

GCE

Mathematics

Advanced GCE A2 7890 - 2

Advanced Subsidiary GCE AS 3890 - 2

Mark Schemes for the Units

January 2010

3890-2/7890-2/MS/10J

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890) Advanced GCE Pure Mathematics (7891) Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEMES FOR THE UNITS

Unit/Content	Page
4721 Core Mathematics 1	1
4722 Core Mathematics 2	5
4723 Core Mathematics 3	9
4724 Core Mathematics 4	13
4725 Further Pure Mathematics 1	17
4726 Further Pure Mathematics 2	21
4727 Further Pure Mathematics 3	24
4728 Mechanics 1	28
4729 Mechanics 2	31
4730 Mechanics 3	34
4732 Probability & Statistics 1	37
4733 Probability & Statistics 2	40
4734 Probability & Statistics 3	43
4736 Decision Mathematics 1	46
4737 Decision Mathematics 2	52
Grade Thresholds	58

4721 Core Mathematics 1

B1 $(x-6)^2$

M1 $q = 1 - (\text{their } p)^2$

A1 q = -35

3

2 (i)

For x < 0, straight line joining (-2, 0) and (0, 4)

B1 2 For x > 0, line joining (0,4) to (2, 2) and horizontal line joining (2,2) and (4,2)

(ii) Translation
1 unit right parallel to x axis

B1
B1 2 Allow:
1 unit right,
1 along the x axis,
1 in x direction,
allow vector notation e.g. $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$,

1 unit horizontally

 $\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 8x$

M1 Attempt to differentiate (one of $3x^2$, -8x)
A1 Correct derivative

4

When x = 2, $\frac{dy}{dx} = -4$

M1 Substitutes x = 2 into their $\frac{dy}{dx}$

 $\therefore \text{Gradient of normal to curve} = \frac{1}{4}$

B1 ft Must be numerical $= -1 \div \text{their } m$

 $y + 1 = \frac{1}{4}(x - 2)$

M1 Correct equation of straight line through (2, -1), any non-zero numerical gradient

x - 4y - 6 = 0

7 Correct equation in required form7

A1

4/2	21	Mark Sche			January 20
4	(i)	m=4	B 1	1	May be embedded
	(ii)	$6p^2 = 24$	M1		$(\pm)6p^2 = 24$ or $36p^4 = 576$
		$p^2 = 4$	A1		01 30p 370
		p = 2 or $p = -2$	A1	3	
	(iii)	$5^{2n+4} = 25$	M1		Addition of indices as power of 5
		$\therefore 2n+4=2$	M1	3	Equate powers of 5 or 25
		n = -1	A1	7	
5		$k = \sqrt{x}$			
		$k^2 - 8k + 13 = 0$	M1*		Use a substitution to obtain a quadratic (may be implied by squaring or rooting later) or factorise into 2 brackets each containing \sqrt{x}
		$k-4 = \pm \sqrt{3}$ or $k = \frac{8 \pm \sqrt{(-8)^2 - 4 \times 1 \times 13}}{2}$	M1 dep A1		Correct method to solve resulting quadratic
		$k = 4 \pm \sqrt{3}$	A1		$k = 4 \pm \sqrt{3}$ or $k = \frac{8 \pm \sqrt{12}}{2}$
					or $k = 4 \pm \frac{\sqrt{12}}{2}$
		$\therefore x = (4 + \sqrt{3})^2 \text{ or } x = (4 - \sqrt{3})^2$	M1		Recognise the need to squar to obtain <i>x</i>
			M1		Correct method for squaring $+\sqrt{b}$ (3 or 4 term expansion
		$x = 19 \pm 8\sqrt{3}$ or $19 \pm 4\sqrt{12}$	A1	7 7	
6	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x$	B1*		
		When $x = 1$, $\frac{dy}{dx} = 2$	B1 dep	2	
	(ii)	$\frac{a^2 + 5 - 6}{a - 1} = 2.3$	M1		uses $\frac{y_2 - y_1}{x_2 - x_1}$
		u 1	A1		correct expression
		$a^{2} - 2.3a + 1.3 = 0$ $(a - 1.3)(a - 1) = 0$	M1		correct method to solve a quadratic or correct
		(a 1.5)(a 1)			factorisation and cancelling t get $a + 1 = 2.3$

		Alternative method:			
		Equation of straight line through (1,6) with			
		m = 2.3 found then			
		$a^2 + 5 = 2.3a + "c"$ seen M1			
		with $c = 3.7$ A1			
		then as main scheme			
	(iii)	A value between 2 and 2.3	B1	1	2 < value < 2.3 (strict
	(111)	11 value octiveen 2 and 2.5	21	7	inequality signs)
7	(i)	(a) Fig 3	B1		mequanty signs)
,	(1)	(a) Fig 3 (b) Fig 1			
			B1	2	
		(c) Fig 4	<u>B1</u>	3	
	(ii)	$-(x-3)^2$	M1		Quadratic expression with
					correct x^2 term and correct
					<i>y</i> -intercept and/or roots for
					their unmatched diagram
					(e.g. negative quadratic with
					y-intercept of –9 or root of 3
					for Fig 2)
		$y = -(x-3)^2$	A1	2	Completely correct equation
		y (W 3)	AI	5	for Fig 2
8	(:)	Contro (22)	B1	므	101 11g 2
ð	(i)	Centre $(-3, 2)$			C
		$(x+3)^2 - 9 + (y-2)^2 - 4 - 4 = 0$	M1		Correct method to find r^2
		$r^2 = 17$			
		$r = \sqrt{17}$	A1	3	Correct radius
	(ii)	$x^{2} + (3x+4)^{2} + 6x - 4(3x+4) - 4 = 0$	M1*		substitute for x/y or attempt to
			1,11		get an equation in 1 variable
					only
			A1		correct unsimplified expression
			111		correct anomipmica expression
					obtain correct 3 term quadratic
		$10x^2 + 18x - 4 = 0$	A1		correct method to solve their
			M1		quadratic
		(5x-1)(x+2) = 0			quadratic
		1	dep		
		$x = \frac{1}{5}$ or $x = -2$	A1		
					SR If A0 A0, one correct pair of
		$y = \frac{23}{5}$ or $y = -2$	A1	6	values, spotted or from correct
		$y = \frac{y}{5}$	AI		factorisation www B1
				9	
9	(i)	1 1			
,	(1)	$f'(x) = -x^{-2} - \frac{1}{2}x^{-\frac{1}{2}}$	M1		Attempt to differentiate
		2			*
			A1		$-x^{-2}$ or $-\frac{1}{2}kx^{-\frac{1}{2}}$ www
			AL		2
			A1	3	Fully correct expression

472	21	Mark Scheme	е		January 2010
	(ii)	$f''(x) = 2x^{-3} + \frac{1}{4}x^{-\frac{3}{2}}$	M1		Attempt to differentiate their f (x)
		·	A1 ft		One correctly differentiated term
			A1		Fully correct expression www in either part of the question
		$f''(4) = \frac{2}{4^3} + \frac{1}{4} \cdot \frac{1}{8}$	M1		Substitution of $x = 4$ into their $f''(x)$
		$=\frac{1}{16}$	A1	5	oe single fraction www in either part of the question
10		$(-30)^2 - 4 \times k \times 25k = 0$	M1		Attempts $b^2 - 4ac$ involving k
		$900 - 100k^2 = 0$	M1		States their discriminant $= 0$
		k = 3	B1	4	
		or $k = -3$	B 1	4	
11	(i)	P = 2 + x + 3x + 2 + 5x + 5x = 14x + 4	M1		Adds lengths of all 4 edges
		-14x + 4			with attempt to use Pythagoras to find the missing length
			A1	2	May be left unsimplified
	(ii)	Area of rectangle = $3x(2+x) = 6x + 3x^2$	M1		Correct method – splitting or formula for area of trapezium
		Area of triangle = $\frac{1}{2}(3x)(4x) = 6x^2$			formula for area of trapezium
		Total area = $9x^2 + 6x$	A1	2	Convincing working leading to given expression AG
	(iii)	$14x + 4 \ge 39$	B1 ft		ft on their expression for <i>P</i> from (i) unless restarted in (iii). (Allow >)
		$\frac{5}{2}$	B 1		o.e. (e.g. $\frac{35}{14}$) soi by
		2			subsequent working
		$9x^2 + 6x < 99$	B1		1
		$3x^2 + 2x - 33 < 0$			Allow≤
		(3x+11)(x-3) < 0	M1		
		$\left(-\frac{11}{3} < \right) x < 3$			Correct method to find critical values
			B 1		
					x < 3 identified
		5	M1		root from linear $< x <$ upper root from quadratic
		$\therefore \frac{5}{2} \le x < 3$	A1	7 11	Fully correct including inequality signs or exact equivalent in words cwo

72

Total

4722 Core Mathematics 2

1	(i)	$2(1 - \cos^2 x) = 5\cos x - 1$ $2\cos^2 x + 5\cos x - 3 = 0$ A.G.	M1 A1 2	Use $\sin^2 x = 1 - \cos^2 x$ Show given equation correctly
	(ii)	$(2\cos x - 1)(\cos x + 3) = 0$ $\cos x = \frac{1}{2}$ $x = 60^{\circ}$ $x = 300^{\circ}$	M1 M1 A1 A1√ 4	Recognise equation as quadratic in $\cos x$ and attempt recognisable method to solve Attempt to find x from root(s) of quadratic Obtain 60° or $\pi/3$ or 1.05 rad Obtain 300° only (or 360° – their x) and no extra in range SR answer only is B1 B1
_	(1)	(c) A company		
2	(i)	$\int (6x-4)\mathrm{d}x = 3x^2 - 4x + c$	M1*	Attempt integration (inc. in power for at
				least one term)
			A1	Obtain $3x^2 - 4x$ (or unsimplified equiv), with or without $+c$
		$y = 3x^2 - 4x + c \Rightarrow 5 = 12 - 8 + c$	M1dep*	Use $(2, 5)$ to find c
		$\Rightarrow c = 1$ Hence $y = 3x^2 - 4x + 1$	A1 4	$Obtain y = 3x^2 - 4x + 1$
	(ii)	$3p^2 - 4p + 1 = 5$	M1*	Equate their <i>y</i> (from integration attempt) to 5
		$3p^2 - 4p - 4 = 0$	M1dep*	Attempt to solve three term quadratic
		(p-2)(3p+2) = 0 $p = -2/3$	A1 3	Obtain $p = {}^{-2}/_3$ (allow any variable) from correct working; condone $p = 2$ still present, but A0 if extra incorrect solution
			7	
3	(i)	$(2-x)^7 = 128 - 448x + 672x^2 - 560x^3$	M1	Attempt (at least) two relevant terms – product of binomial coeff, 2 and <i>x</i> (or expansion attempt that considers all 7
			A 1	brackets)
			A1 A1	Obtain $128 - 448x$ Obtain $672x^2$
			A1 4	Obtain $-560x^3$
	(ii)	$-560 \times (^{1}/_{4})^{3} = ^{-35}/_{4}$	M1	Attempt to use coeff of x^3 from (i), with clear intention to cube $\frac{1}{4}$
			A1 2	Obtain $^{-35}/_4$ (w^6),
				(allow $^{35}/_{4}$ from $+560x^{3}$ in (i))
			6	

4 (i)
$$\int_{1}^{5} \log_{10}(2+x) dx \approx \frac{1}{2} \times \frac{1}{2} \times (\log 5 + 2 \log 5.5 + 1)$$

≈ 1.55

 ≈ 0.78

 $2 \log 6 + 2 \log 6.5 + \log 7$ M1 Attempt y-coords for at least 4 of the correct 5 x-coords only

Use correct trapezium rule, any h, to find area between x = 3 and x = 5

M1 Correct *h* (soi) for their *y*-values

A1 Obtain 1.55

(ii)
$$\int_{3}^{5} \log_{10}(2+x)^{\frac{1}{2}} dx = \frac{1}{2} \int_{3}^{5} \log_{10}(2+x) dx$$
$$\approx \frac{1}{2} \times 1.55$$

B1√

M1

Divide by 2, or equiv, at any stage to obtain 0.78 or 0.77,

following their answer to (i)

B1 2 Explicitly use $\log \sqrt{a} = \frac{1}{2} \log a$ on a single term

6

5
$$\int_{1}^{3} \{ (11-9x^{-2}) - (x^{2}+1) \} dx = [9x^{-1} - \frac{1}{3}x^{3} + 10x]_{1}^{3}$$
$$= (3-9+30) - (9-\frac{1}{3}+10)$$

$$= 24 - 18^2/_3$$
$$= 5^1/_3$$

$$\left[11x + 9x^{-1}\right]_{1}^{3} - \left[\frac{1}{3}x^{3} + x\right]_{1}^{3}$$

 $= [(33+3)-(11+9)]-[(9+3)-(^{1}/_{3}+1)]$ $= 16 - 10^2/_3$ $=5^{1}/_{3}$

Attempt subtraction (correct order) at any M1

M1 Attempt integration – inc. in power for at least one term

Obtain $\pm (-\frac{1}{3}x^3 + 10x)$ or 11x and $\frac{1}{3}x^3 + x$ **A**1

Obtain remaining term of form kx⁻¹ M1 Obtain $\pm 9x^{-1}$ or any unsimplified equiv **A**1

M1 Use limits x = 1, 3 – correct order &

subtraction

Obtain $5^{1}/_{3}$, or exact equiv **A**1

7

6 (i)
$$f(-3) = 0 \Rightarrow -54 + 9a - 3b + 15 = 0$$

3a - b = 13

Attempt f(-3) and equate to 0, or equiv M1 method

A1 Obtain 3a - b = 13, or unsimplified equiv

 $f(2) = 35 \Rightarrow 16 + 4a + 2b + 15 = 35$

2a + b = 2

M1 **A**1

Attempt f(2) and equate to 35, or equiv method

Obtain 2a + b = 2, or unsimplified equiv

Hence a = 3, b = -4

M1 Attempt to solve simultaneous eqns

A1 Obtain a = 3, b = -4

(ii)
$$f(x) = (x+3)(2x^2 - 3x + 5)$$

M1

Attempt complete division by (x + 3), or equiv

Obtain $2x^2 - 3x + c$ or $2x^2 + bx + 5$, from **A**1 correct f(x)

ie quotient is $(2x^2 - 3x + 5)$

Obtain $2x^2 - 3x + 5$ (state or imply as **A**1 3 quotient)

4722	2		Mark Sche	eme		January 2010
7	(i)	$13^2 = 10^2 + 14^2 - 2 \times 10 \times 14 \times \cos \theta$		M1		Attempt to use correct cosine rule in ΔABC
		$\cos\theta = 0.4536$				
		$\theta = 1.10$ A.G.		A1	2	Obtain 1.10 radians (allow 1.1 radians)
						SR B1 only for verification of 1.10, unless complete method
	(ii)	arc $EF = 4 \times 1.10 = 4.4$		B1		State or imply $EF = 4.4$ cm (allow 4×1.10)
		perimeter = $4.4 + 10 + 13 + 6$		M1		Attempt perimeter of region - sum of arc and three sides with attempt to subtract 4 from at least one relevant side
		= 33.4 cm		A1	3	Obtain 33.4 cm
	(iii)	area $AEF = \frac{1}{2} \times 4^2 \times 1.1$		M1		Attempt use of $(\frac{1}{2}) r^2 \theta$, with $r = 4$ and
						$\theta = 1.10$
		$= 8.8$ area $ABC = \frac{1}{2} \times 10 \times 14 \times \sin 1.1$		A1 M1		Obtain 8.8 Attempt use of $(\frac{1}{2})ab\sin\theta$, sides consistent
		410 A 14 A Shi 1.1		1411		with angle used
		= 62.4		A1		Obtain 62.4 or better (allow 62.38 or 62.39)
		hence total area = 53.6 cm^2		A 1	5	Obtain total area as 53.6 cm ²
				1	0	
8	(i)	$u_5 = 8 + 4 \times 3$		M1		Attempt $a + (n-1)d$ or equiv inc list of terms
		= 20 A.G.		A1	2	Obtain 20
	(ii)	$u_n = 3n + 5$ ie $p = 3$, $q = 5$		B1		Obtain correct expression, poss
				B1	2	unsimplified, eg $8 + 3(n - 1)$ Obtain correct $3n + 5$, or $p = 3$, $q = 5$
						stated
	(iii)	arithmetic progression		B1	1	Any mention of arithmetic
	(iv)	$\frac{2N}{2}(16+(2N-1)3)-\frac{N}{2}(16+(N-1)3)=$:1256	M1		Attempt S_N , using any correct formula
						$(\operatorname{inc} \sum (3n+5))$
		$26N + 12N^2 - 13N - 3N^2 = 2512$		M1		Attempt S_{2N} , using any correct formula, with $2N$ consistent (inc $\sum (3n + 5)$)
		$9N^2 + 13N - 2512 = 0$		M1*		Attempt subtraction (correct order) and
		(9N+157)(N-16)=0		M1de	n*	equate to 1256 Attempt to solve quadratic in <i>N</i>
		N = 16		A1	5	Obtain $N = 16$ only, from correct working
				C	\D . a	Attemptive method is to use $\frac{n}{2} / (n + D = 1256)$
				M1	JK. a	Attempt given difference as single
				M1		summation with N terms
				M1		Attempt $a = u_{N+1}$ Attempt $l = u_{2N}$
				M1		Equate to 1256 and attempt to solve quadratic
				A1		Obtain $N = 16$ only, from correct working
					10	

9

M1 Reasonable graph in both quadrants

A1 Correct graph in both quadrants

B1 **3** State or imply (0, 6)

(ii) $9^x = 150$

$$x \log 9 = \log 150$$

$$x = 2.28$$

M1 Introduce logarithms throughout, or equiv

M1 Use $\log a^b = b \log a$ and attempt correct method to find x

A1 **3** Obtain x = 2.28

(iii) $6 \times 5^x = 9^x$

$$\log_3(6\times 5^x) = \log_3 9^x$$

$$\log_3 6 + x \log_3 5 = x \log_3 9$$

$$\log_3 3 + \log_3 2 + x \log_3 5 = 2x$$

$$x (2 - \log_3 5) = 1 + \log_3 2$$

 $x = \frac{1 + \log_3 2}{2 - \log_3 5}$ **A.G.**

M1 Form eqn in x and take logs throughout

Use $\log a^b = b \log a$ correctly on $\log 5^x$ or $\log 9^x$ or legitimate combination of these two

Use $\log ab = \log a + \log b$ correctly on $\log (6 \times 5^x)$ or $\log 6$

M1 Use $\log_3 9 = 2$ or equiv (need base 3 throughout that line)

