 600 Power is (705 600 + 1 800 000) ÷ 120 = 20 880 W = 20 900 W (3 s. f.)	B1 M1 B1 A1	Need not be evaluated power is WD ÷ time 120 s cao	4
(ii)	Using $P = Fv$. Let resistance be R N 13500 = 18 F so $F = 750$ As v const, $a = 0$ so $F - R = 0$ Hence resistance is 750 N We require $750 \times 200 = 150\ 000\ J$ (= 150 kJ)	M1 A1 E1 M1 F1	Use of $P = Fv$. Needs some justification Use of WD = Fd or Pt FT their F	5
(iii)	$\frac{1}{2} \times 1200 \times (9^{2} - 18^{2})$ = 1200 × 9.8 × x sin 5 - 1500x Hence 145800 = 475.04846x so x = 306.91 so 307 m (3 s, f,)	M1 B1 M1 A1 A1 A1	Use of W-E equation with 'x' 2 KE terms present GPE term with resolution GPE term correct All correct cao	6
(iv)	$P = F_{V}$ and N2L gives $F - R = 1200a$ Substituting gives P = (R + 1200a)v If $a \neq 0$, v is not constant. But P and R are constant so a cannot be constant.	B1 B1 E1 E1	Shown	
				4
3 (i) (A)	Let force be P a.c. moments about C $P \times 0.125 - 340 \times 0.5 = 0$ P = 1360 so 1360 N	M1 A1 A1	Moments about C. All forces present. No extra forces. Distances correct cao	19
(i) (<i>B</i>)	Let force be <i>P</i> c.w. moments about E $P \times 2.125 - 340 \times (2 - 0.5) = 0$ P = 240 so 240 N	M1 A1 A1	Moments about E. All forces present. No extra forces. Distances correct cao	3

				1
(ii)	$Q\sin\theta \times 2.125 + Q\cos\theta \times 0.9$ $= \frac{25.5Q}{13} + \frac{4.5Q}{13}$	M1 B1	Moments expression. Accept $s \leftrightarrow c$. Correct trig ratios or lengths	
	$=\frac{30Q}{13}$ so $\frac{30Q}{13}$ N m	E1	Shown	3
(iii)	We need $\frac{30Q}{13} = 340 \times 1.5$ so $Q = 221$ Let friction be <i>F</i> and normal reaction <i>R</i> Resolve \rightarrow $221 \cos \theta - F = 0$ so $F = 85$ Resolve \uparrow $221 \sin \theta + R = 340$	M1 E1 M1 A1 M1	Moments equn with all relevant forces Shown	
	so $R = 136$ $F < \mu R$ as not on point of sliding so $85 < 136\mu$	A1 M1 A1	Accept \leq or = Accept \leq . FT their <i>F</i> and <i>R</i>	
	so $\mu > \frac{5}{8}$	E1		
				9
				18
4 (i)	$4000\left(\frac{\overline{x}}{\overline{y}}\right) = 4800\left(\frac{30}{40}\right) - 800\left(\frac{50}{20}\right)$	M1 A1	Any complete method for c.m. Either one RHS term correct or one component of	
	so $\overline{x} = 26$ $\overline{y} = 44$	E1 A1	both RHS terms correct [SC 2 for correct \overline{y} seen if M 0]	4
(ii)	$250\left(\frac{\overline{x}}{\overline{y}}\right)$	M1	Any complete method for c.m.	(
	$=110\binom{0}{55}+40\binom{20}{0}+40\binom{40}{20}+20\binom{50}{40}+40\binom{60}{60}$		Any 2 edges correct mass and c.m. or any 4 edges correct with mass and x or y c.m. coordinate correct.	
	$\overline{x} = 23.2$ $\overline{y} = 40.2$	B1 E1 A1	At most one consistent error	5

(iii)	110 - 40.2 40.2 G	B1	Indicating c.m. vertically below Q	
	Angle is $\arctan\left(\frac{23.2}{110-40.2}\right)$ = 18.3856 so 18.4° (3 s. f.)	B1 M1 A1	Clearly identifying correct angle (may be implied) and lengths Award for $\arctan\left(\frac{b}{a}\right)$ where $b = 23.2$ and $a = 69.8$ or 40.2 or where $b = 69.8$ or 40.2 and $a = 23.2$. Allow use of their value for <i>y</i> only. cao	4
(iv)	$10\left(\frac{\overline{x}}{\overline{y}}\right) = 2 \times 1.5 \times \begin{pmatrix} 26\\44 \end{pmatrix} + 7 \begin{pmatrix} 23.2\\40.2 \end{pmatrix}$ $\overline{x} = 24.04 \text{ so } 24.0 \text{ (3 s.f.)}$ $\overline{y} = 41.34 \text{ so } 41.3 \text{ (3 s.f.)}$	M1 B1 A1 A1 F1	Combining the parts using masses Using both ends All correct cao FT their <i>y</i> values only.	5
				18

4763 Mechanics 3

1(a)		D1	(D, L, D, L, L, -3, L)	
(i)	$[\text{Density}] = ML^{-3}$	B1	(Deduct B1 for $kg m^{-3}$ etc)	
	[Kinetic Energy] = $M L^2 T^{-2}$	B1		
	$[Power] = ML^2 T^{-3}$	B1		2
				3
(ii)		B1	For $[v] = LT^{-1}$	
	$M L^2 T^{-3} = [\eta] L (L T^{-1})^2$		Can be earned in (iii)	
		N/1	Obtaining the dimensions of n	
		M1	Obtaining the dimensions of η	
	$[\eta] = M L^{-1} T^{-1}$	A1		2
				3
(iii)	$M L^{2} T^{-3} = (M L^{-3})^{\alpha} L^{\beta} (L T^{-1})^{\gamma}$			
	$\alpha = 1$	B1 cao		
	$-3 = -\gamma$	M1	Considering powers of T	
	$\gamma = 3$	A1	(No ft if $\gamma = 0$)	
		M1	Considering powers of L	
	$2 = -3\alpha + \beta + \gamma$	A1	Correct equation <i>(ft requires 4 terms)</i>	
	$\beta = 2$	A1	(No ft if $\beta = 0$)	6
				6
(b)		M1	Calculating elastic energy	
	EE at start is $\frac{1}{2}k \times 0.8^2$	A1	k may be $\frac{\lambda}{l}$ or $\frac{\lambda}{12}$	
	2	. 1	l 1.2	
	EE at end is $\frac{1}{2}k \times 0.3^2$	A1	Emertian investeine EE end DE	
	$\frac{1}{2}k \times 0.8^2 = \frac{1}{2}k \times 0.3^2 + 5.5 \times 9.8 \times 3.5$	M1 F1	Equation involving EE and PE (must have three terms)	
	$\frac{1}{2}$ k × 0.8 $-\frac{1}{2}$ k × 0.9 + 5.5 × 9.8 × 5.5 Stiffness is 686 N m ⁻¹	A1		
	Summess is 080 N m	AI	(A0 for $\lambda = 823.2$)	6
				[18]