A1 5 Obtain $x = \frac{1 + \log_3 2}{2 - \log_3 5}$ convincingly (inc base 3 throughout)

4723 Core Mathematics 3

1		Obtain integral of form $k(2x-7)^{-1}$ Obtain correct $-5(2x-7)^{-1}$	M1 any constant <i>k</i> A1 or equiv
		Include $+ c$	B1 3 at least once; following any integral 3
2	(i)	Use $\sin 2\theta = 2\sin \theta \cos \theta$ Attempt value of $\sin \theta$ from $k \sin \theta \cos \theta = 5\cos \theta$ Obtain $\frac{5}{12}$	B1 M1 any constant <i>k</i> ; or equiv A1 3 or exact equiv; ignore subsequent work
	(ii)	Use $\csc \theta = \frac{1}{\sin \theta}$ or $\csc^2 \theta = 1 + \cot^2 \theta$	B1 or equiv
		Attempt to produce equation involving $\cos \theta$ only Obtain $3\cos^2 \theta + 8\cos \theta - 3 = 0$ Attempt solution of 3-term quadratic equation Obtain $\frac{1}{3}$ as only final value of $\cos \theta$	 M1 using sin² θ = ±1±cos² θ or equiv A1 or equiv M1 using formula or factorisation or equiv A1 5 or exact equiv; ignore subsequent
		3 12 32.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3	work 8
3	(i)	Obtain or clearly imply $60 \ln x$ Obtain ($60 \ln 20 - 60 \ln 10$ and hence) $60 \ln 2$	B1 B1 2 with no error seen
	(ii)	Attempt calculation of form $k(y_0 + 4y_1 + y_2)$ Identify k as $\frac{5}{3}$ Obtain $\frac{5}{3}(6+4\times4+3)$ and hence $\frac{125}{3}$ or 41.7	M1 any constant k; using <i>y</i> -value attempts A1 A1 3 or equiv
	 (iii)	Equate answers to parts (i) and (ii) Obtain $60 \ln 2 = \frac{125}{3}$ and hence $\frac{25}{36}$	M1 provided ln 2 involved A1 2 AG; necessary detail required including clear use of an exact value from (ii)
4	(i)	Attempt correct process for composition Obtain (7 and hence) 0	M1 numerical or algebraic A1 2
	(ii)	Attempt to find x-intercept Obtain $x \le 7$	M1 A1 2 or equiv; condone use of <
	(iii)	Attempt correct process for finding inverse Obtain $\pm (2-y)^3 - 1$ or $\pm (2-x)^3 - 1$ Obtain correct $(2-x)^3 - 1$	M1 A1 A1 3 or equiv in terms of x
	(iv)	Refer to reflection in $y = x$	B1 1 or clear equiv

(i) Obtain derivative of form $kx(x^2+1)^7$

Obtain $16x(x^2 + 1)^7$

Equate first derivative to 0 and confirm x = 0 or substitute x = 0 and verify first derivative zero

Refer, in some way, to $x^2 + 1 = 0$ having no root

- M1 any constant k
- **A**1 or equiv
- AG; allow for deriv of form $kx(x^2+1)^7$ M1
- A1 4 or equiv

(ii) Attempt use of product rule

Obtain $16(x^2+1)^7 + ...$

Obtain ... + $224x^2(x^2+1)^6$

Substitute 0 in attempt at second derivative Obtain 16

- *M1 obtaining ... + ... form
- A1 $\sqrt{1}$ follow their $kx(x^2+1)^7$
- A1 $\sqrt{1}$ follow their $kx(x^2+1)^7$; or unsimplified equiv
- M1dep *M
- A1 5 from second derivative which is correct at some point

Integrate e^{3x} to obtain $\frac{1}{2}e^{3x}$ or $e^{-\frac{1}{2}x}$ to obtain $-2e^{-\frac{1}{2}x}$ 6 or both

Obtain indefinite integral of form $m_1e^{3x} + m_2e^{-\frac{1}{2}x}$

M1 any constants m_1 and m_2

Obtain correct $\frac{1}{3}ke^{3x} - 2(k-2)e^{-\frac{1}{2}x}$

A1 or equiv

Obtain $e^{3\ln 4} = 64$ or $e^{-\frac{1}{2}\ln 4} = \frac{1}{2}$

Apply limits and equate to 185

Obtain $\frac{64}{3}k - (k-2) - \frac{1}{3}k + 2(k-2) = 185$

Obtain $\frac{17}{2}$

- B1 or both
- M1 including substitution of lower limit

or equiv

A1 7 or equiv

7

7 (a) Either: State or imply either $\frac{dA}{dr} = 2\pi r$ or $\frac{dA}{dt} = 250$

Attempt manipulation of derivatives

to find $\frac{dr}{dt}$

Obtain correct $\frac{250}{2\pi r}$

Obtain 1.6

or both

using multiplication / division

A1 or equiv

M1

- A1 4 or equiv; allow greater accuracy
- Attempt to express r in terms of tOr:

Obtain $r = \sqrt{\frac{250t}{\pi}}$

Differentiate $kt^{\frac{1}{2}}$ to produce $\frac{1}{2}kt^{-\frac{1}{2}}$

Substitute t = 7.6 to obtain 1.6

- using A = 250t
- A1or equiv
- M1 any constant k

A1 (4) allow greater accuracy

(b) State
$$\frac{\mathrm{d}m}{\mathrm{d}t} = -150k\mathrm{e}^{-kt}$$

... by $\frac{3}{2}$ units

B1

Equate to $(\pm)3$ and attempt value for t

M1 using valid process; condone sign confusion

Obtain
$$-\frac{1}{k}\ln(\frac{1}{50k})$$
 or $\frac{1}{k}\ln(50k)$ or $\frac{\ln 50 + \ln k}{k}$

A1 3 or equiv but with correct treatment of

signs

8 (i) State scale factor is $\sqrt{2}$ State translation is in negative *x*-direction ... B1 allow 1.4

B1 or clear equiv

B1 **3**

(ii) Draw (more or less) correct sketch of $y = \sqrt{2x+3}$ B1 'starting' at point

Draw (more or less) correct sketch of $y = \frac{N}{r^3}$

B1 'starting' at point on negative *x*-axis

Indicate one point of intersection $y = \frac{1}{x}$

B1 showing both branches

Indicate one point of intersection

B1 3 with both sketches correct

[SC: if neither sketch complete or correct but diagram correct for both in first quadrant

B1]

(iii) (a) Substitute 1.9037 into $x = N^{\frac{1}{3}} (2x+3)^{-\frac{1}{6}}$

M1 or into equation $\sqrt{2x+3} = \frac{N}{r^3}$; or equiv

Obtain 18 or value rounding to 18

A1 2 with no error seen

(b) State or imply $2.6282 = N^{\frac{1}{3}} (2 \times 2.6022 + 3)^{-\frac{1}{6}}$ Attempt solution for *N*

B1 M1 using correct process

A1 3 concluding with integer value

9 (i) Identify $\tan 55^{\circ}$ as $\tan(45^{\circ}+10^{\circ})$

Obtain 52

Use correct angle sum formula for tan(A+B)

Obtain $\frac{1+p}{1-p}$

B1 or equiv

M1 or equiv

A1 3 with tan 45° replaced by 1

*M1 linking 10° and 5°

(ii) Either: Attempt use of identity for $\tan 2A$

Obtain $p = \frac{2t}{1-t^2}$

A1

Attempt solution for *t* of quadratic equation M1

Attempt solution for t of quadratic Chaoin $-1 + \sqrt{1 + p^2}$

M1 dep *M

Obtain $\frac{-1+\sqrt{1+p^2}}{p}$

A1 4 or equiv; and no second expression

Or (1): Attempt expansion of $tan(60^{\circ}-55^{\circ})$

*M1

Obtain $\frac{\sqrt{3} - \frac{1+p}{1-p}}{1 + \sqrt{3} \frac{1+p}{1-p}}$

 $A1\sqrt{}$ follow their answer from (i)

Attempt simplification to remove

denominators

M1 dep *M

Obtain $\frac{\sqrt{3}(1-p)-(1+p)}{1-p+\sqrt{3}(1+p)}$

A1 (4) or equiv

Or (2): State or imply $\tan 15^\circ = 2 - \sqrt{3}$

Attempt expansion of $tan(15^{\circ}-10^{\circ})$

Obtain $\frac{2-\sqrt{3}-p}{1+p(2-\sqrt{3})}$

B1

M1 with exact attempt for tan15°

A2 (4)

Or (3): State or imply $\tan 15^\circ = \frac{\sqrt{3}-1}{\sqrt{3}+1}$

Attempt expansion of tan(15°-10°)

Obtain $\frac{\sqrt{3}-1-p\sqrt{3}-p}{\sqrt{3}+1+p\sqrt{3}-p}$

B1 or exact equiv

M1 with exact attempt for tan15°

A2 (**4**) or equiv

Or (4): Attempt expansion of $tan(10^{\circ}-5^{\circ})$

Obtain $t = \frac{p-t}{1+pt}$

*M1

Attempt solution for t of quadratic equation M1 dep *M

Obtain $\frac{-2 + \sqrt{4 + 4p^2}}{2p}$

1

A1 (4) or equiv; and no second

expression

(iii) Attempt expansion of both sides

Obtain $3\sin\theta\cos 10^\circ + 3\cos\theta\sin 10^\circ =$

 $7\cos\theta\cos10^\circ + 7\sin\theta\sin10^\circ$

Attempt division throughout by $\cos\theta\cos10^\circ$

Obtain 3t + 3p = 7 + 7pt

Obtain $\frac{3p-7}{7p-3}$

M1

A1 or equiv

M1 or by $\cos \theta$ (or $\cos 10^{\circ}$) only

A1 or equiv

A1 5 or equiv

4724 Core Mathematics 4

1 Long division method

Correct leading term x^2 in quotient	B1	
Evidence of correct div process	M1	Sufficient to convince
(Quotient =) $x^2 + 6x - 4$	A1	

(Remainder =) 11x+9 A1

<u>Identity method</u>

$$\frac{x^4 + 11x^3 + 28x^2 + 3x + 1 = Q(x^2 + 5x + 2) + R}{x^4 + 11x^3 + 28x^2 + 3x + 1 = Q(x^2 + 5x + 2) + R}$$
M1

$$Q = ax^2 + bx + c$$
 or $x^2 + bx + c$; $R = dx + e$ & ≥ 3 ops M1 N.B. $a = 1 \Rightarrow 1$ of the 3 ops $a = 1, b = 6, c = -4, d = 11, e = 9$ (for all 5) A2 S.R. B1 for 3 of these

4

2 (i) Find at least 2 of
$$(\overrightarrow{AB} \text{ or } \overrightarrow{BA})$$
, $(\overrightarrow{BC} \text{ or } \overrightarrow{CB})$, $(\overrightarrow{AC} \text{ or } \overrightarrow{CA})$ M1 irrespect of label; a

Use correct method to find scal prod of any 2 vectors M1

Use
$$\overrightarrow{AB}.\overrightarrow{BC} = 0$$
 or $\frac{\overrightarrow{AB}.\overrightarrow{BC}}{|AB||BC|} = 0$ M1

Obtain p = 1 (dep 3 @ M1) A1 4

or use corr meth for modulus

or use
$$\left| \overrightarrow{AB} \right|^2 + \left| \overrightarrow{BC} \right|^2 = \left| \overrightarrow{AC} \right|^2$$

(ii) Use equal ratios of appropriate vectors

M1 or scalar product method

Obtain p = -8

A1 2

5

3 Use
$$\cos 2x = a \cos^2 x + b / \pm \cos^2 x - \sin^2 x / 1 - 2\sin^2 x$$
 *M1

Obtain $\lambda + \mu \sec^2 x$ dep*M1 using 'reasonable' Pythag attempt

$$\int \lambda + \mu \sec^2 x \, dx = \lambda x + \mu \tan x$$
 A1 (\lambda \text{ or } \mu \text{ may be 0 here/prev line)}

Obtain correct result $2x - \tan x$ A1 no follow-through

$$\frac{1}{6}\pi - \sqrt{3} + 1$$
 ISW A1 exact answer required

Attempt to connect du and dt or find $\frac{du}{dt}$ or $\frac{dt}{du}$ M1 not du = dt but no accuracy

$$du = \frac{1}{t} dt$$
 or $\frac{du}{dt} = \frac{1}{t}$ or $dt = e^{u-2} du$ or $\frac{dt}{du} = e^{u-2}$ A1

Indef int $\rightarrow \int \frac{1}{u^2} (du)$ A1 no t or dt in evidence

$$=-\frac{1}{u}$$
 A1

Attempt to change limits if working with f(u) M1 or re-subst & use 1 and e

$$\frac{1}{6}$$
 ISW A1 ln e must be changed to 1, ln 1 to 0

5 (i)
$$(1+x)^{\frac{1}{3}} = 1 + \frac{1}{3}x + ...$$

...
$$-\frac{1}{9}x^2$$

B1 2
$$-\frac{2}{18}x^2$$
 acceptable

(ii) (a)
$$(8+16x)^{\frac{1}{3}} = 8^{\frac{1}{3}} (1+2x)^{\frac{1}{3}}$$

B1 not
$$16^{\frac{1}{3}} (\frac{1}{2} + x)^{\frac{1}{3}}$$

$$(1+2x)^{\frac{1}{3}}$$
 = their (i) expansion with 2x replacing x M1 not dep on prev B1

$$= 1 + \frac{2}{3}x - \frac{4}{9}x^2 + \dots$$

$$\sqrt{A1}$$
 $-\frac{8}{18}x^2$ acceptable

Required expansion = 2 (expansion just found)

√B1 **4**

accept equiv fractions

N.B. If not based on part (i), award M1 for $8^{\frac{1}{3}} + \frac{1}{3} \cdot 8^{-\frac{2}{3}} (16x) + \frac{\frac{1}{3} \cdot -\frac{2}{3}}{12} 8^{-\frac{5}{3}} (16x)^2$, allowing $16x^2$ for

 $(16x)^2$, with 3 @ A1 for 2...+ $\frac{4}{3}x$...- $\frac{8}{9}x^2$, accepting equivalent fractions & ISW

(ii) (b)
$$-\frac{1}{2} < x < \frac{1}{2} \text{ or } |x| < \frac{1}{2}$$

B1 no equality

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 9 - \frac{9}{9t}$$
 ISW

$$\frac{\mathrm{d}y}{\mathrm{d}t} = 3t^2 - \frac{3t^2}{t^3} \quad \text{ISW}$$

A1

Stating/implying
$$\frac{3t^2 - \frac{3}{t}}{9 - \frac{1}{t}} = 3 \implies t^2 = 9 \text{ or } t^3 - 9t = 0$$

WWW, totally correct at this stage

t = 3 as final ans with clear log indication of invalidity of -3; ignore (non) mention of t = 0

A2 **S.R.** A1 if $t = \pm 3$ or t = -3or (t = 3 & wrong/no indication)

7 Treat
$$\frac{d}{dx}(x^2y)$$
 as a product

$$\frac{d}{dr}(y^3) = 3y^2 \frac{dy}{dr}$$

$$3x^2 + 2x^2 \frac{dy}{dx} + 4xy = 3y^2 \frac{dy}{dx}$$

Ignore
$$\frac{dy}{dx}$$
 = if not used

Subst (2, 1) and solve for $\frac{dy}{dx}$ or vice-versa

M1

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -4$$
 WWW

grad normal =
$$-\frac{1}{\text{their } \frac{dy}{dx}}$$

M1

Find eqn of line, through (2, 1), with either gradient

using their $\frac{dy}{dx}$ or $-\frac{1}{\text{their } \frac{dy}{x}}$

$$x - 4y + 2 = 0$$

8 (i) $-\sin x e^{\cos x}$

B1 **1**

(ii) $\int \sin x \, e^{\cos x} \, dx = -e^{\cos x}$

B1 anywhere in part (ii)

Parts with split $u = \cos x$, $dv = \sin x e^{\cos x}$

M1 result $f(x) + \int g(x) dx$

Indef Integ, 1st stage $-\cos x e^{\cos x} - \int \sin x e^{\cos x} dx$ A1

accept ... $-\int -e^{\cos x} - \sin x \, dx$

Second stage = $-\cos x e^{\cos x} + e^{\cos x}$

*A1

Final answer = 1

dep*A2 6

7

9 (i) P is $\begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix}$

B1

direction vector of ℓ is $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ and of \overrightarrow{OP} is their $P = \sqrt{B1}$

Use $\cos \theta = \frac{\mathbf{a.b}}{|\mathbf{a}||\mathbf{b}|}$ for $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ and their OP

M1

 $\theta = 35.3$ or better (0.615... rad)

A1 4

(ii) Use $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 3+t \\ 1-t \\ 1+2t \end{pmatrix} = 0$

M1

1(3+t)-1(1-t)+2(1+2t)=0

A1

 $t = -\frac{2}{3}$

A1

Subst. into $\begin{pmatrix} 3+t\\1-t\\1+2t \end{pmatrix}$ to produce $\begin{pmatrix} \frac{7}{3}\\\frac{5}{3}\\-\frac{1}{3} \end{pmatrix}$ ISW

A1 4

(iii) Use $\sqrt{x^2 + y^2 + z^2}$ where $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ is part (ii) answer M1

Obtain $\sqrt{\frac{75}{9}}$ AEF, 2.89 or better (2.8867513....)

10 (i)
$$\frac{\frac{1}{3}}{3-x}$$
 $-\frac{\frac{1}{3}}{6-x}$

 $\sqrt{A1}$

(ii) (a) Separate variables
$$\int \frac{1}{(3-x)(6-x)} dx = \int k dt$$

Style: For the M1, dx & dt must appear on correct sides or there must be \int sign on both sides

Change $\frac{1}{(3-x)(6-x)}$ into partial fractions from (i) $\sqrt{B1}$

$$\int \frac{A}{3-x} dx = \left(-A \text{ or } -\frac{1}{A}\right) \ln(3-x)$$

B1 or
$$\int \frac{B}{6-x} dx = \left(-B \text{ or } -\frac{1}{B}\right) \ln(6-x)$$

$$-\frac{1}{3}\ln(3-x) + \frac{1}{3}\ln(6-x) = kt \ (+c)$$

f.t. from wrong multiples in (i)

Subst (x = 0, t = 0) & (x = 1, t = 1) into eqn with 'c' M1

and solve for 'k'

Use
$$\ln a + \ln b = \ln ab$$
 or $\ln a - \ln b = \ln \frac{a}{b}$ M

Obtain $k = \frac{1}{3} \ln \frac{5}{4}$ with sufficient working & WWW A1 7 \mathbf{AG}

(b) Substitute $k = \frac{1}{3} \ln \frac{5}{4}$, t = 2 & their value of 'c' *M1

Reduce to an eqn of form $\frac{6-x}{3-x} = \lambda$

dep*M1 where λ is a const

Obtain $x = \frac{27}{17}$ or 1.6 or better (1.5882353...) A2 **4** S.R. A1 $\sqrt{1}$ for $x = \frac{3\lambda - 6}{\lambda - 1}$

4725 Further Pure Mathematics 1

1 (i)	$\begin{pmatrix} a-4 & 2 \\ 3 & 0 \end{pmatrix}$	B1 B1	2	Two elements correct Remaining elements correct
(ii)	$4a - 6$ $a = \frac{3}{2}$	B1 M1 A1	3	Correct determinant Equate det A to 0 and solve Obtain correct answer a. e. f.
2 (i)	$u^3 - 3u^2 + 3u - 1$ $2u^3 - 6u^2 + 9u - 8 = 0$	B1 M1 A1	3	Correct unsimplified expansion of $(u-1)^3$ Substitute for x Obtain correct equation
(ii)	4	M1 A1ft	2	Use $(\pm)\frac{d}{a}$ of new equation Obtain correct answer from their equation
3	x - iy $x + 2y = 12 2x + y = 9$ $z = 2 + 5i$	B1 M1 A1 M1 A1	5	Conjugate known Equate real and imaginary parts Obtain both equations, OK with factor of i Solve pair of equations Obtain correct answer as a complex number S.C. Solving $z + 2iz = 12 + 9i$ can get max $4/5$, not first B1
4	$\frac{1}{4}n^2(n+1)^2 - \frac{1}{6}n(n+1)(2n+1) - n(n+1)$ $\frac{1}{12}n(n+1)(n+2)(3n-7)$	M1 M1 A1 M1 A1	6	Express as sum of three series Use standard results Obtain correct unsimplified answer Attempt to factorise Obtain at least factor of $n(n+1)$ Obtain fully factorised correct answer

	A1 M1	4	All terms correct Show that correct terms cancel Obtain correct answer, in terms of <i>n</i>
	711		
	B1		Sum to infinity seen or implied
	B1	2	Obtain correct answer
	7		S.C. - ³ / ₄ scores B1
18			

8 (i)		M1	Attempt to equate real and imaginary parts of $(x + iy)^2 & 5 - 12i$
	$x^2 - y^2 = 5$ and $xy = -6$	A1	Obtain both results, a.e.f
		M1	Obtain quadratic in x^2 or y^2
		M1	Solve to obtain $x = (\pm)3$ or $y = (\pm)2$
	± (3 – 2i)	A1 5	Obtain correct answers as complex nos
square	(ii) root		B1ft Circle with centre at their
1 1 1 1 1		B1	Circle passing through origin
		B1ft	2 nd circle centre correct relative to 1 st
		B1 4	Circle passing through origin
		9	
9 (i)		M1	Show correct expansion process for 3×3 or multiply adjoint by A
		M1	Correct evaluation of any 2×2 at any
	$\det \mathbf{A} = \Delta = 6a - 6$	A1	stage Obtain correct answer
	$\mathbf{A}^{-1} = \frac{1}{\Delta} \begin{pmatrix} 3a - 1 & a + 1 & -4 \\ 1 & 2a - 1 & -2 \\ -3 & -3 & 6 \end{pmatrix}$	M1	Show correct process for adjoint entries
	$\begin{pmatrix} -3 & -3 & 6 \end{pmatrix}$	A1	Obtain at least 4 correct entries in
		D1	adjoint
		B1 A1 7	Divide by their determinant Obtain completely correct answer
		A1 /	
(ii)	$1^{\left(5a-7\right)}$	M1	Attempt product of form A ⁻¹ C or
	$\frac{1}{\Delta} \begin{pmatrix} 5a - 7 \\ 4a - 5 \end{pmatrix}$		eliminate to get 2 equations and solve
	(3)	A1A1A ft all 3	1 Obtain correct answer
		4	S.C. if det now omitted, allow max A2 f
		11	
10 (i)			
- (-)		B1	Correct \mathbf{M}^2 seen
	$\mathbf{M}^2 = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \mathbf{M}^3 = \begin{pmatrix} 1 & 6 \\ 0 & 1 \end{pmatrix}$	M1	Convincing attempt at matrix
			multiplication for M^3
		A1 3	
(ii)	$\mathbf{M}^n = \begin{pmatrix} 1 & 2n \\ 0 & 1 \end{pmatrix}$	B1ft 1	State correct form, consistent with (i)

4725	Mark Scheme	January 2010
10 (iii)	M1	Correct attempt to multiply $\mathbf{M} \& \mathbf{M}^k$ or v.v.
	A1	Obtain element $2(k+1)$
	A1	Clear statement of induction step, from correct working
	B1 4	Clear statement of induction conclusion, following their working
(iv)	B1 DB1	Shear x-axis invariant
	DB1 3	e.g. $(1, 1) \rightarrow (21, 1)$ or equivalent using scale factor or angles
	11	

4726 Further Pure Mathematics 2

1	(i)	Get 0.876096, 0.876496, 0.876642	В1√	For any one correct or √ from wrong answer; radians only
			B1	All correct
	(ii)	Subtract correctly (0.00023(0), 0.000084)	B1√	On their answers
		Divide their errors as e_4/e_3 only	M1	May be implied
		Get 0.365(21)	A1	Cao
2	(i)	Find $f'(x) = 1/(1+(1+x)^2)$	M1	Quoted or derived; may be simplified or
	()			left as $\sec^2 y dy/dx = 1$
		Get $f(0) = \frac{1}{4}\pi$ and $f'(0) = \frac{1}{2}$	A1√	On their $f'(0)$; allow $f(0)=0.785$ but not 45
		Attempt $f''(x)$	M1	Reasonable attempt at chain/quotient rule
		1 ()		or implicit differentiation
		Correctly get $f''(0) = -\frac{1}{2}$	A 1	A.G.
	(ii)	Attempt Maclaurin as $af(0)+bf'(0)+cf''(0)$	M1	Using their $f(0)$ and $f'(0)$
	. ,	Get $\frac{1}{4}\pi + \frac{1}{2}x - \frac{1}{4}x^2$	A1	Cao; allow 0.785
				,
3	(i)	Attempt gradient as $\pm f(x_1)/(x_2 - x_1)$	M1	Allow reasonable <i>y</i> -step/ <i>x</i> -step
	. ,	Equate to gradient of curve at x_1	M1	Allow ±
		Clearly arrive at A.G.	A 1	Beware confusing use of ±
		,		Č
		SC Attempt equation of tangent	M1	As $y - f(x_1) = f'(x_1)(x - x_1)$
		Put $(x_2, 0)$ into their equation	M1	
		Clearly arrive at A.G.	A 1	
	(ii)	Diagram showing at least one more	B1	
	(11)	tangent	ъ.	
		Description of tangent meeting <i>x</i> -axis,	B1	
		used as next starting value		
	(iii)	Reasonable attempt at N-R	M1	Clear attempt at differentiation
	()	Get 1.60	A1	Or answer which rounds
4	(i)	State $r = 1$ and $\theta = 0$.	B1	May be seen or implied
			D1	Correct shape, decreasing <i>r</i> (not through
		0 1	B1	O)
				0)
	(ii)	Use $\frac{1}{2} \int r^2 d\theta$ with $r = e^{-2\theta}$ seen or implied	M1	Allow $\frac{1}{2} \int e^{4\theta} d\theta$
	()	Integrate correctly as $-\frac{1}{8}e^{-4\theta}$	A1	- · · · - • · - • · · · · · · · · · · ·
		Use limits in correct order	M1	In their answer
		Use $r_1^2 = e^{-4\theta}$ etc.	M1	May be implied
		Clearly get $k=1/8$	A1	

5	(i)	Use correct definitions of cosh and sinh Attempt to square and subtract Clearly get A.G.	B1 M1 A1	On their definitions
		Show division by \cosh^2	B1	Or clear use of first result
	(ii)	Rewrite as quadratic in sech and	3.61	Or quadratic in cosh
		attempt to solve Eliminate values outside $0 < \operatorname{sech} \le 1$	M1 B1	Or eliminate values outside $\cosh \ge 1$ (allow positive)
		$Get x = \ln(2 + \sqrt{3})$	A1	(ano ii positive)
		Get $x = -\ln(2+\sqrt{3})$ or $\ln(2-\sqrt{3})$	A 1	
6	(i)	Attempt at correct form of P.F. Rewrite as 4=	M1	Allow $Cx/(x^2+1)$ here; not $C=0$
		$A(1+x)(1+x^2) + B(1-x)(1+x^2) + (Cx+D)(1-x)(1+x)$	M1 √	From their P.F.
		Use values of x/equate coefficients	M1	
		Get $A = 1, B = 1$	A 1	cwo
		Get $C = 0, D = 2$	A 1	
				SC Use of cover-up rule for A,B M1 If both correct A1 cwo
	(ii)	$\operatorname{Get} A \ln(1+x) - B \ln(1-x)$	M1	Or quote from List of Formulae
		$Get Dtan^{-1}x$	B1	
		Use limits in their integrated expressions	M1	
		Clearly get A.G.	A1	
7	(i)	LHS = sum of areas of rectangles, area =		
		1x y-value from $x = 1$ to $x = n$	B1	
		RHS = Area under curve from $x = 0$ to n	B1	
	(ii)	Diagram showing areas required	B1	
		Use sum of areas of rectangles	B1	
		Explain/show area inequality with		
		limits in integral clearly specified	B1	
	(iii)	Attempt integral as $kx^{4/3}$	M1	
	()	Limits gives 348(.1) and 352(.0)	A1	Allow one correct

8	(i)	Get x = 1, y = 0	B1,B1	
	(ii)	Rewrite as quadratic in x Use $b^2 - 4ac \ge 0$ for all real x Get correct inequality State use of $k > 0$ to A.G.	M1 M1 A1 A1	$(x^{2}y - x(2y + k) + y = 0)$ Allow >, = here $4ky + k^{2} \ge 0$
				SC Use differentiation (parts (ii) and (iii)) Attempt prod/quotient rule M1 Solve = 0 for $x = -1$ A1 Use $x = -1$ only (reject $x = 1$), $y = -\frac{1}{4}k$ A1 Fully justify minimum B1 Attempt to justify for all x M1 Clearly get A.G. A1
	(iii)	Replace $y = -\frac{1}{4}k$ in quadratic in x Get $x = -1$ only	M1 A1	
			B1	Through origin with minimum at $(-1, -\frac{1}{4}k)$ seen or given in the answer
			B1	Correct shape (asymptotes and approaches)
		$(-1, -\frac{1}{4}k) x = 1$		SC (Start again) Differentiate and solve $dy/dx = 0$ for at least one x-value, independent of k M1 Get $x = -1$ only A1
9	(i)	Rewrite $tanh y$ as $(e^y - e^{-y})/(e^y + e^{-y})$ Attempt to write as quadratic in e^{2y} Clearly get A.G.	B1 M1 A1	Or equivalent
	(ii)	(a) Attempt to diff. and solve = 0 Get $\tanh x = b/a$ Use $(-1) < \tanh x < 1$ to show $b < a$	M1 A1 B1	
		ose (1) rumin vi to snow o ru	Σ.	SC Use exponentials M1 Get $e^{2x} = (a + b)/(a - b)$ A1 Use $e^{2x} > 0$ to show $b < a$ B1
				SC Write $x = \tanh^{-1}(b/a)$ M1 = $\frac{1}{2}\ln((1 + b/a)/(1 - b/a))$ A1 Use () > 0 to show $b < a$ B1
		(b) Get $\tan h x = 1/a$ from part (ii)(a) Replace as ln from their answer Get $x = \frac{1}{2} \ln ((a+1)/(a-1))$	B1 M1 A1	A4 loost on a
		Use $e^{\frac{1}{2}\ln((a+1)/(a-1))} = \sqrt{((a+1)/(a-1))}$ Clearly get A.G. Test for minimum correctly	M1 A1 B1	At least once
				SC Use of $y = \cosh x(a - \tanh x)$ and $\cosh x = 1/\operatorname{sech} x = 1/\sqrt{(1 - \tanh^2 x)}$

4727 Further Pure Mathematics 3

1	METHOD 1		
	line segment between l_1 and $l_2 = \pm [4, -3, -9]$	B1	For correct vector
	$\mathbf{n} = [1, -1, 2] \times [2, 3, 4] = (\pm)[-2, 0, 1]$	M1*	For finding vector product of direction
	[4 _3 _9]	A 1	vectors
	distance = $\frac{ [4, -3, -9] \cdot [-2, 0, 1] }{\left(\sqrt{2^2 + 0^2 + 1^2}\right)} = \frac{17}{\left(\sqrt{5}\right)}$	M1 (*dep)	For using numerator of distance formula
	≠ 0 , so skew	A1 5	For correct scalar product and correct conclusion
	METHOD 2 lines would intersect where		
	$ \begin{vmatrix} 1 + s = -3 + 2t \\ -2 - s = 1 + 3t \\ -4 + 2s = 5 + 4t \end{vmatrix} \implies \begin{cases} s - 2t = -4 \\ s + 3t = -3 \\ 2s - 4t = 9 \end{cases} $	B1	For correct parametric form for either
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N/1*	line
	-4 + 2s = 5 + 4t) $(2s - 4t = 9)$	M1*	For 3 equations using 2 different parameters
		A 1	parameters
		M1	For attempting to solve
		(*dep)	to show (in)consistency
	⇒ contradiction, so skew	A1	For correct conclusion
		5	
2 (i)	$(a+b\sqrt{5})(c+d\sqrt{5})$	M1	For using product of 2 distinct elements
	$= ac + 5bd + (bc + ad)\sqrt{5} \in H$	A1 2	For correct expression
(ii)	$(e =) 1 OR 1 + 0\sqrt{5}$	B1 1	For correct identity
(iii)	EITHER $\frac{1}{a+b\sqrt{5}} \times \frac{a-b\sqrt{5}}{a-b\sqrt{5}}$	M1	For correct inverse as $\left(a+b\sqrt{5}\right)^{-1}$
			and multiplying top and bottom by
	$OR\left(a+b\sqrt{5}\right)\left(c+d\sqrt{5}\right)=1 \Rightarrow \begin{cases} ac+5bd=1\\ bc+ad=0 \end{cases}$		$a-b\sqrt{5}$
	<i>t</i> .		OR for using definition and equating parts
	inverse = $\frac{a}{a^2 - 5h^2} - \frac{b}{a^2 - 5h^2} \sqrt{5}$	A1 2	For correct inverse. Allow as a single
	u - 3v - u - 3v		fraction
(iv)	5 is prime $OR \sqrt{5} \notin \mathbb{Q}$	B1 1	For a correct property (or equivalent)
		6	
3	Integrating factor = $e^{\int 2dx} = e^{2x}$	B1	For correct IF
	$\Rightarrow \frac{d}{dx} (ye^{2x}) = e^{-x}$	M1	For $\frac{d}{dx}(y)$. their IF $= e^{-3x}$. their IF
	$\Rightarrow y e^{2x} = -e^{-x}(+c)$	A 1	For correct integration both sides
	$(0,1) \Rightarrow c = 2$	M1	For substituting (0, 1) into their GS
	(6, 2)	A1√	and solving for <i>c</i> For correct <i>c</i> f.t. from their GS
	$\Rightarrow y = -e^{-3x} + 2e^{-2x}$	A1 6	For correct solution
			Tor correct solution
		6	
4 (i)	(z=) 2, -2, 2i, -2i	M1	For at least 2 roots of the form k {1, i} AEF
		A1 2	For correct values

(ii)	$\frac{w}{1-w} = 2, -2, 2i, -2i$	M1	For $\frac{w}{1-w}$ = any one solution from (i)
	$w = \frac{z}{1+z}$	M1	For attempting to solve for <i>w</i> , using any solution or in general
	2 2	B1	For any one of the 4 solutions
	$w = \frac{2}{3}, 2$	A1	For both real solutions
	$w = \frac{4}{5} \pm \frac{2}{5}i$	A1 5	For both complex solutions
	5-5-		SR Allow B1 $\sqrt{1}$ and one A1 $\sqrt{1}$ from $k \neq 2$
		7	
5 (i)	$\mathbf{AB} = k \left[\frac{2}{3} \sqrt{3}, 0, -\frac{2}{3} \sqrt{6} \right],$	B1	For any one edge vector of $\triangle ABC$
	BC = $k \left[-\sqrt{3}, 1, 0 \right]$, CA = $k \left[\frac{1}{3} \sqrt{3}, -1, \frac{2}{3} \sqrt{6} \right]$	B1	For any other edge vector of ΔABC
	$\mathbf{BC} = k \begin{bmatrix} -\sqrt{3}, 1, 0 \end{bmatrix}, \mathbf{CA} = k \begin{bmatrix} \frac{1}{3}\sqrt{3}, -1, \frac{2}{3}\sqrt{6} \end{bmatrix}$		
	$\mathbf{n} = k_1 \left[\frac{2}{3} \sqrt{6}, \frac{2}{3} \sqrt{18}, \frac{2}{3} \sqrt{3} \right] = k_2 \left[1, \sqrt{3}, \frac{1}{2} \sqrt{2} \right]$	M1	For attempting to find vector product of
	$\mathbf{n} = k_1 \begin{bmatrix} \frac{1}{3} & \sqrt{0}, \frac{1}{3} & \sqrt{10}, \frac{1}{3} & \sqrt{3} \end{bmatrix} = k_2 \begin{bmatrix} 1, \sqrt{3}, \frac{1}{2} & \sqrt{2} \end{bmatrix}$	3.61	any two edges
		M1	For substituting A , B or C into $\mathbf{r.n}$
	substitute A, B or $C \implies x + \sqrt{3}y + \frac{1}{2}\sqrt{2}z = \frac{2}{3}\sqrt{3}$	A1 5	For correct equation AG
			SR For verification only allow M1, then
			A1 for 2 points and A1 for the third
			point
(ii)	Symmetry	B1*	For quoting symmetry or reflection
	in plane OAB or Oxz or $y = 0$	B1	For correct plane
	in point one or one or y	(*dep)2	Allow "in y coordinates" or "in y axis"
		(SR For symmetry implied by reference
			to opposite signs in y coordinates of C
			and D, award B1 only
	$\begin{bmatrix} 1, \sqrt{3}, \frac{1}{2}\sqrt{2} \end{bmatrix}$, $\begin{bmatrix} 1, -\sqrt{3}, \frac{1}{2}\sqrt{2} \end{bmatrix}$	M1	For using scalar product of normal
(iii)	$\cos \theta = \frac{\left[1, \sqrt{3}, \frac{1}{2}\sqrt{2} \right] \cdot \left[1, -\sqrt{3}, \frac{1}{2}\sqrt{2} \right]}{\sqrt{1 + 3 + \frac{1}{2}}\sqrt{1 + 3 + \frac{1}{2}}}$		vectors
	$\sqrt{1+3+\frac{1}{2}}\sqrt{1+3+\frac{1}{2}}$	A1	For correct scalar product
	$ 1-3+\frac{1}{2} $ 3 1	M1	For product of both moduli in
	$=\frac{\left 1-3+\frac{1}{2}\right }{\frac{9}{2}}=\frac{\frac{3}{2}}{\frac{9}{2}}=\frac{1}{3}$		denominator
	$\frac{9}{2}$ $\frac{9}{2}$ 3	A1 4	For correct answer. Allow $-\frac{1}{3}$
		11	5
	(2 +16 0 ->) +4:	M1	For attempt to solve correct auxiliary
6 (i)	$\left(m^2 + 16 = 0 \Longrightarrow\right) \ m = \pm 4i$	1711	equation (may be implied by correct
			CF)
	$CF = A\cos 4x + B\sin 4x$	A1 2	For correct CF
		- -	(AEtrig but not $Ae^{4ix} + Be^{-4ix}$ only)
(22)	J.,	λ <i>I</i> 1	
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = p\sin 4x + 4px\cos 4x$	M1	For differentiating PI twice,
	dx		using product rule
		A 1	For correct $\frac{dy}{dr}$
	d^2		•2
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 8p\cos 4x - 16px\sin 4x$	A1	For unsimplified $\frac{d^2y}{dx^2}$. f.t. from $\frac{dy}{dx}$
		M1	
	$\Rightarrow 8p\cos 4x = 8\cos 4x$		For substituting into DE
	$\Rightarrow p = 1$	A1	For correct p
	$\Rightarrow (y =) A\cos 4x + B\sin 4x + x\sin 4x$	B1√ 6	For using $GS = CF + PI$, with 2 arbitrary constants in CF and none in PI
			Constants in CF and none in F1