r				
2 (a)	$\int \pi x y^{2} dx = \int_{0}^{a} \pi x (a^{2} - x^{2}) dx$ $= \pi \left[\frac{1}{2} a^{2} x^{2} - \frac{1}{4} x^{4} \right]_{0}^{a}$ $= \frac{1}{4} \pi a^{4}$ $\overline{x} = \frac{\frac{1}{4} \pi a^{4}}{\frac{2}{3} \pi a^{3}}$ $= \frac{3}{8} a$	M1 A1 A1 M1 E1	<i>Limits not required</i> For $\frac{1}{2}a^2x^2 - \frac{1}{4}x^4$	5
(b) (i)	Area is $\int_{1}^{4} (2 - \sqrt{x}) dx$ = $\left[2x - \frac{2}{3}x^{\frac{3}{2}} \right]_{1}^{4} (= \frac{4}{3})$	M1 A1	<i>Limits not required</i> For $2x - \frac{2}{3}x^{\frac{3}{2}}$	
	$\int x y dx = \int_{1}^{4} x(2 - \sqrt{x}) dx$ $= \left[x^2 - \frac{2}{5}x^{\frac{5}{2}} \right]_{1}^{4} (=\frac{13}{5})$	M1 A1	Limits not required For $x^2 - \frac{2}{5}x^{\frac{5}{2}}$	
	$\overline{x} = \frac{\frac{13}{5}}{\frac{4}{3}} = \frac{39}{20} = 1.95$	A1		
	$\int \frac{1}{2} y^2 \mathrm{d}x = \int_1^4 \frac{1}{2} (2 - \sqrt{x})^2 \mathrm{d}x$	M1	$\int (2-\sqrt{x})^2 dx or \int \left((2-y)^2 - 1\right) y dy$	
	$= \left[2x - \frac{4}{3}x^{\frac{3}{2}} + \frac{1}{4}x^2 \right]_1^4 (=\frac{5}{12})$	A2	For $2x - \frac{4}{3}x^{\frac{3}{2}} + \frac{1}{4}x^2$ or $\frac{3}{2}y^2 - \frac{4}{3}y^3 + \frac{1}{4}y^4$ Give A1 for two terms correct, or all correct with $\frac{1}{2}$ omitted	
	$\overline{y} = \frac{\frac{5}{12}}{\frac{4}{3}} = \frac{5}{16} = 0.3125$	A1	correct with /2 onnited	9
(ii)	Taking moments about A $T_C \times 3 - W \times 0.95 = 0$	M1 A1	Moments equation (no force omitted) Any correct moments equation (May involve both T_A and T_C) Accept Wg or $W = \frac{4}{3}, \frac{4}{3}g$ here	
	$T_A + T_C = W$	M1	Resolving vertically (or a second moments equation)	
	$T_A = \frac{41}{60}W, T_C = \frac{19}{60}W$	A1	Accept 0.68W, 0.32W	4
				[18]

3 (i)	By conservation of energy, $\frac{1}{2} \times 0.6 \times 6^2 - \frac{1}{2} \times 0.6 v^2 = 0.6 \times 9.8(1.25 - 1.25 \cos \theta)$ $36 - v^2 = 24.5 - 24.5 \cos \theta$ $v^2 = 11.5 + 24.5 \cos \theta$	M1 A1 E1	Equation involving KE and PE	3
(ii)	$T - 0.6 \times 9.8 \cos \theta = 0.6 \times \frac{v^2}{1.25}$ $T - 5.88 \cos \theta = 0.48(11.5 + 24.5 \cos \theta)$ $T = 5.52 + 17.64 \cos \theta$	M1 A1 M1 A1	For acceleration $\frac{v^2}{r}$ Substituting for v^2	4
(iii)	String becomes slack when $T = 0$ $\cos \theta = -\frac{5.52}{17.64}$ ($\theta = 108.2^{\circ}$ or 1.889 rad) $v^2 = 11.5 - 24.5 \times \frac{5.52}{17.64}$ Speed is 1.96 ms ⁻¹ (3 sf)	M1 A1 M1 A1 cao	May be implied or $0.6 \times 9.8 \times \frac{5.52}{17.64} = 0.6 \times \frac{v^2}{1.25}$ or $-0.6 \times 9.8 \times \frac{v^2 - 11.5}{24.5} = 0.6 \times \frac{v^2}{1.25}$	4
(iv)	$T_{1} \cos \theta = mg$ $T_{1} \times \frac{1.2}{1.25} = 0.6 \times 9.8$ (where θ is angle COP) Tension in OP is 6.125 N $T_{1} \sin \theta + T_{2} = \frac{mv^{2}}{0.35}$ $6.125 \times \frac{0.35}{1.25} + T_{2} = \frac{0.6 \times 1.4^{2}}{0.35}$ Tension in CP is 1.645 N	M1 A1 A1 M1 F1B1 A1	Resolving vertically Horizontal equation (three terms) For LHS and RHS	7
				[18]

4(i)		M1	Using Hooke's law	
	$T_{\rm AP} = \frac{7.35}{1.5} \times 0.05 (= 0.245)$	A1	or $\frac{7.35}{1.5}$ (AP - 1.5)	
	$T_{\rm BP} = \frac{7.35}{2.5} \times 0.5 \ (=1.47)$	A1	or $\frac{7.35}{2.5}(2.05 - AP)$	
	Resultant force up the plane is $T_{\rm BP} - T_{\rm AP} - mg \sin 30^{\circ}$	M1	2.0	
	$= 1.47 - 0.245 - 0.25 \times 9.8 \sin 30^{\circ}$			
	= 1.47 - 0.245 - 1.225 = 0			
	Hence there is no acceleration	E1	Correctly shown	5
(ii)	$T_{\rm AP} = \frac{7.35}{1.5}(0.05 + x) (= 0.245 + 4.9x)$	B1		
	$T_{\rm BP} = \frac{7.35}{2.5} (4.55 - 1.55 - x - 2.5)$	M1		
	= 2.94(0.5 - x)			
	=1.47-2.94x	E1		3
(iii)	$T_{\rm BP} - T_{\rm AP} - mg\sin 30^\circ = m\frac{d^2x}{dt^2}$	M1	Equation of motion parallel to plane	
	$(1.47 - 2.94x) - (0.245 + 4.9x) - 1.225 = 0.25 \frac{d^2x}{dt^2}$	A2	Give A1 for an equation which is correct	
	$\frac{\mathrm{d}^2 x}{\mathrm{d} t^2} = -31.36x$		apart from sign errors	
	Hence the motion is simple harmonic	E1	Must state conclusion. Working must be	
			fully correct (cao) If a is used for accn down plane, then	
	Period is $\frac{2\pi}{\sqrt{31.36}} = \frac{2\pi}{5.6}$		a = 31.36x can earn M1A2; but E1 requires comment about directions	
	Period is 1.12 s (3 sf)	B1 cao	Accept $\frac{5\pi}{14}$	
				5
(iv)	$x = -0.05 \cos 5.6t$	M1	For $A\sin\omega t$ or $A\cos\omega t$ Allow $\pm 0.05\sin/\cos 5.6t$	
		A1	$Implied by \ v = \pm 0.28 \sin/\cos 5.6t$	
	$v = 0.28 \sin 5.6t$ -0.2 = 0.28 \sin 5.6t	M1	Using $v = \pm 0.2$ to obtain an equation for <i>t</i>	
	OR $0.2^2 = 31.36(0.05^2 - x^2)$			
	$x = (\pm) \ 0.035$ 0.035 = -0.05 cos 5.6t M1			
	$5.6t = \pi + 0.7956$	M1	Fully correct strategy for finding the required time	
	Time is 0.703 s (3 sf)	Alcao	- T	5
				[18]