(iii)	$(0,2) \Rightarrow A=2$	B1v		For correct A. f.t. from their GS
,	$\frac{dy}{dx} = -4A\sin 4x + 4B\cos 4x + \sin 4x + 4x\cos 4x$	M1		For differentiating their GS
	$x = 0, \frac{dy}{dx} = 0 \implies B = 0$	M1		For substituting values for x and $\frac{dy}{dx}$
	$\Rightarrow y = 2\cos 4x + x\sin 4x$	A1	4	to find B For stating correct solution CAO including $y = $
		12	2	
7 (i)	$\cos 6\theta = 0 \implies 6\theta = k \times \frac{1}{2}\pi$	M1		For multiples of $\frac{1}{2}\pi$ seen or implied
	$\Rightarrow \theta = \frac{1}{12}\pi\{1, 3, 5, 7, 9, 11\}$	A1 A1	3	A1 for any 3 correct A1 for the rest, and no extras in $0 < \theta < \pi$
(ii)	METHOD 1			
	$\operatorname{Re}(c+is)^6 = \cos 6\theta = c^6 - 15c^4s^2 + 15c^2s^4 - s^6$	M1		For expanding $(c+is)^6$ at least 4 terms and 2 binomial coefficients needed
		A 1		For 4 correct terms
	$\cos 6\theta = c^6 - 15c^4(1 - c^2) + 15c^2(1 - c^2)^2 - (1 - c^2)^3$	M1		For using $s^2 = 1 - c^2$
	$\Rightarrow \cos 6\theta = 32c^6 - 48c^4 + 18c^2 - 1$	A1		For correct expression for $\cos 6\theta$
	$\Rightarrow \cos 6\theta = \left(2c^2 - 1\right)\left(16c^4 - 16c^2 + 1\right)$	A1	5	For correct result \mathbf{AG} (may be written down from correct $\cos 6\theta$)
	METHOD 2			,
	$\operatorname{Re}(c+\mathrm{i}s)^3 = \cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$	M1		For expanding $(c+is)^3$ at least 2 terms and 1 binomial coefficient needed
		A 1		For 2 correct terms
	$\Rightarrow \cos 6\theta = \cos 2\theta \left(\cos^2 2\theta - 3\sin^2 2\theta\right)$	M1		For replacing θ by 2θ
	$\Rightarrow \cos 6\theta = \left(2\cos^2\theta - 1\right)\left(4\left(2\cos^2\theta - 1\right)^2 - 3\right)$	A1		For correct expression in $\cos \theta$ (unsimplified)
	$\Rightarrow \cos 6\theta = \left(2c^2 - 1\right)\left(16c^4 - 16c^2 + 1\right)$	A 1		For correct result AG
(iii)	METHOD 1			
	$\cos 6\theta = 0$	M1		For putting $\cos \theta = 0$
	$\Rightarrow 6 \text{ roots of } \cos 6\theta = 0 \text{ satisfy}$ $16c^4 - 16c^2 + 1 = 0 \text{ and } 2c^2 - 1 = 0$	A 1		For association of roots with quartic and quadratic
	But $\theta = \frac{1}{4}\pi, \frac{3}{4}\pi$ satisfy $2c^2 - 1 = 0$	B1		For correct association of roots with
	EITHER Product of 4 roots OR $c = \pm \frac{1}{2} \sqrt{2 \pm \sqrt{3}}$	M1		quadratic For using product of 4 roots OR for solving quartic
	$\Rightarrow \cos\frac{1}{12}\pi\cos\frac{5}{12}\pi\cos\frac{7}{12}\pi\cos\frac{11}{12}\pi = \frac{1}{16}$	A 1	5	For correct value (may follow A0 and B0)

	METHOD 2		
	$\cos 6\theta = 0$	M1	For putting $\cos \theta = 0$
	\Rightarrow 6 roots of $\cos \theta = 0$ satisfy	A 1	For association of roots with sextic
	$32c^6 - 48c^4 + 18c^2 - 1 = 0$		
	Product of 6 roots \Rightarrow	M1	For using product of 6 roots
	$\cos\frac{1}{12}\pi \cdot \frac{1}{\sqrt{2}} \cdot \cos\frac{5}{12}\pi \cos\frac{7}{12}\pi \cdot \frac{-1}{\sqrt{2}} \cdot \cos\frac{11}{12}\pi = -\frac{1}{32}$	B1	For using $\cos\left\{\frac{3}{12}\pi, \frac{9}{12}\pi\right\} = \left\{\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right\}$
	$\cos\frac{1}{12}\pi\cos\frac{5}{12}\pi\cos\frac{7}{12}\pi\cos\frac{11}{12}\pi = \frac{1}{16}$	A1	For correct value
		13	
8 (i)	2-2x - 1 - x	M1	For use of $ff(x)$
	$g(x) = \frac{1}{2 - 2 \cdot \frac{1}{2 - 2x}} = \frac{2 - 2x}{2 - 4x} = \frac{1 - x}{1 - 2x}$		• •
	$2-2 \cdot \frac{2-2x}{2-2x}$	A1	For correct expression AG
	1		
	$gg(x) = \frac{1 - \frac{1 - x}{1 - 2x}}{1 - 2 \cdot \frac{1 - x}{1 - 2x}} = \frac{-x}{-1} = x$	M1	For use of $gg(x)$
	$gg(x) = \frac{1}{1 - 2} \frac{2x}{1 - x} = \frac{x}{-1} = x$		For correct expression \mathbf{AG}
	$1-2.\overline{1-2x}$	A1 -	Tor correct expression. AG
(ii)	Order of $f = 4$	B1	For correct order
	order of $g = 2$	B1 2	For correct order
(iii)	METHOD 1		
	$y = \frac{1}{2 - 2x} \Longrightarrow x = \frac{2y - 1}{2y}$	M1	For attempt to find inverse
	\Rightarrow f ⁻¹ (x) = h(x) = $\frac{2x-1}{2x}$ OR 1 - $\frac{1}{2x}$	A1 2	2 For correct expression
	METHOD 2		
	$f^{-1} = f^3 = fg \text{ or } gf$	3.64	
	1 -1 -1 g or g1	M1	For use of $f g(x)$ or $g f(x)$
	$f g(x) = h(x) = \frac{1}{2 - 2\left(\frac{1 - x}{1 - 2x}\right)} = \frac{1 - 2x}{-2x}$	A1	For correct expression
(iv)	(1-2x)		
(17)	e f g h		
	$\frac{e + g + h}{e + g + g + h}$	M1	For correct row 1 and column 1
	f f g h e	A1	For e, f, g, h in a latin square
	g g h e f	A1 A1 4	For correct diagonal e - g - e - g For correct table
	h h e f g	A1 4	FOI COITECT TABLE
		12	

4728 Mechanics 1

1 i	$v = 4.2 + 9.8 \times 1.5$	M1	Uses $v = u + gt$
	$v = 18.9 \text{ ms}^{-1}$.	A1	18.9(15) from $g = 9.81$
		[2]	
ii	$s = 4.2 \times 1.5 + 9.8 \times 1.5^{2}/2 \text{ or}$ $18.9^{2} = 4.2^{2} + 2 \times 9.8s$	M1	Uses $s = ut + gt^2/2$ or $v^2 = u^2 + 2gs$
	s = 17.325 m	A1 [2]	Accept 17.3
iii	$v^2 = 4.2 + 2 \times 9.8 \times (17.3(25) - 5)$	M1	$18.9^2 = u^2 + 2 \times 9.8 \times 5$
	$v = 16.1 \text{ ms}^{-1}$	A1	$u = 16.1 \text{ ms}^{-1}$.
		[2]	Accept answers close to 16.1 from correct working
2 i	Resolves a force in 2 perpendicular directions	M1	Diagram for vector addition/subtraction
	Uses Pythagoras	DM1	Uses Cosine Rule
	$R^2 = (12 + 19\cos 60)^2$	A1	$R^2 = 12^2 + 19^2 -$
	$+(19\sin 60)^2$	A1	$2 \times 12 \times 19 cos 120$
	R = 27.1 N	A1	R = 27.1
	$\{R = \sqrt{((19+12\cos 60)^2 + (12\sin 60)^2}) = 27.1\}$	[5]	
ii	Trig on a valid triangle for correct angle	M1	Either Pythagoras or vector add/sub triangle
	$\tan\theta = (19\sin 60)/(12 + 19\cos 60)$ etc	A1	$\sin\theta/19 = \sin 120/(27.1)$ etc
	Angle is 37.4°, 37.5°	A1	
		[3]	
3ia	$+/-(9m + 2 \times 0.8)$ { $+/-(3.5 \times 0.8 - 2 \times 0.8)$ }	B1	Before mom, or mom change Q, OK with g
	$+/-(-3.5m + 3.5 \times 0.8) $ { $+/-(9m + 3.5m)$ }	B1	After mom, or mom change P, OK with g
	$+/-(9m + 2 \times 0.8) = +/-(-3.5m + 3.5 \times 0.8)$	M1	Equates moms, or changes, accept with g
	m = 0.096 kg	A1	Do not award if g used
ib	+/ 0 006(0+/ 2 5) OB +/ 0 9/2 5 2)	[4] M1	Haing hafara & after speeds of Der O. no a
	+/-0.096(9+/-3.5) <i>OR</i> +/-0.8(3.5 -2) +/-1.2 kgms ⁻¹	A1ft	Using before & after speeds of P or Q, no g ft $12.5 \times \text{cv}(0.096)$
	17-1.2 Kgills	[2]	11 12.5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
ii	(0.8+0.4)v or $0.8v + 0.4v$	M1	Using Q and R common speed after, no g
	$3.5 \times 0.8 + 0.4 \times 2.75 = (0.8 + 0.4)v$	A1	2.8 + 1.1 = 1.2v
	$v = 3.25 \text{ ms}^{-1}$	A1	
		[3]	
4ia	0.3gcos 60 and 0.3gsin60	B1	Accept use of " $m = 0.1 \text{ kg}$ " for M1 and
	0.4gcos60 and 0.4gsin60	B1	0.1gcos60 (B1) 0.1gsin60 (B1)
	Calculates either relevant difference Perp = 0.1gcos60 and Para = +/- 0.1gsin60	M1 A1	= 0.49 and $= 0.849$ (accept 0.85 and 0.84)
	101p 0.1g00500 and 1 ata = 1/- 0.1g5m00	[4]	0.17 and 0.047 (accept 0.03 and 0.04)
ib	$0.1 gsin 60 = \mu 0.1 gcos 60$	M1	$F = \mu R, F > R > 0$
	$= 1.73 (= \sqrt{3})$	A1	From correct R, F values
		[2]	

4 ii		M1	N2L for either particle no resolving, at least 1 unknown Formula round the pulley, M0A0.
			But award M1 for T-0.4g = 0.4×1.09 etc
	0.5g - T = 0.5a		later
	T - 0.4g = 0.4a $a = 1.09 \text{ ms}^{-2}$	A1	Both equations correct
	T = 4.36 N	B1 B1	
	1 - 4.50 1	[4]	
5 i	11 = 3 + 20a (a = 0.4)	M1	Uses $v = u + at$, no zero terms
	8 = 3 + (11-3)t/20	M1	Their a>0. $t/20 = (8-3)/(11-3)$ is M1M1
	t = 12.5	A1	, , , ,
		[3]	
ii	$s(A,20) = 8 \times 20 \ (=160)$ $s(B,20) = (3+11) \times 20/2 =$	B1	Or s(A) = 8T
	$3 \times 20 + 0.4 \times 20^{2} / 2 (=140)$	B1	or as stage of s(B)= $(3+11)\times 20/2 + 11\times (T-20)$
	$8T = (3+11) \times 20/2 + 11 \times (T-20)$	M1	3 part equation balancing distances
	or $(160 - 140) = 11t - 8t$	A1	
	$T = 26 \ 2/3$	A1	Accept 26.6 or 26.7
		[5]	
iii		B1	Linear rising graph (for A) starting at B's start Non-linear rising graph for B below A's
		B1	initially. Accept 2 straight lines as non-linear.
		D1	Single valued graphs graphs intersect and
		B1	continue
		[3]	
6 i	$a = 2 \times 0.006t - 0.18$	M1	Differentiates v (not v/t)
	a = 0.012t - 0.18	A1	Award for unsimplified form, accept +c, not
		[2]	+k
ii	0.012t - 0.18 = 0	M1*	Sets $a = 0$, and solves for t
	t = 15	A1	Substitutes t(s(min)) is -(t)
	$0.006 \times 15^2 - 0.18 \times 15 + k = 0.65$	D*M1 A1	Substitutes $t(v(min))$ in $v(t)$
	k = 2 AG	A1	
	110	[5]	
iii	$s = 0.006t^3/3 - 0.18t^2/2 + 2t (+c)$	M1A1	Integrates v (not multiplies by t). Award if +c
	$(s = 0.002t^3 - 0.09t^2 + 2t (+c))$	D1	omitted, accept kt
	t = 0, $s = 0$ hence $c = 0$	B1	Explicit, not implied (or uses limits 0, 28.4)
	$L = 0.002 \times 28.4^{3} - 0.09 \times 28.4^{2} + 2 \times 28.4$ L = 30.0 m	M1 A1	Substitutes 28.4 or 14.2 in s(t), (and k=2) Accept a r t 30(.0), accept +c
	L = 50.0 m	[5]	Αστιμού, αστιμού, αστιμού το
Ь		[~]	

. .	(F.) 0.15 · · (00 10	D1	I I' II F 0.15(00 10./.000)
7 i	$(Fr =) 0.15 \times 600g\cos 10$	B1	Implied by $Fr = 0.15 \times 600g\cos 10 \ (=868.6)$
	(Wt cmpt =) $600gsin10$ $600 \times 0.11 = T - 0.15 \times 600gcos10$ -	B1 M1	N2L. T with at least 1 resolved forces and
	S	IVII	N2L. 1 with at least 1 resolved forces and 600×0.11
	$600g\sin 10$ $(66 = T - 868.6 - 1021)$	A1	000 ^ 0.11
	T = 1960 N	A1 A1	1955.6
	1 – 1900 IV	[5]	1933.0
ii a	$a(up) = +/-(600g\sin 10 + .15 \times 600g\cos 10)/600$	M1	2 resolved forces and 600a or "unit mass"
	$a(up) = +/-3.15 \text{ ms}^{-2}$ AG	A1	Disregard sign, accept 3.149
		[2]	
	2		
b	$UP v^2 = 2 \times 0.11 \times 10$	M1	
	v = 1.48 when cable breaks	A1	Correct, need not be accurate
	t = 1.48/3.149	M1	Or $1.48 = 0 + 3.15t$
	(t = 0.471 time for log to come to rest)	3.61	
	$s = 1.48^2/(2 \times 3.149)$	M1	
	s = 0.349 distance for log to come to	A1	Correct, need not be accurate
	rest		
	DOWN (down) = (600 asim10 0 15 × 600 assa10)/600	B1	_ 0.254
	$a(down) = (600gsin10-0.15\times600gcos10)/600$ $10+0.349=0.254t^2/2$		= 0.254
	10±0.349± 0.2341/2	M1	Needs a < 3.15 , s>10. Or $V^2 =$
	t = 9.025	A1	2×0.254× (10+0.349) [V= 2.29], V=0.254t Correct, need not be accurate
		A1 A1	
	T = (9.025 + 0.471) = 9.5 s	[9]	Accept 9.49
		[[7]	