4766	Statistics	1
------	-------------------	---

1	(i)			
		5 2 6 3 4 7 8 7 1 2 2 3 4 5 5 7 9 8 1 Key 6 3 represents 63 mph	G1 stem G1 leaves CAO G1 sorted G1 key	[4]
	(ii)	Median = 72 Midrange = 66.5	B1 FT B1 CAO	[2]
	(iii)	<i>EITHER:</i> Median since midrange is affected by outlier (52) <i>OR:</i> Median since the lack of symmetry renders the midrange less representative	E1 for median E1 for explanation TOTAL	[2] [8]
2	(i)	(A) $P(X=10) = P(5 \text{ then } 5) = 0.4 \times 0.25 = 0.1$	B1 ANSWER GIVEN	[1]
		(B) $P(X=30) = P(10 \text{ and } 20) = 0.4 \times 0.25 + 0.2 \times 0.5 = 0.2$	M1 for full calculation A1 ANSWER GIVEN	[2]
	(ii)	$E(X) = 10 \times 0.1 + 15 \times 0.4 + 20 \times 0.1 + 25 \times 0.2 + 30 \times 0.2 = 20$ $E(X^{2}) = 100 \times 0.1 + 225 \times 0.4 + 400 \times 0.1 + 625 \times 0.2 + 900 \times 0.2 = 445$ $Var(X) = 445 - 20^{2} = 45$	M1 for Σ rp (at least 3 terms correct) A1 CAO M1 for Σ r ² p (at least 3 terms correct) M1 dep for – their E (X) ² A1 FT their E(X) provided Var(X) > 0 TOTAL	[5] [8]
3	(i)	G 0.18 0.06 0.07 0.69	 G1 for two labelled intersecting circles G1 for at least 2 correct probabilities G1 for remaining probabilities 	[3]
	(ii)	$P(G) \times P(R) = 0.24 \times 0.13 = 0.0312 \neq P(G \cap R) \text{ or } \neq 0.06$ So not independent.	M1 for 0.24 × 0.13 A1	[2]

[2]

[4]

M1 for figures – 20

TOTAL

A1

4766		Mark Scheme	January 2010	
	(iii)	$P(R \mid G) = \frac{P(R \cap G)}{P(G)} = \frac{0.06}{0.24} = \frac{1}{4} = 0.25$	M1 for numerator M1 for denominator A1 CAO TOTAL	[3] [8]
4	(i)	P(20 correct) = $\binom{30}{20} \times 0.6^{20} \times 0.4^{10} = 0.1152$	M1 $0.6^{20} \times 0.4^{10}$ M1 $\binom{30}{20} \times p^{20} q^{10}$ A1 CAO	[3]
	(ii)	Expected number = $100 \times 0.1152 = 11.52$	M1 A1 FT (Must not round to whole number) TOTAL	[2] [5]
5	(i)	$P(Guess correctly) = 0.1^4 = 0.0001$	B1 CAO	[1]
	(ii)	P(Guess correctly) = $\frac{1}{4!} = \frac{1}{24}$	M1 A1 CAO TOTAL	[2] [3]
6	(i)	$20 \times 19 \times 18 = 6840$	M1 A1	[2]

4766

 $20^3 - 20 = 7980$

(ii)

7	(i)	$10 \times 2 = 20.$	M1 for 10 × 2 A1 CAO	[2]
	(ii)	Mean = $\frac{10 \times 65 + 35 \times 75 + 55 \times 85 + 20 \times 95}{120} = \frac{9850}{120} = 82.08$ It is an estimate because the data are grouped.	M1 for midpoints M1 for double pairs A1 CAO E1 indep	[4]
	(iii)	$10 \times 65^{2} + 35 \times 75^{2} + 55 \times 85^{2} + 20 \times 95^{2} (= 817000)$ $S_{xx} = 817000 - \frac{9850^{2}}{120} (= 8479.17)$ $s = \sqrt{\frac{8479.17}{119}} = 8.44$	M1 for Σfx^2 M1 for valid attempt at S_{xx} A1 CAO	[3]
	(iv)	$\overline{x} - 2s = 82.08 - 2 \times 8.44 = 65.2$ $\overline{x} + 2s = 82.08 + 2 \times 8.44 = 98.96$ So there are probably some outliers.	M1 FT for $\overline{x} - 2s$ M1 FT for $\overline{x} + 2s$ A1 for both E1 dep on A1	[4]
	(v)	Negative.	E1	[1]
	(vi)	Upper bound 60 70 80 90 100 Cumulative frequency 0 10 45 100 120	C1 for cumulative frequencies S1 for scales L1 for labels 'Length and CF' P1 for points J1 for joining points dep on P1 All dep on attempt at cumulative frequency.	[5]
			TOTAL	[19]