4729 Mechanics 2

1	75×9.8×40	B1		Average Speed = 40÷120	
	(75×9.8×40)÷120	M1		(75×9.8)×(Average speed)	
	245 W	A1	[3]	(re sis) (consumpting	3
		711	[0]		
2 (i)	$v^2 = 2 \times 9.8 \times 3$ or $2 \times 9.8 \times 1.8$	M1		Kinematics or energy	
	$v_1 = \sqrt{6g} \text{ or } \sqrt{58.8} \text{ or } \frac{7}{5}\sqrt{30} \text{ or } 7.67$	A1		Speed of impact (±)	
	$v_2 = \sqrt{3.6g} \text{ or } \sqrt{35.28} \text{ or } \frac{21}{5} \sqrt{2} \text{ or } 5.94$	A1		Speed of rebound (±)	
	$I = \pm 0.2(5.94 + 7.67)$	M1			
	2.72	A1ft	[5]	+ve, ft on $v_{1 \text{ and }} v_{2}$	
(ii)	e = 5.94/7.67	M1			
	0.775 or $\frac{\sqrt{15}}{5}$	A1ft	[2]	Allow 0.774, ft on $v_{1 \text{ and }} v_{2}$	7
3 (i)	$\bar{u} = 0.2$ (from vertex) or 0.8 or 0.1 0.5 $\bar{d} = 0.2 \times \bar{u} + 0.3 \times 0.65$	B1 M1		com of conical shell	
	d = 0.47	A1 A1	[4]	AG	
(ii)	s = 0.5 $T\sin 80^{\circ} \times 0.5 = 0.47 \times 0.5 \times 9.8$	B1 M1 A1		slant height, may be implied	
	T = 4.68 N	A1	[4]		8
4 (i)	$D - 400 = 700 \times 0.5$	M1		3 terms	
	D = 750 N	A1	[2]		
(ii)	P = 750 × 12 9 000 W or 9 kW	M1 A1ft	[2]		
	J J J J K II	71110	[-]		
(iii)	P/35 = 400	M1			
	14 000 W or 14 kW	A1	[2]		
(iv)	D = 14000/12	B1ft		May be implied	
	$3500/3 = 400 + 700 \times 9.8 \sin\theta$	M1		3 terms	
	$\theta = 6.42^{\circ}$	A1 A1	[4]	Their P/12	10

5	16 - 12 = 2x + 3y	M1		
	4 = 2x + 3y	A 1		aef
	$\frac{1}{2}.2(8)^2 + \frac{1}{2}.3(4)^2$ or $\frac{1}{2}.2x^2 + \frac{1}{2}3y^2$ or	B1		
	$\pm \frac{1}{2} \cdot 2(8^2 - x^2)$ or $\pm \frac{1}{2} \cdot 3(4^2 - y^2)$	3.51		
	$\frac{1}{2}.2(8)^2 + \frac{1}{2}.3(4)^2 - \frac{1}{2}.2x^2 - \frac{1}{2}3y^2 = 81$	M1		
	$2x^2 + 3y^2 = 14$	A1		aef
	Attempt to eliminate x or y from a linear and a quadratic equation	M1		
	$15y^2 - 24y - 12 = 0 \text{ or } 10x^2 - 16x - 26 = 0$	A1		aef
	Attempt to solve a three term quadratic	M1		
	x = -1 (or $x = 2.6$)	A1		
	y = 2 (or y = -2/5)	A1		
	x = -1 and $y = 2$ only	A1	F4.63	
	speeds 1, 2 away from each other	A1	[12]	12
6 (i)	$30^2 = V_1^2 \sin^2 \theta_1 - 2 \times 9.8 \times 250$	M1		$1/2m V_1^2 = 1/2m 50^2 + m \times 9.8 \times 250$
	$V_1^2 \sin^2 \theta_1 = 5800 \text{ AEF}$	A 1		
	$V_1 \cos \theta_1 = 40$	B1		
	$V_1 = 86.0$	A1		AG
	$\theta_1 = 62.3^{\circ}$	A1	[5]	AG
(ii)	$0 = \sqrt{5800 t_p - 4.9 t_p^2}$	M1		$30 = V_1 \sin \theta_1 - 9.8t$
	$t_p = 15.5$	A 1		. 4.51
				t = 4.71
	$-\sqrt{5800} = 30 - 9.8t_{\rm q}$	M1		
	$t_{q} = 10.8$	A 1	[4]	
			L - J	
(iii)	$R = 40 \times 15.5$	M1		
	R = 621	A 1		(620, 622)
	$V_2 \cos \theta_2 \times 10.8 = 621$	B1		$V_2 \cos \theta_2 = 57.4$
	$0 = V_2 \sin \theta_2 \times 10.8 - 4.9 \times 10.8^2$ $V_2 \sin \theta_1 = 52.1 \text{ or } 52.0$	M1		(52.0.52.1)
	$V_2 \sin \theta_2 = 53.1 \text{ or } 53.0$ Method to find a value of V_2 or θ_2	A1 M1		(52.9,53.1)
	$\theta_2 = 42.8^{\circ}$	A1		42.6° to 42.9°
	$V_2 = 78.2 \text{ m s}^{-1} \text{ or } 78.1 \text{ m s}^{-1}$	A1	[8]	or 78.1°
7 (i)	$\cos\theta = 3/5 \text{ or } \sin\theta = 4/5 \text{ or } \tan\theta = 4/3$	B1		θ = angle to vertical
	or $\theta = 53.1^{\circ}$	3.51		
	$R\cos\theta = 0.2 \times 9.8$	M1	[2]	
	R = 3.27 N or 49/15	A1	[3]	
(ii)	r = 4	B1		
	$R\sin\theta = 0.2 \times 4 \times \omega^2$	M1		
		A1		
	$\omega = 1.81 \text{ rad s}^{-1}$	A1	[4]	
		L		

(iii)	$\varphi = 26.6^{\circ} \text{ or } \sin \varphi = \frac{1}{\sqrt{5}} \text{ or } \cos \varphi = \frac{2}{\sqrt{5}} \text{ or }$	B1		φ = angle to horizontal
	$\tan \varphi = 0.5$			
	T = 0.98 or 0.1g	B1		
	$N\cos\theta = T\sin\varphi + 0.2 \times 9.8$	M1		Vertically, 3 terms
	$N \times 3/5 = 0.438 + 1.96$	A 1		•
	N = 4.00	A1		may be implied
	$N\sin\theta + T\cos\varphi = 0.2 \times 4 \times \omega^2$	M1		Horizontally, 3 terms
	$4 \times 4/5 + 0.98\cos 26.6^{\circ} = 0.8\omega^{2}$	A1		
	$\omega = 2.26 \text{ rad s}^{-1}$	A1	[8]	15

4730 Mechanics 3

1 0.4(3cos60° - 4) = -1 cos θ (= -1) 0.4(3sin60°) = Isin θ (= 1.03920) A1 SR: Allow B1 (max 1/3) for 3cos60° - 4 = -1 cos θ and 3sin60° = Isin θ [tan θ = -1.5 $\sqrt{3}$ /(1.5 - 4);	SR: Allow B1 (max 1/3) for $3\cos 60^{\circ} - 4 = -I\cos\theta$ and $3\sin 60^{\circ} =$ For eliminating I or θ (allow follow case) Allow for θ (only) following SR case For substituting for θ or for I (allow following SR case) ft incorrect θ or I; allow for θ (only)	$\max_{\alpha} 1/3$) $\cos \theta$ and θ (all θ) follows for θ or θ (see)	SR: Allow B1 (max 1/3) for $3\cos 60^{\circ} - 4 = -I \cos \theta$ and 3 For eliminating I or θ (allow case)	A1	` ,	` '	1
$0.4(3\sin 60^{\circ}) = I\sin \theta \qquad (= 1.03920) \qquad A1 \qquad SR: Allow B1 (max 1/3) for \\ 3\cos 60^{\circ} - 4 = -I\cos \theta \text{ and } 3\sin 60^{\circ} = I\sin \theta $ $[\tan \theta = -1.5\sqrt{3}/(1.5-4); \\ I^{2} = 0.4^{2}[(1.5-4)^{2} + (1.5\sqrt{3})^{2}]] \qquad M1 \qquad \text{For eliminating I or } \theta \text{ (allow following SR case.}$ $\theta = 46.1 \text{ or I} = 1.44 \qquad A1 \qquad Allow for \; \theta \text{ (only) following SR case.}$ $I = 1.44 \text{ or } \theta = 46.1 \qquad A1ft \qquad A1f$	$3\cos 60^{\circ} - 4 = -I\cos\theta$ and $3\sin 60^{\circ} = For eliminating I or \theta (allow follow case) Allow for \theta (only) following SR case For substituting for \theta or for I (allow following SR case) ft incorrect \theta or I; allow for \theta (only)$	$\cos \theta$ and $\sin \theta$ (all $\sin \theta$) follows for θ or $\sin \theta$ (see)	$3\cos 60^{\circ} - 4 = -I \cos \theta$ and 3 For eliminating I or θ (allowase)		` ,	` '	
$[\tan \theta = -1.5\sqrt{3}/(1.5-4);$ $I^2 = 0.4^2[(1.5-4)^2 + (1.5\sqrt{3})^2]]$ $\theta = 46.1 \text{ or } I = 1.44$ $I = 1.44 \text{ or } \theta = 46.1$ $I^2 = 1.2^2 + 1.6^2 - 2 \times 1.2 \times 1.6 \cos 60^\circ$ $V^2 = 3^2 + 4^2 - 2 \times 3 \times 4 \cos 60^\circ$ $I = 1.44$ $I = 1.46$ $I = 1.44$ $I = 1.44$ $I = 1.46$ $I = 1.44$ $I = 1.46$ $I = 1.44$ $I = 1.46$ $I $	$3\cos 60^{\circ} - 4 = -I\cos\theta$ and $3\sin 60^{\circ} = For eliminating I or \theta (allow follow case) Allow for \theta (only) following SR case For substituting for \theta or for I (allow following SR case) ft incorrect \theta or I; allow for \theta (only)$	$\cos \theta$ and $\sin \theta$ (all $\sin \theta$) follows for θ or $\sin \theta$ (see)	$3\cos 60^{\circ} - 4 = -I \cos \theta$ and 3 For eliminating I or θ (allowase)	Al	(= 1.03920)	$0.4(3\sin 60^{\circ}) = I\sin \theta$	
$[\tan\theta = -1.5\sqrt{3}/(1.5-4);$ $I^2 = 0.4^2[(1.5-4)^2 + (1.5\sqrt{3})^2]]$ $\theta = 46.1 \text{ or } I = 1.44$ $I = 1.44 \text{ or } \theta = 46.1$ $I = 1.44 \text{ or } \theta$	For eliminating I or θ (allow follow case) Allow for θ (only) following SR case For substituting for θ or for I (allow following SR case) ft incorrect θ or I; allow for θ (only)	I or θ (and all of a	For eliminating I or θ (allow case)				
$I^{2} = 0.4^{2}[(1.5 - 4)^{2} + (1.5\sqrt{3})^{2}]]$ $\theta = 46.1 \text{ or } I = 1.44$ $M1$ $Allow for \theta \text{ (only) following SR case.}$ $M1$ $For substituting for \theta \text{ or for } I \text{ (allow following SR case)}$ $A1 \text{ ft incorrect } \theta \text{ or } I; \text{ allow for } \theta \text{ (only)}$ $A1 \text{ following SR case.}$ $A1 \text{ ft incorrect } \theta \text{ or } I; \text{ allow for } \theta \text{ (only)}$ $A1 \text{ following SR case.}$ $A1 \text{ for use of cosine rule}$ $I = 1.44$ $A1$ $M1$ $I = 1.44$ $A1$ $M1$ $M1$ $A1$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$ M	case) Allow for θ (only) following SR case For substituting for θ or for I (allow following SR case) ft ft incorrect θ or I; allow for θ (only)	for θ or the se	case)				
$I^{2} = 0.4^{2}[(1.5 - 4)^{2} + (1.5\sqrt{3})^{2}]]$ $\theta = 46.1 \text{ or } I = 1.44$ $M1$ $Allow for \theta \text{ (only) following SR case.}$ $M1$ $For substituting for \theta \text{ or for } I \text{ (allow following SR case)}$ $A1 \text{ ft incorrect } \theta \text{ or } I; \text{ allow for } \theta \text{ (only)}$ $A1 \text{ following SR case.}$ $A1 \text{ ft incorrect } \theta \text{ or } I; \text{ allow for } \theta \text{ (only)}$ $A1 \text{ following SR case.}$ $A1 \text{ for use of cosine rule}$ $I = 1.44$ $A1$ $M1$ $I = 1.44$ $A1$ $M1$ $A1$ $A1$ $M1$ $M1$ $A1$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$ M	case) Allow for θ (only) following SR case For substituting for θ or for I (allow following SR case) ft ft incorrect θ or I; allow for θ (only)	for θ or the se	case)				
$I^{2} = 0.4^{2}[(1.5 - 4)^{2} + (1.5\sqrt{3})^{2}]]$ $\theta = 46.1 \text{ or } I = 1.44$ $M1$ $Allow for \theta \text{ (only) following SR case.}$ $M1$ $For substituting for \theta \text{ or for } I \text{ (allow following SR case)}$ $A1 \text{ ft incorrect } \theta \text{ or } I; \text{ allow for } \theta \text{ (only)}$ $A1 \text{ following SR case.}$ $A1 \text{ ft incorrect } \theta \text{ or } I; \text{ allow for } \theta \text{ (only)}$ $A1 \text{ following SR case.}$ $A1 \text{ for use of cosine rule}$ $I = 1.44$ $A1$ $M1$ $I = 1.44$ $A1$ $M1$ $M1$ $A1$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$ M	case) Allow for θ (only) following SR case For substituting for θ or for I (allow following SR case) ft ft incorrect θ or I; allow for θ (only)	for θ or the se	case)			$\tan \theta = -1.5 \sqrt{3} / (1.5 - 4);$	
$\theta = 46.1 \text{ or } I = 1.44$ $A1 \qquad \text{Allow for } \theta \text{ (only) following SR case.}$ $I = 1.44 \text{ or } \theta = 46.1$ $I = 1.44 \text{ or } \theta = 46.1$ $A1 \qquad \text{For substituting for } \theta \text{ or for } I \text{ (allow following SR case)}$ $A1 \qquad \text{fit incorrect } \theta \text{ or } I; \text{ allow for } \theta \text{ (only)}$ $I = 1.2^2 + 1.6^2 - 2 \times 1.2 \times 1.6 \cos 60^\circ \text{ or } V^{\circ 2} = 3^2 + 4^2 - 2 \times 3 \times 4 \cos 60^\circ$ $I = 1.44$ $A1 \qquad \text{M1} \qquad \text{For correct use of factor } 0.4 \text{ (= m)}$ $A1 \qquad \text{M1} \qquad \text{For use of sine rule}$	Allow for θ (only) following SR case For substituting for θ or for I (allow following SR case) ft incorrect θ or I; allow for θ (only)	for θ or the se)	, ,	M1			
$I = 1.44 \text{ or } \theta = 46.1$ $I = 1.44 \text{ or } \theta = 46.1$	For substituting for θ or for I (allow following SR case) ft ft incorrect θ or I; allow for θ (only	for θ or the se)	A 11 C () (1 -) C- 11 :		1) (1.5 \(\frac{1}{3}\)]]	2\	
I = 1.44 or θ = 46.1 Alft fincorrect θ or I; allow for θ (only) following SR case. Alternatively I = 1.2^2 + 1.6^2 - 2 × 1.2 × 1.6 cos 60° or $^{\circ}$ V'² = 3² + 4² - 2 × 3 × 4 cos 60° I = 1.44 I = 1.44 Alth fincorrect θ or I; allow for θ (only) following SR case. Alth fincorrect θ or I; allow for θ (only) following SR case. Alth fincorrect θ or I; allow for θ (only) following SR case.	following SR case) ft incorrect θ or I; allow for θ (onl	se)	Allow for θ (only) following	AI		$\theta = 46.1 \text{ or } 1 = 1.44$	
I = 1.44 or θ = 46.1 A1ft ft incorrect θ or I; allow for θ (only) following SR case. Alternatively I = 1.2 ² + 1.6 ² - 2×1.2×1.6cos60° or 'V' ² = 3 ² + 4 ² - 2×3×4cos60° I = 1.44 A1 M1 For use of cosine rule A1 M1 For correct use of factor 0.4 (= m) A1 M1 For use of sine rule	ft ft incorrect θ or I; allow for θ (onl	*	For substituting for θ or for	M1			
I = 1.44 or θ = 46.1 A1ft ft incorrect θ or I; allow for θ (only) following SR case. Alternatively I = 1.2 ² + 1.6 ² - 2×1.2×1.6cos60° or 'V' ² = 3 ² + 4 ² - 2×3×4cos60° I = 1.44 A1 M1 For use of cosine rule A1 M1 For correct use of factor 0.4 (= m) A1 M1 For use of sine rule	ft ft incorrect θ or I; allow for θ (onl	*	following SR case)				
Alternatively $I^2 = 1.2^2 + 1.6^2 - 2 \times 1.2 \times 1.6 \cos 60^{\circ} \text{or} \text{`V'}^2 = 3^2 + 4^2 - 2 \times 3 \times 4 \cos 60^{\circ} \text{I} = 1.44$ $I = 1.44$ $M1 \text{For use of cosine rule}$ $M1 \text{For correct use of factor } 0.4 \text{ (= m)}$ $M1 \text{For use of sine rule}$,	· I. allow		A 1ft		$I = 1.44 \text{ or } \theta = 46.1$	
Alternatively $I^2 = 1.2^2 + 1.6^2 - 2 \times 1.2 \times 1.6 \cos 60^{\circ} \text{or} \text{`V'}^2 = 3^2 + 4^2 - 2 \times 3 \times 4 \cos 60^{\circ} \text{I} = 1.44$ $I = 1.44$ $M1$ For use of cosine rule $M1$ For correct use of factor 0.4 (= m) $A1$ $M1$ For use of sine rule	of following SK case.	-				1 1.44 01 0 40.1	
$I^{2} = 1.2^{2} + 1.6^{2} - 2 \times 1.2 \times 1.6 \cos 60^{\circ}$ or $V^{2} = 3^{2} + 4^{2} - 2 \times 3 \times 4 \cos 60^{\circ}$ A1 $I = 1.44$ For use of cosine rule A1 A1 A1 For use of sine rule For use of sine rule		SC.	ionowing on case.	L'J			
$I^{2} = 1.2^{2} + 1.6^{2} - 2 \times 1.2 \times 1.6 \cos 60^{\circ}$ or $V^{2} = 3^{2} + 4^{2} - 2 \times 3 \times 4 \cos 60^{\circ}$ A1 $I = 1.44$ For use of cosine rule A1 A1 A1 For use of sine rule For use of sine rule						Alternatively	
$I^{2} = 1.2^{2} + 1.6^{2} - 2 \times 1.2 \times 1.6 \cos 60^{\circ}$ or $V^{2} = 3^{2} + 4^{2} - 2 \times 3 \times 4 \cos 60^{\circ}$ A1 $I = 1.44$ For correct use of factor 0.4 (= m) $A1$ $M1$ For use of sine rule	For use of cosine rule	e mle	For use of cosine rule	M1		1 internatively	
I = 1.44 $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$	1 of use of cosme fulc	cruic	1 of use of cosmic fulc	1411	600860° or	$I^2 = 1.2^2 + 1.6^2 - 2 \times 1.2 \times 1.600$	
				Λ1			
I = 1.44 A1 M1 For use of sine rule	F	. C C4 (F		00	$V = 3 + 4 = 2 \times 3 \times 4 \cos 00$	
M1 For use of sine rule	ror correct use of factor 0.4 (= m)	or ractor (For correct use of factor 0.4			T 1 44	
						1 = 1.44	
$\frac{\sin \theta}{2(\sin \theta)} = \frac{\sin 60}{\sqrt{12(\cos \theta)}}$ or	For use of sine rule	ule	For use of sine rule	MI			
$\frac{1}{2(1+1)} - \frac{1}{12(1+2)} = 0$					or	$\sin \theta = \sin 60$	
\(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{2}\)\(\frac{1}{3}\)\(\f					OI .	$\frac{1}{3(or1\ 2)} = \frac{1}{\sqrt{13(or2\ 0.8)}}$ or	
	α must be angle opposite 1.6;	opposite	α must be angle opposite 1.6				
$\frac{\sin \alpha}{4(or1.6)} = \frac{\sin 60}{\sqrt{13(or2.08)}} $ and $\theta = 120 - \alpha$ A1ft $\frac{(\alpha = 73.9)}{\text{ft value of I or 'V'}}$					$and\theta = 120$	$\sin \alpha = \sin 60$	
$\frac{1}{4(or1.6)} = \frac{120 - \alpha}{\sqrt{13(or2.08)}} $ and $\theta = 120 - \alpha$ Alft ft value of I or 'V'	ft ft value of I or 'V'	V'	ft value of I or 'V'	A1ft	$-120-\alpha$	$\frac{1}{4(or1.6)} - \frac{1}{\sqrt{13(or2.08)}} dr$	
γ15(07 2.00)						γ15(0/2.00)	
$\theta = 46.1$				A1		$\theta = 46.1$	
	7]						
2 For using the principle of conservation of		noinle of	For using the principle of as	L J			2
		incipie oi	0 1 1	N/1			4
M1 momentum	momentum		momentum			2- + 21 2-4	
$2a + 3b = 2 \times 4$	E : MEI		E 'NE			$2a + 3b = 2 \times 4$	
M1 For using NEL	For using NEL		For using NEL				
$b - a = 0.6 \times 4$ A1							
[2(b-2.4) + 3b = 8] M1 For eliminating a	For eliminating a	a	For eliminating a				
b = 2.56 A1							
v = 2.56 B1ft $ft v = b$			ft v = b			v = 2.56	
[7]	7]			[7]			
3(i) M1 For using 'mmt of 2W = mmt of T'	For using $\frac{1}{1}$ mmt of $\frac{1}{2}$ W = mmt of T	of $2W = 1$	For using $\frac{1}{1}$ mmt of $2W = mn$	M1		i)	3(i)
$2W(a \cos 45^{\circ}) = T(2a)$ A1	_		-	A1		· · ·	
$W = \sqrt{2} T$ A1 AG	AG		AG				
						,-	
(ii) Components (H, V) of force on BC at B are	. -d			h	ce on BC at B are	Components (H V) of force	(ii)
H = -T/ $\sqrt{2}$ and V = T/ $\sqrt{2}$ -2W B1				R1			()
$M1 = -17\sqrt{2}$ and $V = 17\sqrt{2} - 2W$ $M1 = -17\sqrt{2}$ For taking moments about C for BC	For taking moments about C for BC	ente abou	For taking moments about C		~ 11	$\int_{-1}^{11} \sqrt{2} \operatorname{dia} \sqrt{1} \sqrt{2} = 2$	
	1 of taking moments about C for DC	ciiis audu	1 of taking moments about C		V(2a, acces)	W(a, aags) + U(2a, airs) - V(6a)	
	1	for U are	For substituting for II and V	Al	v (Za cosa)	$w(a \cos \alpha) + H(2a \sin \alpha) = V(a \cos \alpha)$	
	For substituting for U and V and made	ioi ii and		N / 1	4337 7		
	For substituting for H and V and red		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2 cosq -/IW/cosql	$[W \cos\alpha - T \sqrt{2} \sin\alpha = T \sqrt{2}]$	
1 1 2 5 11 3 (5 1) 1 2 (5 3 3 3	equation to the form $X \sin \alpha = Y \cos \alpha$		equation to the form X sinα		-		
tuli o	equation to the form $X \sin \alpha = Y \cos \alpha$		equation to the form $X \sin \alpha$	A1ft	-	` ` '	
[6]	equation to the form $X \sin \alpha = Y \cos \alpha$		equation to the form $X \sin \alpha$	A1ft A1	-	` ` '	