8	(i)	(A) P(Low on all 3 days) = $0.5^3 = 0.125$ or $\frac{1}{8}$	M1 for 0.5 ³ A1 CAO	[2]
		(B) P(Low on at least 1 day) = $1 - 0.5^3 = 1 - 0.125 = 0.875$	M1 for 1 – 0.5 ³ A1 CAO	[2]
		(C) P(One low, one medium, one high) = $6 \times 0.5 \times 0.35 \times 0.15 = 0.1575$	M1 for product of probabilities $0.5 \times 0.35 \times 0.15$ or $^{21}/_{800}$ M1 × 6 or × 3! or $^{3}P_{3}$ A1 CAO	[3]
	(ii)	$X \sim B(10, 0.15)$ (A) P(No days) = 0.85 ¹⁰ = 0.1969 Or from tables P(No days) = 0.1969	M1 A1	[2]
		(B) Either P(1 day) = $\binom{10}{1} \times 0.15^{1} \times 0.85^{9} = 0.3474$ or from tables P(1 day) = P(X \le 1) - P(X \le 0) = 0.5443 - 0.1969 = 0.3474	M1 $0.15^{1} \times 0.85^{9}$ M1 $\binom{10}{1} \times p^{1} q^{9}$ A1 CAO OR: M2 for 0.5443 – 0.1969 A1 CAO	[3]
	(iii)	Let $X \sim B(20, 0.5)$ <i>Either</i> : $P(X \ge 15) = 1 - 0.9793 = 0.0207 < 5\%$ <i>Or</i> : Critical region is {15,16,17,18,19,20} 15 lies in the critical region. So there is sufficient evidence to reject H ₀	<i>Either:</i> B1 for correct probability of 0.0207 M1 for comparison <i>Or:</i> B1 for CR, M1 for comparison A1 CAO dep on B1M1	
		Conclude that there is enough evidence to indicate that the probability of low pollution levels is higher on the new street.	E1 for conclusion in context	[5]
		H_1 has this form as she believes that the probability of a low pollution level is greater in this street.	E1 indep TOTAL	[17]

4767 Statistics 2

1	(i)			
			G1 For values of <i>a</i> G1 for values of <i>t</i> G1 for axes	[3]
	(ii)	<i>a</i> is independent, <i>t</i> is dependent since the values of <i>a</i> are not subject to random variation, but are determined by the runways which the pilot chooses, whereas the values of <i>t</i> are subject to random variation.	B1 E1dep E1dep	[3]
	(iii)	$\bar{a} = 900, \bar{t} = 855.2$ $b = \frac{S_{at}}{S_{aa}} = \frac{6037800 - 5987 \times 6300 / 7}{8190000 - 6300^2 / 7} = \frac{649500}{2520000} = 0.258$ OR $b = \frac{6037800 / 7 - 855.29 \times 900}{8190000 / 7 - 900^2} = \frac{92785}{360000} = 0.258$ hence least squares regression line is:	 B1 for ā and t used (SOI) M1 for attempt at gradient (b) A1 for 0.258 cao 	
		$t - \overline{t} = b(a - \overline{a})$ $\Rightarrow t - 855.29 = 0.258 (a - 900)$ $\Rightarrow t = 0.258a + 623$	M1 for equation of line A1 FT for complete equation	[5]
	(iv)	(A) For $a = 800$, predicted take-off distance = $0.258 \times 800 + 623 = 829$	M1 for at least one prediction attempted	
		(B) For $a = 2500$, predicted take-off distance = $0.258 \times 2500 + 623 = 1268$ Valid relevant comments relating to the predictions such as:	A1 for both answers (FT their equation if <i>b</i> >0) E1 (first comment)	
		First prediction is interpolation so should be reasonable Second prediction is extrapolation and may not be reliable	E1 (second comment)	[4]
	(v)	$a = 1200 \Rightarrow$ predicted $t = 0.258 \times 1200 + 623 = 933$ Residual = $923 - 933 = -10$ The residual is negative because the observed value is less than the predicted value.	M1 for prediction M1 for subtraction A1 FT E1	[4]
		•	Total	[19]

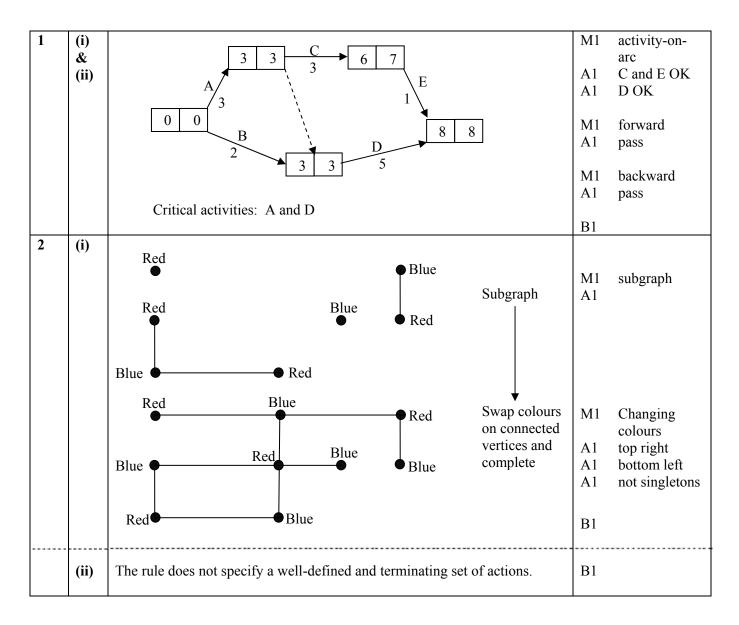
		D(1 010: 0	1.)		I
2	(i)	P(1 of 10 is far)		M1 for coefficient	
		$-(10) \times 0.02$	$^{1} \times 0.08^{9} = 0.1667$	M1 for probabilities	
		$ (1) \times 0.02$	$^{1} \times 0.98^{9} = 0.1667$	A1	[3]
	<i>(</i> 1)		. 11	D1 D1	
	(ii)	<i>n</i> is large and <i>j</i>	<i>b</i> is small	B1, B1	
				Allow appropriate	
				numerical ranges	[2]
	<i>(</i>)	1.50.000			
	(iii)	$\lambda = 150 \times 0.02$		B1 for mean (soi)	
		(4) $P(X =$	$0) = \tilde{e}^{-3} \frac{3^0}{0!} = 0.0498 \ (3 \text{ s.f.})$		
			0!	M1 for calculation or	
			m tables $= 0.0498$	use of tables	
				A1	[3]
		(B) Expec	ted number $= 3$		
				B1 expected	
		Using	tables: $P(X > 3) = 1 - P(X \le 3)$	no = 3 (soi)	
			0.6472 = 0.3528	M1	
		1	0.0172 0.0020	A1	[3]
	<i>(</i>) \		: 1/2000 0.02)		
	(iv)	(A) Binom	nial(2000,0.02)	B1 for binomial	
				B1 for parameters	[2]
		(=) == ==			
			ormal approx with	B1	
			$p = 2000 \times 0.02 = 40$	B1	
		$\sigma^2 = n_I$	$pq = 2000 \times 0.02 \times 0.98 = 39.2$	B1 for continuity	
		-		corr.	
		D(V ~	50) = p(z < 50.5 - 40)	M1 for probability	
		$P(X \leq$	$50) = P\left(Z \le \frac{50.5 - 40}{\sqrt{39.2}}\right)$	using correct tail	
				A1 CAO	[5]
		= P(Z)	$X \le 1.677) = \Phi(1.677) = 0.9532$		
		NR Poisson ar	pproximation also acceptable for full marks		
			proximation also acceptable for full marks	Total	[18]
				I Utal	[10]

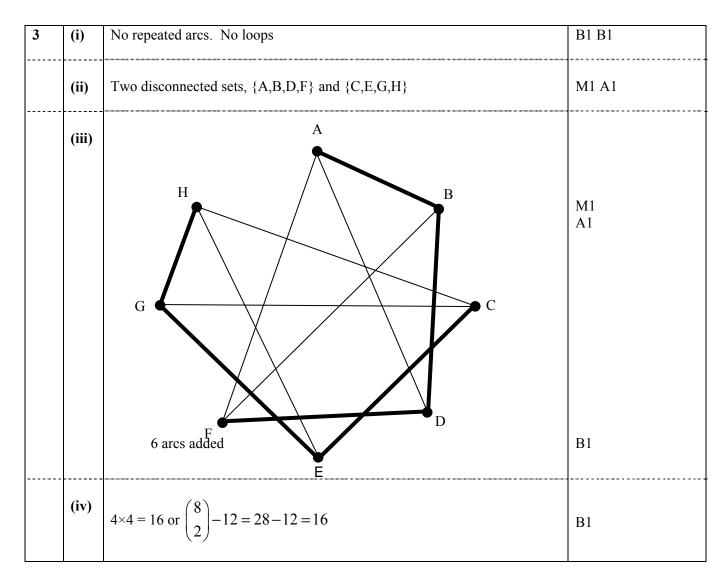
3	(i)	(A) $P(X < 50)$		
		$= P\left(Z < \frac{50 - 45.3}{11.5}\right)$ = P(Z < 0.4087) = $\Phi(0.4087)$ = 0.6585 (B) P(45.3 < X < 50)	 M1 for standardising M1 for correct structure of probability calc' A1 CAO inc use of diff tables NB When a candidate's answers suggest that (s)he appears to have neglected to use the difference column of the Normal distribution tables penalise the first occurrence only 	[3]
		= 0.6585 - 0.5	M1	[2]
		=0.1585	A1	r_1
	(ii)	From tables $\Phi^{-1}(0.9) = 1.282$	B1 for 1.282 seen	
		$\frac{k-45.3}{11.5} = 1.282$	M1 for equation in k	
		$k = 45.3 + 1.282 \times 11.5 = 60.0$	A1 CAO	[3]
	(iii)	$P(\text{score} = 111) = P(110.5 < Y < 111.5) = P\left(\frac{110.5 - 100}{15} < Z < \frac{111.5 - 100}{15}\right)$	B1 for both continuity correctionsM1 for standardising	
		= P(0.7 < Z < 0.7667) = $\Phi(0.7667) - \Phi(0.7)$	M1 for correct structure of probability calc'	
		= 0.7784 - 0.7580 = 0.0204	A1 CAO	[4]
	(iv)	From tables, $\Phi^{-1}(0.3) = -0.5244, \Phi^{-1}(0.8) = 0.8416$ $22 = \mu + 0.8416 \sigma$ $15 = \mu - 0.5244 \sigma$ $7 = 1.3660 \sigma$ $\sigma = 5.124, \mu = 17.69$	B1 for 0.5244 or 0.8416 seen M1 for at least one equation in z, $\mu \& \sigma$ A1 for both correct M1 for attempt to solve two appropriate equations A1 CAO for both	[5]
			TOTAL	[17]

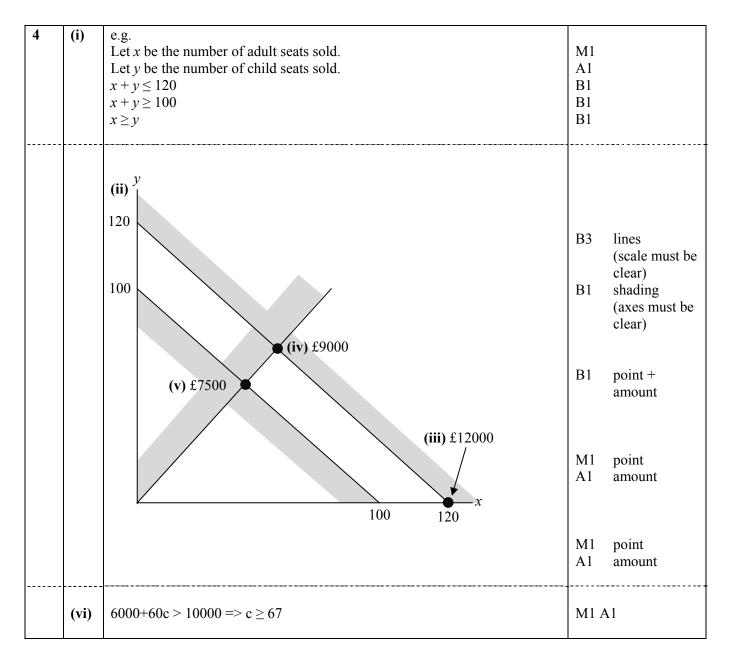
4	(i)	H ₀ : no association between size of business and recycling service used. H ₁ : some association between size of business and recycling service used.	B1 for both	[1]
	(ii)	Expected frequency = $78/285 \times 180 = 49.2632$ Contribution = $(52 - 49.2632)^2 / 49.2632$ = 0.1520	M1 A1 M1 for valid attempt at (O-E) ² /E A1 <i>NB Answer given</i> Allow 0.152	[4]
	(iii)	Test statistic $X^2 = 0.6041$ Refer to \mathcal{X}_2^2 Critical value at 5% level = 5.991 Result is not significant There is no evidence to suggest any association between size of business and recycling service used. NB if H ₀ H ₁ reversed, or 'correlation' mentioned in part (i), do not award B1in part (i) or E1 in part (iii).	B1 B1 for 2 deg of f(seen) B1 CAO for cv B1 for not significant E1	[5]
	(iv)	H ₀ : $\mu = 32.8$; H ₁ : $\mu < 32.8$ Where μ denotes the population mean weight of rubbish in the bins. Test statistic = $\frac{30.9 - 32.8}{3.4/\sqrt{50}} = -\frac{1.9}{0.4808} = -3.951$ 5% level 1 tailed critical value of $z = -1.645$ -3.951 < -1.645 so significant. There is sufficient evidence to reject H ₀ There is evidence to suggest that the weight of rubbish in dustbins has been reduced.	 B1 for use of 32.8 B1 for both correct B1 for definition of μ M1 must include √50 A1 B1 for ±1.645 M1 for sensible comparison leading to a conclusion A1 for conclusion in words in context 	[8]
			TOTAL	[18]