	A 14 4 : 1 6 4 (**)		
	Alternatively for part (ii)	M1	For taking moments about C for the whole
	anticlockwise mmt =	1V1 1	For taking moments about C for the whole
	$W(a \cos \alpha) + 2W(2a \cos \alpha + a \cos 45^{\circ})$	A1	
	$= T[2a \cos(\alpha - 45^{\circ}) + 2a]$	A1	
	$\begin{bmatrix} 5W \cos \alpha + \sqrt{2} W = 0 \end{bmatrix}$	711	For reducing equation to the form
	$T(\sqrt{2}\cos\alpha + \sqrt{2}\sin\alpha) + 2$	M1	$X \sin \alpha = Y \cos \alpha$
	$T\sqrt{2}\sin\alpha = (5W - T\sqrt{2})\cos\alpha$	A1ft	71 511100 1 00500
	$\tan \alpha = 4$	A1	
	$\alpha = 4$	[6]	
4(i)	$[-0.2(v + v^2) = 0.2a]$	M1	For using Newton's second law
-(-)	$\int v dv/dx = -(v + v^2)$	M1	For using $a = v \frac{dv}{dx}$
	[1/(1+v)] dv/dx = -1	A1	AG
	[[//(1 + v)] av/ai	[3]	
(ii)		M1	For integrating
	$\ln(1+v) = -x (+C)$	A1	
	$\ln(1+v) = -x + \ln 3$	A1	
	$[(1 + dx/dt)/3 = e^{-x} \rightarrow dx/dt = 3e^{-x} - 1]$		
	$ \Rightarrow e^x dx/dt = 3 - e^x] $	M1	For transposing for v and using $v = dx/dt$
	$[-e^{x}/(3-e^{x})] dx/dt = -1$	A1	AG
		[5]	
(iii)	$[\ln(3 - e^x) = -t + \ln 2]$	M1	For integrating and using $x(0) = 0$
	$\ln(3 - e^x) = -t + \ln 2$	A 1	
	Value of t is 1.96 (or $\ln\{2 \div (3 - e)\}$	A 1	
		[3]	
5(i)		M1	For using $EE = \lambda x^2/2L$ and $PE = Wh$
3(1)	Loss of EE = $120(0.5^2 - 0.3^2)/(2 \times 1.6)$	1V1 1	For using EE - AX /2E and TE - Wil
	and gain in PE = 1.5×4	A1	
	and gain in L = 1.5^4	M1	For comparing EE loss and PE gain
	v = 0 at B and loss of EE = gain in PE (= 6)	1711	1 of comparing EL 1033 and 1 L gain
	→ distance AB is 4m	A1	AG
	2 distance FID is in	[4]	110
(ii)	[120e/1.6 = 1.5]	M1	For using $T = mg$ and $T = \lambda x/L$
()	e = 0.02	A1	8
	Loss of EE = $120(0.5^2 - 0.02^2)/(2 \times 1.6)$		
	$(\text{or } 120(0.3^2 - 0.02^2)/(2 \times 1.6))$	B1ft	ft incorrect e only
	Gain in PE = $1.5(2.1 - 1.6 - 0.02)$		
	(or 1.5(1.9 + 1.6 + 0.02) loss)	B1ft	ft incorrect e only
	[KE at max speed = $9.36 - 0.72$		For using KE at max speed
	(or 3.36 + 5.28)]	M1	= Loss of EE $-$ Gain (or $+$ loss) in PE
	$\frac{1}{2}(1.5/9.8)v^2 = 9.36 - 0.72$	A1	, , , , ,
	Maximum speed is 10.6 ms ⁻¹	A1	
		[7]	
	First alternative for (ii)		
	x is distance AP		
	$\left[\frac{1}{2}(1.5/9.8)v^2 + 1.5x + 120(0.5 - x)^2/3.2 = \right]$		
	$120 \times 0.5^2 / 3.2$	M1	For using energy at $P = \text{energy at } A$
	KE and PE terms correct	A1	
	EE terms correct	A1	
	$v^2 = 470.4x - 490x^2$	A1	2
	[470.4 - 980x = 0]	M1	For attempting to solve $dv^2/dx = 0$
	x = 0.48	A1	
	Maximum speed is 10.6 ms ⁻¹	A1	

	Second alternative for (ii)		_
	[120e/1.6 = 1.5]	M1	For using $T = mg$ and $T = \lambda x/L$
	$\begin{bmatrix} 1206/1.0 - 1.3 \end{bmatrix}$ e = 0.02	A1	Tor using 1 - mg and 1 - kk/L
		M1	For using Nowton's second low
	$[1.5 - 120(0.02 + x)/1.6 = 1.5 \ddot{x}/g]$	IVI I	For using Newton's second law
			For obtaining the equation in the form
		3.54	$\ddot{x} = -n^2x$, using $(AB - L - e_{equil})$ for
		M1	amplitude and using $v_{max} = na$.
	$n = \sqrt{490}$	A1	
	a = 0.48	A1	
	Maximum speed is 10.6 ms ⁻¹	A1	
(3)	DE sain by $D = 0.45 \times 0.9$ sin O	B1	
6(i)	PE gain by $P = 0.4g \times 0.8 \sin \theta$	B1	
	PE loss by Q = $0.58g \times 0.8 \theta$		F
		M1	For using KE gain = PE loss
	$\frac{1}{2}(0.4 + 0.58)v^2 = g \times 0.8(0.58 \theta - 0.4\sin \theta)$	A1ft	4.77
	$v^2 = 9.28 \theta - 6.4 \sin \theta$	A1	AEF
		[5]	
(ii)			For applying Newton's second law to P and
		M1	using $a = v^2/r$
	$0.4g \sin \theta - R = 0.4v^2/0.8$	A1	
	$[0.4g \sin \theta - R = 4.64 \theta - 3.2 \sin \theta]$	M1	For substituting for v ²
	$R = 7.12 \sin \theta - 4.64 \theta$	A1	AG
	$K = 7.12 \sin \theta = 4.04 \theta$	[4]	
(iii)		M1	For substituting 1.53 and 1.54 into $R(\theta)$
(111)	R(1.53) = 0.01(48), R(1.54) = -0.02(9) or	1,11	1 of substituting 1.33 and 1.34 into K(0)
	simply $R(1.53) > 0$ and $R(1.54) < 0$	A1	
	Simply $K(1.55) > 0$ and $K(1.54) < 0$	Α1	For voice the idea that if D(1.52) and
			For using the idea that if $R(1.53)$ and $R(1.54)$ are of annexity signs than R is zero
			R(1.54) are of opposite signs then R is zero
		M1	(and thus P leaves the surface) for some
	$D(1.52) \times D(1.54) \times 0 - 1.52 \times 0 \times 1.54$		value of θ between 1.53 and 1.54.
	$R(1.53) \times R(1.54) < 0 \Rightarrow 1.53 < \alpha < 1.54$	A1	AG
		[4]	
7 (i)		M1	For using $T = \lambda e/L$
	$T_{AP} = 19.6e/1.6$ and $T_{BP} = 19.6(1.6-e)/1.6$	A 1	
		M1	For resolving forces parallel to the plane
	$0.5g \sin 30^{\circ} + 12.25(1.6 - e) = 12.25e$	A1ft	
	Distance AP is 2.5m	A1	
		[5]	
(ii)	Extensions of AP and BP are 0.9 + x and		
	0.7 - x respectively	B1	
	$0.5g \sin 30^{\circ} + 19.6(0.7 - x)/1.6$		
	$-19.6(0.9 + x)/1.6 = 0.5 \ddot{x}$	B1ft	
	$\ddot{x} = -49x$	B1	AG
	W 17A	M1	For stating k < 0 and using T = $2\pi/\sqrt{-k}$
	Period is 0.898 s	A1	5
	1 CHOU IS 0.070 S	[5]	
(iii)		M1	For using $v^2 = \omega^2 (A^2 - x^2)$ where $\omega^2 = -k$
(111)	$2.8^2 = 49(0.5^2 - x^2)$	A1ft	ft incorrect value of k
	$x^2 = 0.09$	A1	May be implied by a value of x
	021-02	A 1.0	ft incorrect value of k or incorrect value of
	x = 0.3 and -0.3	A1ft	x^2 (stated)
		[4]	

4732 Probability & Statistics 1

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding

Penalise over-rounding only once in paper.

1 (i) attempts at threading indep prob of succeeding in threading const B1 in context (ii) (a) 0.7² × 0.3 M1 Condone 0.072 (b) 0.7³ × 0.3 M2 Condone 0.072 (b) 0.7° × 0.3 M2 or 1-(0.3+0.7×0.3+0.7²×0.3) or 1-(0.3+0.7×0.3-0.7²×0.3) or 1-(0.3+0.7×0.3) or 1-(0.3+0.7×0.3) or 0.3, 0.7 muddle or 0.7² or 0.7° alone, 0.6 not 0.7 Mo in (a) M1 in (b) (iii) likely to improve with practice hence independence unlikely or prob will increase cach time B1 1 1 or thread strands gradually separate 1° B1 must be in context. hence independence unlikely or prob will decrease cach time or similar Allow 'change' Total [9] 2 (ii) (a) Use of correct midpts $\Sigma fr + \Sigma f$ (= 706 ÷ 40) -17.65 B1 1,1,41,825.5 I within class, ≥ three lf seen [17.575,17.7] $\Sigma f^2 f$ (= 13050.5) M1 -40 (mean², √Dep>0. -40 , mean², √D		Tounding only once in paper.	r	1.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 (i)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		prob of succeeding in threading const	B1 2	in context
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(ii) (a)	$0.7^4 \times 0.3$	M1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		= 0.0720 (3sf)	A1 2	Condone 0.072
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(b)		M2	or 1- $(0.3+0.7\times0.3+0.7^2\times0.3+0.7^3\times0.3$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(~)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
(iii) likely to improve with practice B1		-0.169 (2.9fc)	Λ1 2	
(iii) likely to improve with practice hence independence unlikely or prob will increase each time B1 or thread strands gradually separate 1st B1 must be in context. hence independence unlikely or prob will decrease each time or similar Allow 'change' Total [9] 2 (i) (a) Use of correct midpts $\Sigma f' + \Sigma f$ (= 706 ÷ 40) $= 17.65$ B1 $= 11.44, 14.8, 25.5$ $= 17.65$ In three $f' f' f$		-0.108 (3 818)	AI 3	
(iii) likely to improve with practice hence independence unlikely or prob will increase each time hence independence unlikely or prob will increase each time hence independence unlikely or prob will decrease each time or similar Allow 'change' Total [9] 2 (i) (a) Use of correct midpts $\Sigma f + \Sigma f = 0$ (= 706 ÷ 40) $= 17.65$ [1,14,18,25.5] $= 17.65$ [1,575,17.7] $\Sigma f = 0$ $= 17.65$ [1,575,17.7] $\Sigma f = 0$ $= 17.65^{\circ 2}$ (= 13050.5) M1 $= 0$ $=$				
hence independence unlikely or prob will increase each time B1 2 2 (i) (a) Use of correct midpts $\Sigma lf + \Sigma f = 17.65$			 	
hence independence unlikely or prob will increase each time or prob will decrease each time or similar allow 'change' Total	(iii)	likely to improve with practice	B1	
Total [9] 2 (i) (a) Use of correct midpts $\Sigma If + \Sigma f$ (= 706 + 40) = 17.65 B1 $I = 11,14,18,25.5$ $I = 11,14,18,25.5$ $I = 11,14,18,25.5$ $I = 17.65$ $\Sigma If + \Sigma f$ (= 13050.5) $\Sigma If + \Sigma f$ (= 13050.5) M1 $I = 11,14,18,25.5$ $I = 11,14,14,18,25.5$ $I = 11,14,14,14,1$				
Total				hence independence unlikely
Total 2 (i) (a) Use of correct midpts $\Sigma Lf + \Sigma f$ (= 706 ÷ 40) $M1$ $I1,1,1,18,25.5$ I within class, ≥ three lf seen [17.575,17.7] ΣL^2f (= 13050.5) $M1$ ≥ three l^2f seen [17.65) L^2f (= 13050.5) L^2f (=		or prob will increase each time	B1 2	or prob will decrease each time
Total [9] 2 (i) (a) Use of correct midpts $\Sigma f + \Sigma f = 0$ (= 706 ÷ 40) B1 $III, 14, 18, 25.5$ I within class, ≥ three If seen $IIII, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17$				or similar
Total [9] 2 (i) (a) Use of correct midpts $\Sigma f + \Sigma f = 0$ (= 706 ÷ 40) B1 $III, 14, 18, 25.5$ I within class, ≥ three If seen $IIII, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17$				Allow 'change'
2 (i) (a) Use of correct midpts $2 f + 2 f = 2 $	Total		[9]	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Use of correct midpts		11 14 18 25 5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_ (1) (4)	•		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				_ · _ ·
$ \sqrt[\frac{"13050.5"}{40} - "17.65"^2 \qquad (= \sqrt{14.74}) \\ = 3.84 (3 \text{ sfs}) \qquad \qquad \text{M1} \qquad \frac{\div 40, \text{-mean}^2, \sqrt{\text{.Dep}} > 0.}{\sum (I-17.65)^2 \text{ fa least 3 M1}, \div 40, \sqrt{\text{M}}} \\ \text{M1} \qquad \qquad 3.84 \text{ A1}. \qquad \div 4 \Rightarrow \text{max BIM0A0M1M0A0} \\ \text{(b)} \qquad \text{mid pts used or data grouped or exact values unknown oe} \qquad \text{not "orig values were guesses"} \\ \text{(ii)} \qquad \qquad 20 \div 5 \\ = 4 \qquad \qquad \qquad \text{A1} \qquad 2 \\ \text{(iii)} \qquad \qquad 20.5^{\text{th}} \text{ value requ'd and} \\ \qquad \qquad \qquad 1^{\text{st}} \text{ two classes contain 14 values} \\ \qquad \qquad 16-20 \qquad \qquad \text{B1} \qquad 2 \\ \text{(iv)} \qquad \text{(a)} \qquad \text{increase} \qquad \qquad \text{B1} \qquad 1 \\ \text{(b)} \qquad \text{decrease} \qquad \qquad \text{B1} \qquad 1 \\ \text{(b)} \qquad \text{decrease} \qquad \qquad \text{B1} \qquad 1 \\ \qquad \qquad$		- 17.03	AI	[17.575,17.7]
$ \sqrt[\frac{"13050.5"}{40} - "17.65"^2 \qquad (= \sqrt{14.74}) \\ = 3.84 (3 \text{ sfs}) \qquad \qquad \text{M1} \qquad \frac{\div 40, \text{-mean}^2, \sqrt{\text{.Dep}} > 0.}{\sum (I-17.65)^2 \text{ fa least 3 M1}, \div 40, \sqrt{\text{M}}} \\ \text{M1} \qquad \qquad 3.84 \text{ A1}. \qquad \div 4 \Rightarrow \text{max BIM0A0M1M0A0} \\ \text{(b)} \qquad \text{mid pts used or data grouped or exact values unknown oe} \qquad \text{not "orig values were guesses"} \\ \text{(ii)} \qquad \qquad 20 \div 5 \\ = 4 \qquad \qquad \qquad \text{A1} \qquad 2 \\ \text{(iii)} \qquad \qquad 20.5^{\text{th}} \text{ value requ'd and} \\ \qquad \qquad \qquad 1^{\text{st}} \text{ two classes contain 14 values} \\ \qquad \qquad 16-20 \qquad \qquad \text{B1} \qquad 2 \\ \text{(iv)} \qquad \text{(a)} \qquad \text{increase} \qquad \qquad \text{B1} \qquad 1 \\ \text{(b)} \qquad \text{decrease} \qquad \qquad \text{B1} \qquad 1 \\ \text{(b)} \qquad \text{decrease} \qquad \qquad \text{B1} \qquad 1 \\ \qquad \qquad$		$\nabla^{2}f$ (-12050.5)	N/1	three left goon
Condone 20 th Con			IVII	\(\geq \text{tillee} \(i \) seen
Condone 20 th Con		$\frac{13050.5}{17.65}$ $\frac{17.65}{17.65}$ $\frac{17.74}{17.65}$	3.61	2 / D > 0
Same		√ 40	MH	
(b) mid pts used or data grouped or exact values unknown oe (ii) $20 \div 5$ $= 4$ (iii) $20 \div 5$ $= 4$ (iii) $20 \cdot 5^{\text{th}}$ value requ'd and 1^{st} two classes contain 14 values $16 - 20$ (iv) (a) increase (b) decrease (b) decrease (b) $\frac{1}{8} = 0.2412$ $\frac{1}{8} = \frac{1}{8} = \frac{1}{8}$ Total 3 (i) $\frac{1}{8} = \frac{1}{8} = \frac{1}{8}$		= 3.84 (3.sfs)		
(b) mid pts used or data grouped or exact values unknown oe B1 1 not "orig values were guesses" (ii) $20 \div 5$ = 4 M1 condone $20 \div [4,5]$ or ans 5 (iii) 20.5^{th} value requ'd and 1st two classes contain 14 values 16 - 20 M1 condone 20^{th} (iv) (a) increase B1 1 (b) decrease B1 1 Total [13] Allow x or $\div 5$ $S_{hm} = 0.2412$ $S_{hh} = 0.10992$ $S_{mm} = 27.212$ $S_{hh} = 0.139(3 sfs)$ B1 any one S correct ft their Ss (ii) Small, low or not close to 1 or close to 0 oe pts not close to line oe B1 ft 2^{th} B1 about value of 2^{th} B1 about diag (iii) none or unchanged or "0.139" oe B1 1 (iv) Larger oe B1 1		2.0 . (2 5.15)	Al 6	
(ii) $20 \div 5$ M1 condone $20 \div [4,5]$ or ans 5 (iii) 20.5^{th} value requ'd and 1st two classes contain 14 values 16 – 20 M1 condone 20^{th} oe or third class oe (iv) (a) increase B1 1 (b) decrease B1 1 Total [13] 3 (i) $S_{hm} = 0.2412$ Shh = 0.10992 Shh = 0.10992 Shh = 0.10992 Shh = 0.139 (3 sfs) Allow x or $\div 5$ B1 any one S correct ft their Ss Allow x or $\div 5$ Allow x or $\div 5$ B1 $1 \times 1 \times$				
(ii) $20 \div 5$ = 4 M1 A1 condone $20 \div [4,5]$ or ans 5 (iii) 20.5^{th} value requ'd and 1st two classes contain 14 values 	(b)	mid pts used or data grouped		not "orig values were guesses"
(iii) 20.5^{th} value requ'd and 1st two classes contain 14 values 16 – 20 $M1$ oe or third class oe (iv) (a) increase B1 1 (b) decrease B1 1 Total [13] 3 (i) $S_{hm} = 0.2412$ Shh = 0.10992 Shh = 0.10992 Shh = 0.13992 Shh = 0.139 (3 sfs) B1 any one S correct ft their Ss (ii) Small, low or not close to 1 or close to 0 oe pts not close to line oe pts not close to line oe pts not close to line oe (iv) B1 ft Larger oe 1^{st} B1 about value of r 2nd B1 about diag		or exact values unknown oe	B1 1	
(iii) 20.5^{th} value requ'd and 1^{st} two classes contain 14 values $16-20$ M1 oe $16-20$ condone 20^{th} oe or third class oe (iv) (a) increase B1 1 M1 oe or third class oe (iv) (a) increase B1 1 M1 oe or third class oe (b) decrease B1 1 M1 oe or third class oe Total [13] Allow x or ÷ 5 $S_{hm} = 0.2412$ B1 any one S correct M1 ft their Ss $S_{mm} = 27.212$ M1 ft their Ss $V_{(S_{hh}S_{mm})}$ A1 3	(ii)	20 ÷ 5	M1	condone $20 \div [4,5]$ or ans 5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		=4	A1 2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(iii)	20.5 th value requ'd and		condone 20 th
(iv) (a) increase B1 1 or third class oe (b) decrease B1 1 Image: square squa	()		M1	
(iv) (a) increase B1 1 (b) decrease B1 1 Total [13] 3 (i) $S_{hm} = 0.2412$ $S_{hm} = 0.10992$ $S_{mm} = 27.212$ $S_{mm} = 27.212$ $S_{mm} = 27.212$ $S_{mm} = 0.139$ (3 sfs) B1 any one S correct ft their Ss (ii) Small, low or not close to 1 or close to 0 or				
Total B1 1 3 (i) $S_{hm} = 0.2412$ $S_{hh} = 0.10992$ $S_{mm} = 27.212$ $r = S_{hm}$ $\sqrt{(S_{hh}S_{mm})}$ = 0.139 (3 sfs) (ii) B1 any one S correct fit their Ss (iii) Small, low or not close to 1 or close to 0 oe pts not close to line oe pts not close to line oe B1 fit pt list B1 about value of r 2nd B1 about diag (iii) In one or unchanged or "0.139" oe B1 list B1 about diag (iii) Larger oe B1 list B1 about diag	(iv) (a)			or time class oc
Total [13] 3 (i) $S_{hm} = 0.2412$ $S_{hh} = 0.10992$ $S_{mm} = 27.212$ $r = S_{hm}$ $\sqrt{(S_{hh}S_{mm})}$ = 0.139 (3 sfs) (ii) B1 any one S correct ft their Ss (iii) Small, low or not close to 1 or close to 0 oe pts not close to line oe pts not close to line oe B1 ft pts labout value of r pts not close to line oe (iii) none or unchanged or "0.139" oe B1 legs labout diag (iv) Larger oe B1 legs labout diag				
3 (i) $S_{hm} = 0.2412$ $S_{hh} = 0.10992$ $S_{mm} = 27.212$ $r = S_{hm} \over \sqrt{(S_{hh}S_{mm})}$ $= 0.139 (3 \text{ sfs})$ B1 $M1$ any one S correct ft their Ss (ii) Small, low or not close to 1 or close to 0 oe pts not close to line oe B1 ft 2^{nd} B1 about value of r 2^{nd} B1 about diag (iii) none or unchanged or "0.139" oe B1 1 (iv) Larger oe B1 1	` ′	decrease		
$S_{hh} = 0.10992$ $S_{mm} = 27.212$ $r = \frac{S_{hm}}{\sqrt{(S_{hh}S_{mm})}}$ $= 0.139 \text{ (3 sfs)}$ (ii) Small, low or not close to 1 or close to 0 oe pts not close to line oe (iii) none or unchanged or "0.139" oe (iv) Larger oe $S_{hh} = 0.10992$ $M1 any one S correct ft their Ss A1 3 S_{hh} = 0.10992 S_{hh} = 0.139 \text{ (iii)} S_{hh} = 0.10992 S_{hh} = 0.10992 S_{hh} = 0.10992 S_{hh} = 0.10992 S_{hh} = 0.139 \text{ (iii)} S_{hh} = 0.10992 S_{hh} = 0.10992 S_{hh} = 0.139 \text{ (iii)} S_{hh} = 0.139 \text{ (iii)} S_{hh} = 0.10992 S_{hh} = 0.139 \text{ (iii)} S_{hh} = 0.139 \text{ (iiii)} S_{hh} = 0.139 \text{ (iiii)} S_{hh} = 0.139 \text{ (iiii)} S_{hh} = 0.139 \text{ (iiii)}$		G 0.2412	[13]	A 11
$S_{mm} = 27.212$ $r = S_{hm} \over \sqrt{(S_{hh}S_{mm})}$ $= 0.139 (3 sfs)$ (ii) Small, low or not close to 1 or close to 0 oe pts not close to line oe (iii) none or unchanged or "0.139" oe (iv) Larger oe $S_{hm} = 27.212$ $M1 st their Ss$ $A1 3$ $S_{hm} = 27.212$ $S_$	3 (1)			Allow x or \div 5
$r = \frac{S_{hm}}{\sqrt{(S_{hh}S_{mm})}}$ $= 0.139 (3 \text{ sfs})$ A1 3 (ii) Small, low or not close to 1 or close to 0 oe pts not close to line oe (iii) none or unchanged or "0.139" oe (iv) Larger oe M1 ft their Ss A1 3 Ist B1 about value of r 2^{nd} B1 about diag B1 1			D.	
				1 -
			M1	ft their Ss
(ii)Small, low or not close to 1 or close to 0 oe pts not close to line oeB1 ft 2^{nd} B1 about value of r 2^{nd} B1 about diag(iii)none or unchanged or "0.139" oeB1 1(iv)Larger oeB1 1				
to 0 oe pts not close to line oe B1 (iii) none or unchanged or "0.139" oe B1 1 (iv) Larger oe B1 1		= 0.139 (3 sfs)	A1 3	
to 0 oe pts not close to line oe B1 (iii) none or unchanged or "0.139" oe B1 1 (iv) Larger oe B1 1	(ii)	Small, low or not close to 1 or close	B1 ft	
pts not close to line oe		1		2 nd B1 about diag
(iii) none or unchanged or "0.139" oe B1 1 (iv) Larger oe B1 1			B1	
(iv) Larger oe B1 1	(jii)	<u> </u>		
10tai [/]	` ′	Larger oc		
	1 otal		[7]	

4	(i)	$(0 \times \frac{1}{2}) + 1 \times \frac{1}{4} + 2 \times \frac{1}{8} + 3 \times \frac{1}{8}$	M1		≥ 2 non-zero terms seen
		$=\frac{7}{8}$ or 0.875 oe	A 1		If $\div 3$ or 4 M0M0M1(poss)
		$(0 \times \frac{1}{2}) + 1 \times \frac{1}{4} + 2^2 \times \frac{1}{8} + 3^2 \times \frac{1}{8} $ (=	M1		≥ 2 non-zero terms seen
		$1\frac{7}{8}$)			
		- (" 7 ") ²	M1		dep +ve result M1 all4 (x-0.875) ² terms seen.
		$=\frac{71}{64}$ or 1.11 (3 sfs) oe	A 1	5	M1 mult p,∑ A1 1.11
	(ii)	Bin stated or implied	M1		Eg table or $\frac{1}{4}^n \times \frac{3}{4}^m$ $(n+m=10,n,m\neq 1)$
		0.922 (3 sfs)	A1	2	or10C4
	(iii)	y = 10 % y = 1 stated or implied	M1		or 5(or 4 or 6) terms correct
	(111)	$n = 10 & p = \frac{1}{8}$ stated or implied	1011		
		$^{10}\text{C}_4 \times \frac{7}{8}^{6} \times \frac{1}{8}^{4}$	M1		aandana 0.022
		= 0.0230 (3 sfs)	A1	3	condone 0.023
	Total		[10)]	
5	(i)	$\frac{6}{14} \times \frac{5}{13} \times \frac{3}{12}$	M1		${}^{6}C_{1} \times {}^{5}C_{1} \times {}^{3}C_{1}$
		× 3! oe	M1		\div ¹⁴ C ₃
		$=\frac{45}{182}$ or 0.247 (3 sfs)oe	A1	2	With repl M0M1A0
	(ii)	$\frac{6}{14} \times \frac{5}{13} \times \frac{4}{12} + \frac{5}{14} \times \frac{4}{13} \times \frac{3}{12} + \frac{3}{14} \times \frac{2}{13} \times \frac{1}{12}$	M2	3_	${}^{6}C_{3} + {}^{5}C_{3} + {}^{3}C_{3}$ M1 for any one
	(11)	14 15 12 14 15 12 14 15 12	1112		$(\div^{14}C_3)M1$ all 9 numerators correct.
		$=\frac{31}{364}$ or 0.0852 (3 sf)	A1	3	With repl M1 $(6/14)^3+(5/14)^3+(3/14)^3$
	Total		[6]	
6	(a)	A: diag or explanation showing pts	B1		
		close to st line, always increasing			
		B:Diag or expl based on	B1		Diag or expl based on
		r=1=>pts on st line			$r(s) \neq 1 = pts$ not on st line
		=>r(s)=1	B1	3	=>r≠ 1
					r=1=>pts on st line&r(s) \neq 1=>pts not on st line B1B1
					r=1=>r(s)=1 B2
	(b)	$\bar{y} = 2.4 \times 4.5 + 3.7$	M1		Attempt to sub expression for y
		= 14.5	A1		x=0.96x+1.48-c oe
		$4.5 = 0.4 \times \text{``}14.5\text{''}-c$ $c = 1.3$	M1 A1	4	sub x=4.5 and solve c=1.3
		1 c = 13	7 1 1	7	C 1.3
Ì					
		a'=x-b'y:-14.5 M1A1;			14.5 M1A1.(y-3.7)/2.4=0.4y-c and
					14.5 M1A1.(y-3.7)/2.4=0.4y-c and sub14.5 M1 c=1.3 A1
	Total	a'=x-b'y:-14.5 M1A1; then a'=4.5-0.4x14.5=-1.3 M1A1	[7	_	sub14.5 M1 c=1.3 A1
7	(i)	a'=x-b'y:-14.5 M1A1; then a'=4.5-0.4x14.5=-1.3 M1A1	B2	<u>]</u> 2	\ 3 /
7		a'=x-b'y:-14.5 M1A1; then a'=4.5-0.4x14.5=-1.3 M1A1 $\frac{^{25}}{^{37}}$ $\frac{^{15}}{^{23}}$ seen or implied		_	sub14.5 M1 c=1.3 A1
7	(i)	a'=x-b'y:-14.5 M1A1; then a'=4.5-0.4x14.5=-1.3 M1A1	B2	_	sub14.5 M1 c=1.3 A1 B1 num, B1 denom 25/37xp B1 M1 num, M1 denom
7	(i)	a'=x-b'y:-14.5 M1A1; then a'=4.5-0.4x14.5=-1.3 M1A1 $\frac{^{25}}{^{37}}$ $\frac{^{15}}{^{23}}$ seen or implied	B2 M1 M2	2	sub14.5 M1 c=1.3 A1 B1 num, B1 denom 25/37xp B1
7	(i)	a'=x-b'y:-14.5 M1A1; then a'=4.5-0.4x14.5=-1.3 M1A1 $\frac{^{25}/_{37}}{^{23}}$ seen or implied $\times \frac{39}{59}$ seen or implied	B2 M1	2 4	sub14.5 M1 c=1.3 A1 B1 num, B1 denom 25/37xp B1 M1 num, M1 denom

8 (i)	5!/2	M1	Allow 5P3
	=60	A1 2	
(ii)	4!	M1	Allow 2×4!
	= 24	A1 2	
(iii)	$\frac{2}{5} \times \frac{3}{4} \text{ or } \frac{3}{5} \times \frac{2}{4}$	M1	allow M1 for $\frac{2}{5} \times \frac{3}{5} \times 2$ or $\frac{12}{25}$
	$\times 2$	M1	or $(6\times3!)\div(i)$ M2 or
	$= \frac{3}{5}$ oe	A1 3	$3! \div (i), 6 \div (i), (6+6) \div (i), 6k \div (i)$ or 6×6 or
			36 or 1-correct answer M1
			$(k, integer \le 5)$
Total		[7]	
9 (i)	p^2	B1 1	
(ii)	$(q^2p)^2$ oe =AG	B1 1	
(iii)	$r=q^2$	B1	May be implied
	a/(1-r) used	M1	With a=p ² and r=q ² or q ⁴
	p^2		
	$(S_{\infty} =) \frac{p^2}{1 - a^2}$	A1	
	1-q		
		M1	Attempt to simplify using p+q=1
			correctly. Dep on $r = q^2$ or q^4
	$=$ p^2		$(1-q)^2$
	$= \frac{p^2}{1 - (1 - p)^2}$		$\frac{(1-q)^2}{(1-q)(1+q)} \text{or } p^2/p(1+q)$
	p/(2-p) AG	A1 5	Correctly obtain given answer showing
		AI 3	at least one intermediate step.
P2Total		[7]	at least one intermediate step.