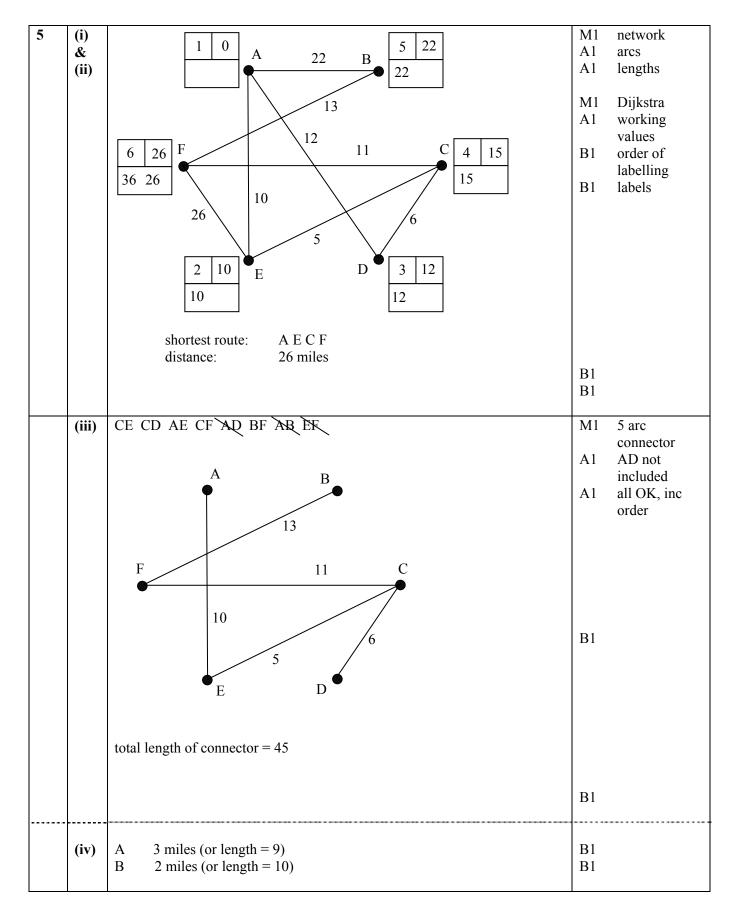
4768 Statistics 3

1 (i)	H ₀ : The number of eg by B(3, $\frac{1}{2}$)	gs hatched c	an be modelled	B1		
	H_1 : The number of eg modelled by B(3,	-	annot be	B1		
	With $p = \frac{1}{2}$					
	Probability	0.125	0.375	0.375	0.125	
	Exp'd frequency	10	30	30	10	
	Obs'd frequency	7	23	29	21	
	$X^2 = 0.9 + 1.6333 + $ = 14.666(7)	0.0333 + 12.	1	M1 A1 M1 A1	Probs \times 80 for expected frequencies. All correct. Calculation of X^2 . c.a.o.	
	Refer to χ_3^2 .			M1	Allow correct df (= cells – 1) from wrongly grouped table and ft. Otherwise, no ft if wrong. $P(X^2 > 14.667) = 0.00212.$	
	Upper 5% point is 7.8	315.		A1	No ft from here if wrong.	
	Significant.			A1	ft only c's test statistic.	
	Suggests it is reasona = $\frac{1}{2}$ does not appl		se model with p	A1	ft only c's test statistic.	[10]
(ii)	$\overline{x} = \frac{144}{80} = 1.8$			B1	C.a.o.	
	$\therefore \hat{p} = \frac{1.8}{3} = 0.6$			B1	Use of $E(X) = np$. ft c's mean, provided $0 < \hat{p} < 1$.	[2]
(iii)	Refer to χ^2_2 .			M1	Allow df 1 less than in part (i). No ft if wrong.	
	Upper 5% point is 5.9	991.		A1	No ft if wrong.	
	Suggests it is reasona estimated <i>p</i> does appl		se model with	A1	ft provided previous A mark awarded.	[3]
(iv)	For example: Estimating p leads to at the expense of t freedom. The model in (i) fails underestimate for $X =$	he loss of 1 d due to a larg	legree of	E2	Reward any two sensible points for E1 each.	[2]
					Total	[17]


2 (a)	$f(x) = \frac{1}{72} (8x - x^2) , \ 2 \le x \le 8$			
(i)	$F(x) = \int_{2}^{x} \frac{1}{72} (8t - t^{2}) dt$ $= \frac{1}{72} \left[4t^{2} - \frac{t^{3}}{3} \right]_{x}^{x}$	M1 A1	Correct integral with limits (which may be implied subsequently). Correctly integrated	
	$72 \begin{bmatrix} x & 3 \end{bmatrix}_{2}$ $= \frac{1}{72} \left(4x^{2} - \frac{x^{3}}{3} - 16 + \frac{8}{3} \right) = \frac{12x^{2} - x^{3} - 40}{216}$	A1	Limits used. Accept unsimplified form.	[3]
(ii)	1 + ^{F(X)}	G1	Correct shape; nothing below $y = 0$; non-negative gradient.	
	0.5	G1	Labels at (2, 0) and (8, 1).	
		G1	Curve (horizontal lines) shown for $x < 2$ and $x > 8$.	[3]
(iii)	$F(m) = \frac{1}{2} \qquad \therefore \frac{12m^2 - m^3 - 40}{216} = \frac{1}{2}$	M1	Use of definition of median. Allow use of c 's $F(x)$.	
	$\therefore 12m^2 - m^3 - 40 = 108$ $\therefore m^3 - 12m^2 + 148 = 0$	A1	Convincingly rearranged. Beware: answer given.	
	Either $F(4.42) = 0.5003(977) \approx 0.5$			
	Or $4.42^3 - 12 \times 4.42^2 + 148 = -0.0859(12) \approx 0$ $\therefore m \approx 4.42$	E1	Convincingly shown, e.g. 4.418 or better seen.	[3]


$H_0: m = 4.42$ where <i>m</i> is the			B1 B1	Both. Accept hypotheses in words. Adequate definition of <i>m</i> to include "population".	
Weights	- 4.42	Rank of diff			
3.16	-1.26	7			
3.62	-0.80	6			
3.80	-0.62	4			
3.90	-0.52	3			
4.02	-0.40	2			
4.72	0.30	1	M1	for subtracting 4.42.	
5.14	0.72	5	M1	for ranks.	
6.36	1.94	8	M1 A1	ft if ranks.	
6.50	2.08	9	AI	it if fanks wrong.	
6.58	2.16	10			
6.68	2.26	11			
6.78	2.36	12			
$W_{-} = 2 + 3 + 3$	4+6+7=	22	B1	$(W_{+} = 1 + 5 + 8 + 9 + 10 + 11 + 12)$ = 56)	
Refer to Wile $n = 12$.	coxon single	sample tables for	M1	No ft from here if wrong.	
Lower 2 ¹ / ₂ %	point is 13 (or upper is 65 if 56	A1	i.e. a 2-tail test. No ft from here if	
used).	- ``	- *		wrong.	
Result is not			A1	ft only c's test statistic.	
		median of 4.42 is	A1	ft only c's test statistic.	[1
consistent wi	ith these data	ì .			
				Total	[1


3 (i)	Must assume			
0(1)	Normality of population	B1		
	• of <u>differences</u> .	B1		
	$H_0: \mu_D = 0$	B1	Both. Accept alternatives e.g. $\mu_D <$	
	$H_1: \mu_D > 0$		0 for H ₁ , or $\mu_B - \mu_A$ etc provided	
			adequately defined. Hypotheses in	
			words only must include	
			"population". Do NOT allow	
			" $\overline{X} = \dots$ " or similar unless \overline{X} is	
			clearly and explicitly stated to be a	
		D1	population mean.	
	Where μ_D is the (population) mean reduction/difference in cholesterol level.	B1	For adequate verbal definition. Allow absence of "population" if	
	reduction/difference in cholesteror level.		correct notation μ is used.	
	MUST be PAIRED COMPARISON t test.		concernoution p is used.	
	Differences (reductions) (before – after) are:		Allow "after – before" if consistent	
			with alternatives above.	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
		B1	Do not allow $s_n = 0.9415 (s_n^2 =$	
	$\overline{x} = 0.7833$ $s_{n-1} = 0.9833(46)$ $(s_{n-1}^2 = 0.966969)$		0.8864)	
	Test statistic is $\frac{0.7833 - 0}{0.9833}$	M1	Allow c's \overline{x} and/or s_{n-1} .	
		1011	Allow alternative: $0 + (c's 2.718) \times$	
	$\sqrt{12}$. , , , , , , , , , , , , , , , , , , ,	
			$\frac{0.9833}{\sqrt{12}}$ (= 0.7715) for subsequent	
			comparison with \overline{x} .	
			(Or $\overline{x} - (c's 2.718) \times \frac{0.9833}{\sqrt{12}}$	
			(= 0.0118) for comparison with 0.)	
	= 2.7595.	A1	c.a.o. but ft from here in any case if	
			wrong. Use of $0 - \overline{x}$ scores M1A0, but	
			ft. $\int dx = x + \frac{1}{2} \int dx = \frac{1}$	
	Refer to t_{11} .	M1	No ft from here if wrong.	
			P(t > 2.7595) = 0.009286.	
	Single-tailed 1% point is 2.718.	A1	No ft from here if wrong.	
	Significant.	A1	ft only c's test statistic.	
	Seems mean cholesterol level has fallen.	A1	ft only c's test statistic.	[11]
(ii)	CI is $\overline{x} \pm$	M1	Overall structure, seen or implied.	
	2.201	B1	From t_{11} , seen or implied.	
	$\times \frac{s}{\sqrt{12}} = (-0.5380, 1.4046)$	A1	Fully correct pair of equations	
	$\sqrt{12}$		using the given interval, seen or	
			implied.	
	$\overline{x} = \frac{1}{2}(1.4046 - 0.5380) = 0.4333$	B1		
	$s = (1.4046 - 0.4333) \times \frac{\sqrt{12}}{2.201} = 1.5287$	M1	Substitute \overline{x} and rearrange to find <i>s</i> .	
		A1	c.a.o.	
	Using this interval the doctor might conclude	E1	Accept any sensible comment or	
	that the mean cholesterol level did not seem to		interpretation of <u>this</u> interval.	[7]
	have been reduced.		Total	[18]
			- 0000	1-~1


4	$A \sim N(80, \sigma = 11)$		When a candidate's answers suggest	
-	$B \sim N(70, \sigma = v)$		that (s)he appears to have neglected	
			to use the difference columns of the	
			Normal distribution tables penalise	
			the first occurrence only.	
(i)	$P(4 < 00) = P(7 < \frac{90 - 80}{0} = 0.0001)$	M1	For standardising. Award once,	
	$P(A < 90) = P\left(Z < \frac{90 - 80}{11} = 0.9091\right)$	A1	here or elsewhere.	
	= 0.8182	A1	c.a.o.	[3]
(ii)	$W_B = B_1 + B_2 + \dots + B_6 + 15 \sim N(435, \sigma^2 = v^2 + v^2 + \dots + v^2 = 6v^2)$	B1 B1	Mean.	
		DI	Expression for variance.	
	P(this < 450) = P $\left(Z < \frac{450 - 435}{v\sqrt{6}}\right) = 0.8463$	M1	Formulation of the problem.	
	$\therefore \frac{450 - 435}{v\sqrt{6}} = \Phi^{-1}(0.8463) = 1.021$	B1	Inverse Normal.	
	$\therefore v = \frac{15}{1.021 \times \sqrt{6}} = 5.9977 = 6 \text{ grams (nearest gram)}$	A1	Convincingly shown, beware A.G.	[5]
	1.021×√6			[0]
<i>(</i>)				
(iii)	$W_A = A_1 + A_2 + \dots + A_5 + 25 \sim N(425, \sigma^2 = 11^2 + 11^2 + \dots + 11^2 = 605)$			
	$O = 11 + 11 + \dots + 11 = 005)$ $D = W_A - W_B \sim N(-10,$	B1	Mean. Accept " $B - A$ ".	
	605 + 216 = 821	DI		
		M1	Variance.	
	Want $P(W_A > W_B) = P(W_A - W_B > 0)$	A1 M1	Accept sd (= 28.65).	
		1111		
	$= P\left(Z > \frac{0 - (-10)}{\sqrt{821}} = 0.3490\right) = 1 - 0.6365 = 0.3635$	A1	c.a.o.	[5]
	2126.0			
(iv)	$\overline{x} = \frac{3126.0}{60} = 52.1,$			
	$s = \sqrt{\frac{164223.96 - 60 \times 52.1^2}{59}} = 4.8$	B1	Both correct.	
	CI is given by			
	52.1 ±	M1		
	1.96	B1		
	$\times \frac{4.8}{\sqrt{60}}$	M1		
	$= 52.1 \pm 1.2146 = (50.885(4), 53.314(6))$	A1	c.a.o. Must be expressed as an interval.	[5]
			Total	[18]
				r - 1

6	(i)	3, 4,	2 → fall 5, 6, 7, 8 → no redraw	t fall	M1 A1 A1	ignore at least 1 proportions correct efficient
	(ii)	apple 1 2 3 4 5 6 Three apple	r n 1 3 8 0 2 7 es fall in this sin	fall? yes no no yes yes no nulation.	M1 A2 B1√	-1 each error
	(iii)	apple 2 3 6 apple 6 apple 6	r n 0 1 4 r n 4 r n 8	fall? yes yes no fall? no fall? no	M1 A2	-1 each error
		apple 6	r n 0	fall? yes 5 days before all have fallen	A1√	
	(iv)	apple 1 2 3 4 5 6 apple 3 4 apple	r n 1 3 8 0 2 r n 7	fall? picked yes no no yes yes fall? picked no fall?	M1 A2	-1 each error
		apple 4	rn	picked 3 days before none left	В1√	
	(v)	more simula	ations		B1	

4	//O F	numer		ethou	5			
1	x 1.3 1.5	LHS 2.868415 3.181981	< 3 > 3					[M1A1]
	1.4 1.35 1.375 1.3875	3.017945 2.941413 2.979232		mpe 0.1 0.05 0.025 0.0125	(may be in	nplied)	finishing at this point.	[M1] [A1] [A1] [A1]
	mpe:	0.00625	0.003125	0.001563	0.000781	< 0.001	so 4 more iterations	[M1A1] [TOTAL 8]
2	h 1 0.5	M 2.579768 2.547350	<i>T</i> 2.447490 2.513629	S 2.535675 2.536110			T S	L J
	2.536 se	cure by com	parison of <i>S</i>	values.				[E1A1] [TOTAL 7]
3(i)		$x^{2} - 2x$ = 0.875 henc	so f '(0.5) = e given resul					[B1B1] [B1]
(ii)	Hence	re -0.0005 < -0.002 < h < 0 0.498 < x <	< 0.002	005				[M1A1] [A1] [B1] [TOTAL 7]
4(i)	Convinc	cing algebra t	to given resu	lt				[M1A1]
(ii)		k = 100000 atically equi	valent expres	ation to 2 evaluation to ssions do not (large) numb	always eval		e ,	[B1] [B1] [E1]
				tities often ca		ns		[E1] [TOTAL 6]

4776 Numerical Methods

nuary 2010	Jar		cheme	Mark S			76	47
[M1A1]	lst diff:		$\Delta^3 \mathbf{f}(x)$	$\Delta^2 \mathbf{f}(x)$	$\Delta f(x)$	f(<i>x</i>) 1.883	$\begin{array}{c} x \\ 0 \end{array}$	5(i)
[F1]	2nd, 3rd				0.459	2.342	1	
	, .			0.073	0.532	2.874	2	
			0.012	0.085	0.617	3.491	3	
			0.013	0.098	0.715	4.206	4	
[E1]			ost constant	3rd diffs almo	í			
[M1A1A1] [A1] [TOTAL 8]).5) / 3!	× 1.5 × 0.5 × (-0	/ 2! + 0.012		0 × 1.5 + 0.07 or 2.598 to			(ii)
[G1] [G1G1]		d has gradient	ference chor	ds.	e and its tang fference chor lication that t	nd central di	Forward and	6 (i)
[E1]					gent	hat of the tar	closer to that	
[subtotal 4]								
			derivative		$tan (60 + h)^{o}$	tan 60°	h ta	 (ii)
[M1A1]			0.074338		1.880726	/32051		(11)
[MIA1] [A1]			0.071997		1.804048	32051		
[A1]			0.070886		1.767494	32051		
[subtotal 4]			0.070000		1.707191	52051	0.0 1.75	
		derivative		$\tan (60 - h)^{\circ}$	$(60 + h)^{\circ}$	ta	h	(iii)
[M1A1]		0.070098		1.600335			2	
[A1]		0.069884		1.664279	1.804048		1	
[A1] [subtotal 4]		0.069831		1.697663	1.767494		0.5	
			ratio of diffs	diffs	derivative	fference:	forward diff	(iv)
					0.074338			
				-0.00234	0.071997			
[M1A1A1]	be implied)	(about 0.5, may	0.474407	-0.00111	0.070886			
			ratio of diffs	diffs	derivative	ference:	central diffe	
					0.070098			
			0.0.005	-0.00021	0.069884			
[M1A1E1] [subtotal 6] [TOTAL 18]		(about 0.25, less ference, hence fa	0.24896 forward dif	-5.3E-05	0.069831			

January 2010	76 Mark Scheme				47						
[G1G1] [E1] [subtotal 3]		Sketch showing $y = 3 \sin x$ and $y = x$ with intersection in $(\frac{1}{2}\pi, \pi)$ State or show that there is only one other non-zero root									
	5	4	3	2	1	r 0	(ii)				
[M1A1A1 [B1] [G3] [subtotal 7]	x_r 2 2.727892 1.206001 2.80259 0.997639 2.52058 clearly not converging Cobweb diagram to illustrate process										
L											
[M1]					given result.	wincing algebra to	(iii)				
	5	4	3	2	given result. 1	The provincing algebra to $r = 0$	(iii)				
[M1]	-	-	-		-	r 0	(iii)				
	-	-	-		1 2.242631	r 0	(iii)				

[TOTAL 18]

Grade Thresholds

Advanced GCE Mathematics 3895 7895

January 2010 Examination Series

Unit Threshold Marks

Unit		Maximum Mark	Α	В	С	D	E	U
All units	UMS	100	80	70	60	50	40	0
4751	Raw	72	52	46	40	34	28	0
4752	Raw	72	59	52	45	38	32	0
4753/01	Raw	72	57	50	43	36	29	0
4753/02	Raw	18	15	13	11	9	8	0
4754	Raw	90	74	65	56	48	40	0
4755	Raw	72	55	47	39	31	24	0
4756	Raw	72	54	46	39	32	25	0
4758	Raw	72	61	53	45	37	29	0
4758/02	Raw	18	15	13	11	9	8	0
4761	Raw	72	58	49	41	33	25	0
4762	Raw	72	62	54	46	38	31	0
4763	Raw	72	64	56	48	41	34	0
4766/G241	Raw	72	58	50	42	35	28	0
4767	Raw	72	62	54	46	39	32	0
4768	Raw	72	55	48	41	34	27	0
4771	Raw	72	60	53	46	39	33	0
4776/01	Raw	72	60	53	46	40	33	0
4776/02	Raw	18	14	12	10	8	7	0

Specification Aggregation Results

	Maximum Mark	Α	В	С	D	Е	U
7895-7898	600	480	420	360	300	240	0
3895-3898	300	240	210	180	150	120	0

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
7895	27.9	61.3	84.3	95.7	98.7	100	395
7896	54.3	62.9	88.6	100	100	100	35
7897							0
7898							0
3895	27.1	54.1	74.2	88.2	97.3	100	947
3896	41.3	67.5	86.3	95	100	100	80
3897	100	100	100	100	100	100	1
3898	50	50	100	100	100	100	2

For a description of how UMS marks are calculated see: http://www.ocr.org.uk/learners/ums_results.html

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

66

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010