Total 72 marks

4733 Probability & Statistics 2

Penalise over-specified answers (> 6 SF) first time but only once per paper. Use Or Oto annotate "over-assertive" or "no context" respectively

		Osc Rol Cito allifotate of			of no context respectively
1		$\hat{\mu} = \overline{x} = 15.16$	B1		15.16 or 15.2 as answer only
		$\hat{\sigma}^2 = \frac{5}{4}s^2$	M1		Use $\frac{\Sigma x^2}{5} - \bar{x}^2$ [=1.0904]
		т	M1		Multiply by 5/4, or equiv for single formula
		= 1.363	A1	4	Final answer 1.36 or 1.363 only, <i>not</i> isw
2	(i)	Not all equally likely – those in	M1		Not all equally likely stated or implied
_	(1)	range 0 to 199 more likely to be	A1	2	Justified by reference to numbers, no
		chosen	711	_	spurious reasons
	(ii)	Ignore random numbers greater	B1	1	Any valid resolution of this problem, no
	(11)	than 799, or 399		-	spurious reasons
3		$B(60, 0.35) \approx N(21, 13.65)$	M1		B(60, 0.35) stated or implied
			M1		N(21,)
		$\Phi\left(\frac{18.5-21}{\sqrt{13.65}}\right) = \Phi(-0.6767)$	A1		Variance or $SD = 13.65$
		(,)	M1		Standardise, their np and \sqrt{npq} or npq ,
		= 1 - 0.7507			wrong or no cc
			A 1		Both \sqrt{npq} and cc correct
		= 0.2493	A 1	6	Answer, a.r.t. 0.249
4		$H_0: \mu = 60; H_1: \mu < 60$	B2		Both correct, B2
-					B1 for one error, but not x , t , \overline{x} or \overline{t}
		(α) $z = \frac{58.9 - 60}{\sqrt{5^2 / 80}} = -1.967$	M1		Standardise 58.9 & $\sqrt{80}$, allow – or $\sqrt{100}$ errors
		ν3 / 80	A1		z, art -1.97 or p in range [0.024, 0.025]
		< - 1.645	B1		Explicit comparison with -1.645 or 0.05 , or
					+1.645 or 0.95 if 1.967 or 0.976 used
	or:	$(\beta)_{c} = 60 - 1.645 \times \frac{5}{\sqrt{80}} = 59.08$	M1		$60 - z \times 5/\sqrt{80}$, any $z = \Phi^{-1}$, allow $\sqrt{\text{errors or}}$
		$C = 60 - 1.643 \times \frac{1}{\sqrt{80}} = 39.08$	B1		\pm , not just +; $z = 1.645$ and compare 58.9
		58.9 < 59.08	A1		59.1 or better, \checkmark on wrong z
		Reject H ₀	M1		Correct first conclusion, needs essentially
		3			correct method including √80 or 80
		Significant evidence that people	A1	7	Contextualised, uncertainty acknowledged
		underestimate time			SR: $\mu = 58.9$: B0M1A0B1 max 2/7
					SR: 2-tail: max 5/7
5	(i)	$H_0: \lambda = 11.0$	B2		Allow <i>μ</i> . Both correct, B2
		$H_1: \lambda > 11.0$			One error: B1, but not C , x etc
		(α) $P(\geq 19) = 1 - 0.9823$	M1		Find $P(\ge 19)$ [or $P(< 19)$ if later 0.95]
		= 0.0177	A 1		art 0.0177 [0.9823, ditto]
		< 0.05	B1		Compare 0.05 [0.95 if consistent], needs
					M1
		(β) CR \geq 18,	M1		CR or CV 16/17/18/19 stated or clearly
					implied, but not <
		$P(\ge 18) = 0.0322$	A1		18 and 0.0322 both seen, allow 0.9678
		19 > 18	B1		Explicit comparison with 19, needs M1
		Reject H ₀	M1		Needs essentially correct method &
		G: :c , :1		_	comparison
		Significant evidence of an	A1	7	Contextualised, uncertainty acknowledged
		increase in number of customers			SR: Normal, or $P(=19)$ or $P(\le 19)$ or
		G 24 1 1	D 1		P(> 19): First B2 only.
	(ii)	Can't deduce cause-and-effect, or	B1	1	Conclusion needed. No spurious reasons.
		there may be other factors			If "DNR" in (i), "couldn't deduce even
1			1		if"

6	(i)	(a) Probabilities don't total 1	B1	1	Equivalent statement
		(b) $P(>70)$ must be $< P(>50)$	B1	1	Equivalent statement
		(c) $P(>50) = 0.3 \Rightarrow \mu < 50$	B1	1	Any relevant valid statement, e.g. "P(< 50)
		$P(<70) = 0.3 \Rightarrow \mu > 70$			= 0.7 but P(< 50) must be < P(< 70)"
	(ii)	$\mu = 60$ by symmetry	B1		$\mu = 60$ obtained at any point, allow from Φ
		$\frac{10}{\sigma} = \Phi^{-1}(0.7) = 0.524(4)$	M1		One standardisation, equate to Φ^{-1} , not
		$\sigma = \Psi (0.7) = 0.324(4)$			0.758
		$\sigma = 10/0.5243$	B1		$\Phi^{-1} \in [0.524, 0.5245]$ seen
		= 19.084	A1	4	σ in range [19.07, 19.1], e.g. 19.073
7	(i)	A	M1		Horizontal line
			A 1	2	Evidence of truncation
					[no need for labels]
		5 11			
	(ii)	$\mu = 8$	B1		8 only, cwd
		$\int_{5}^{11} \frac{1}{6} t^2 dt = \left[\frac{1}{18} t^3 \right]_{5}^{11} [=67]$	M1		Attempt $\int kt^2 dt$, limits 5 and 11 seen
		• 3	B1		k = 1/6 stated or implied
		-8^2	M1	_	Subtract their (non-zero) mean ²
		= 3	A1	5	Answer 3 only, <i>not</i> from MF1
	(iii)	N(8, 3/48)	M1		Normal stated or implied
		$1 - \Phi \left(\frac{8.3 - 8}{\sqrt{3/48}} \right) = 1 - \Phi(1.2)$	A1		Mean 8
		$\left(\sqrt{3/48}\right)$	A1		Variance their (non-zero) (ii)/48
		= 1 - 0.8848	M1		Standardise, \sqrt{n} , ignore sign or \sqrt{n} errors. cc:
		= 0.1151	A 1		M0
		Normal distribution only approx.	A1 B1		Answer, art 0.115
8	(i)	- 11	M1	6	Any equivalent comment, e.g. CLT used
ð	(i)	$P(\leq 4) = 0.0473$ Therefore CD is ≤ 4	B1		$P(\le r)$ from B(10, 0.7), $r = 3/4/5$, not N
		Therefore CR is ≤ 4	A1	3	"≤ 4" stated, not just "4", nothing else
	(ii)	P(Type I error) = 4.73% B(10, 0.4) and find $P(>4)$	M1	<i>J</i>	Answer, art 0.0473 or 4.73%, must be stated Must be this, <i>not</i> isw, on (i)
	(11)	$1 - P(\le 4)$	M1		Allow for 0.6177 or 0.1622
		= 0.3669	A1	3	Answer, art 0.367
	(iii)	0.5 × 0.3669	M1		0.5 × (ii)
	(111)	= 0.18345	A1	2	Ans correct to 3 SF, e.g. 0.184 from 0.367
		- 0.10545	1114		1 1113 COTTOCK to 3 51, C.g. 0.107 HOIII 0.307

9	(i)	$1 - P(\le 7) = 1 - 0.9881$	M1		Allow for 0.0038 or 0.0335
	(-)	= 0.0119	A1	2	Answer, a.r.t. 0.0119
	(ii)	Po(12)	M1		Po(12) stated or implied
	(11)	` /	M1		Formula, 2 consecutive correct terms, or
		$P(\le 14) - P(\le 12)$	101 1		-
		[0.7720 - 0.5760]		•	tables, e.g0905 or .3104 or .1629
		= 0.196	A1	3	Answer, art 0.196
	(iii)	$Po(60) \approx N(60, 60)$	M1		N(60,)
			A1		Variance or SD 60
		$= (69.5-60) = \Phi(1.226)$	M1		Standardise, $\lambda \& \sqrt{\lambda}$, allow λ or wrong or no
		$\Phi\left(\frac{69.5-60}{\sqrt{60}}\right) = \Phi(1.226)$			cc
		(000)	A1		$\sqrt{\lambda}$ and cc both correct
		= 0.8899	A1	5	Answer 0.89 or a.r.t. 0.890
	(iv)	(a) $1 - e^{-3m}(1 + 3m)$	M1		M1 for one error, e.g. no "1 –", or extra term,
	(11)		A1	2	or 0 th term missing; answer, aesf
		(b) $m = 1.29$,	M1		Substitute 1.29 or 1.3 into appropriate fn
		p = 0.89842	A1		Comp 0.9 0.1 0
		m = 1.3, p = 0.9008	A1		1.29 0.898 0.1015800158
		1.5, p 0.5000			1.3 0.901 0.09918 .0008146
		Straddles 0.9, therefore solution			Explicit comparison with relevant value, &
		between 1.29 and 1.3	A1	4	
			N 61 A 1		conclusion, needs both <i>p</i> s correct
	or	, , , , , , , , , , , , , , , , , , , ,	M1A1		Can be implied by at least 1.296
		1.2965or better; conclusion	A1A1		Need at least 4 dp for M1A2
		stated			

4734 Probability & Statistics 3

1(2)	0.0	1/1		Come of analyshilities —1
1(i)	$\int_{-a}^{0} \frac{2}{5} dx + \int_{0}^{\infty} \frac{2}{5} e^{-2x} dx = 1$	M1		Sum of probabilities =1
		A1		
	2a/5 + 1/5 = 1	A1	3	
	a = 2			
(ii)				
	- c0 2 c∞ 2 -	M1		$\sum \int x f(x) dx$
	$\int_{-2}^{0} \frac{2}{5} x dx + \int_{0}^{\infty} \frac{2}{5} x e^{-2x} dx$			
		A1 √		\sqrt{a}
	$\int_{-a}^{0} \frac{2}{5} x dx = -\frac{a^2}{5}$			
	3	M1		By parts with 1 part correct
	$\int_0^\infty \frac{2}{5} x e^{-2x} dx = \left[-\frac{1}{5} x e^{-2x} \right] + \left[-\frac{1}{10} e^{-2x} \right]$	Al		Both parts correct
		A1	5	CAO
	= - 0.7	111	[8]	
	A	DIDI		1.6
2(i)	4 cartons: Total, $Y \sim N(2016, 36)$ $P(Y \le 2000) = \Phi(-16/\sqrt{36})$	B1B1 M1		Mean and variance
	= 0.00383	A1	4	
	- 0.00363	AI		
(ii)	E(V) = 0	B1		
	$Var(V) = 36 + 16 \times 9$	M1		
	= 180	A1	3	CWO
(***)	0.5			
(iii)	0.5	B1	1 [8]	
3(i)	Normal distribution	B1	լօյ	
3(1)	Mean $\mu_1 - \mu_2$; variance $2.47/n_1 + 4.23/n_2$	B1B1		
	1.25.112	2.2.	3	
(ii)	$H_0: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2$	B1		
	$(9.65 - 7.23)/\sqrt{(2.47/5 + 4.23/10)}$	M1		Or find critical region
	-2.527	B1		Numerator
	=2.527	A1		
	> 2.326	M1		Compare with critical value
	Reject H ₀	1711		SR1:If no specific comparison but CV and
	There is sufficient evidence at the 2%			conclusion correct B1. Same in Q5,6,7
	significance level that the means differ	A1		SR2: From CI: 2.42±zσ M1, σ correct
			6	z = 2.326 B1, (0.193, 4.647) A1
				0 in not in CI; reject H ₀ etc M1A1 Total 6
				Conclusions not over-assertive in Q3, 5, 6
(;;;)	Any relevant comment.	B1	1	e.g sample sizes too small for CLT to apply
(iii)	Any relevant comment.	DI	1 [10]	e.g sample sizes too small for CL1 to apply
			[IU]	
L				

4(i)	$G(y)=P(Y \le y)=P(1/(1+V) \le y)$ $=P(V \ge 1/y - 1)$ $= 1 - F(1/y - 1)$ $=\begin{cases} 0 & y \le 0, \\ 8y^3 & 0 < y \le 1/2, \\ 1 & y > 1/2. \end{cases}$ $g(y) =\begin{cases} 24y^2 & 0 < y \le 1/2, \\ 0 & \text{otherwise.} \end{cases}$ $\int 24y^2/y^2 dy \text{ with limits}$ $= 12$	M1 A1 A1 B1 M1 A1 A1 T M1 A1 A1 A1 A2		Use of F $8y^3$ obtained correctly Correct range. Condone omission of $y \le 0$ For $G'(y)$ Correct answer with range $\sqrt{}$ With attempt at integration
5(i) (ii)	Use $p_s \pm z\sqrt{(p_sq_s/200)}$ z=1.645 $s = \sqrt{(0.135 \times 0.865/200)}$ (0.0952, 0.1747) 	[9] M1 B1 A1 4		Or /199 (0.095, 0.175) to 3DP
6(i) (ii)	Assumes that decreases have a normal distn $H_0:\mu_{O-F}=0.2$ (or \geq), $H_1:\mu_{O-F}>0.2$ O-F: 0.6 0.4 0.2 0.1 0.3 0.2 0.4 0.3 $\bar{D}=0.3125$ $s^2=0.024107$ (0.3125-0.2)/\(\sqrt{0.024107/8}\) =2.049 > 1.895 Reject H_0 — there is sufficient evidence at the 5% significance level that the reduction is more than 0.2 $= 0.3125 \pm t \sqrt{(0.024107/8)}$ $t=2.365$ (0.1827, 0.4423)	B1 B1 M1 B1 A1 M1 A1 M1 A1 9	3	B1 Use paired differences <i>t</i> -test Must have /8 OR: $P(t \ge 2.049) = 0.0398 < 0.05$ Allow M1 from $t_{14} = 1.761$ SR: 2-sample test:B1B1M0B1A0 M1 using 1.761 A0 Max 4/9 Allow with <i>z</i> but with /8 Rounding to (0.283, 0.442)

7(i)	H ₀ :Vegetable preference is independent of gender H ₁ : All alternatives	B1	For both hypotheses
	E-Values 26 16.25 22.75 22 13.75 19.25 $\chi^2 = 5^2(26^{-1} + 22^{-1}) + 7.25^2(16.25^{-1} + 13.75^{-1}) + 2.25^2(22.75^{-1} + 19.25^{-1})$ =9.641 9.64 > 5.991 Reject H ₀ , (there is sufficient evidence at the 5% that) vegetable preference and gender are not independent	M1 A1 M1 A1 A1 M1 A1	At least one correct All correct Correct form of any one All correct ART 9.64 OR: P(≥ 9.641)=0.00806 <0.05
(ii)	(H ₀ : Vegetables have equal preference H_1 : All alternatives) Combining rows: 48 30 42 E-Values: 40 40 40 $\chi^2 = (8^2 + 10^2 + 2^2)/40$ $= 4.2$ 4.2 < 4.605 Do not reject H_0 , there is insufficient evidence at the 10% significance level of a difference in the proportion of preferred vegetables	M1 A1 M1 A1 M1 A1 M1 A1 6 [14]	OR: $P(\ge 4.2) = 0.122 > 0.10$ AEF in context

4736 Decision Mathematics 1

				TO BE ANSWERED ON INSERT	
1	(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1	Evidence of updating at <i>C</i> , <i>D</i> , <i>E</i> or <i>F</i> All temporary labels correct, with no extras	
		5 1 1 5 C 3 E 3 F	B1	All permanent labels correct	
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1	cao cao	[5]
	(ii)	Total weight of all arcs = 25	B1	Total weight = 25 (may be implied from weight)	
		Only odd nodes are <i>B</i> and <i>E</i> . Least weight path joining <i>B</i> to <i>E</i> is $B - C - E = 3$.	M1	B to $E=3$	
		Weight: 28 Route: (example)	A1	28 (cao)	
		A-B-D-F-E-C-B-C-D-E-D-C-A	B1	A valid closed route that uses BC, CD and DE twice and all other arcs once	[4]
	(iii)	A-B-E-F	B1	cao	
		Graph is now Eulerian, so no need to repeat arcs	B1	Eulerian (or equivalent)	[2]
	•		•	Total =	11

2	(i)	A graph cannot have an odd number of odd vertices (nodes)	B1	Or equivalent (eg $3\times5 = 15 \Rightarrow 7\frac{1}{2}$ arcs) Not from a diagram of a specific case	[1]
	(ii)	It has exactly two odd nodes	B1	2 odd nodes	
		eg $CABCDEAD$	B1	A valid semi-Eulerian trail	[2]
	(iii)	AE = 2 $AC = 3$ $AB = 5$ $CD = 7$ $A = B$ $C = D$ E Weight = 17	B1 B1 B1	Correct tree (vertices must be labelled) Order of choosing arcs in a valid application of Prim, starting at <i>A</i> (working shown on a network or matrix) 17	[3]
	(iv)	Lower bound = 29 A-E-D-F-C-B-A = 34 F-C-A-E-D and $F-D-C-A-EVertex B is missed out$	B1 M1 A1 B1	29 or 12 + their tree weight from (iii) $A - E - D - F - C -$ 34, from correct working seen Correctly explaining why method fails, need to have explicitly considered both cases	[4]
				Total =	10

(iii) (iv)

	A	В	C	D	E
A	-	5	3	8	2
В	5	-	6	-	-
C	3	6	-	7	-
D	8	-	7	-	9
\overline{E}	2	-	-	9	-

$$CF = 6$$

 $DF = 6$

3 (i) (ii)	x = number of clients who use program $Xy =$ number of clients who use program $YSpin cycle: 30x + 10y \le 180\Rightarrow 3x + y \le 18Rower: 10x \le 40\Rightarrow x \le 4Free weights: 20x + 30y \le 300\Rightarrow 2x + 3y \le 30$	B1 B1 B1 B1	Number of clients on X and Y , respectively $3x + y \le 18, \text{ or equivalent, simplified}$ $x \le 4, \text{ or equivalent, simplified}$ $2x + 3y \le 30, \text{ or equivalent, simplified}$	[1]
(iii)	$\Rightarrow 2x + 3y \le 30$ Both must take non-negative integer values	B1	Allow use of slack variables instead of inequalities Non-negative and integer Accept $x + y \le 12$ as an alternative answer	[1]
(iv)	y 10 5 5 4 x	B1 M1	Axes scaled and labelled appropriately (on graph paper) Boundaries of their three constraints shown correctly (non-negativity may be missed) Correct graph with correct shading or feasible region correct and clearly identified (non-negativity may be missed) (cao)	[3]
	Checking vertices or using a profit line $(4, 6) \rightarrow 72$ $(3\frac{3}{7}, 7\frac{5}{7}) \rightarrow 77\frac{1}{7}$ or $(24/7, 54/7) \rightarrow 77\frac{1}{7}$ $(0, 10) \rightarrow 60$ $(4, 0) \rightarrow 36$	M1	Follow through their graph if possible $x = 3.4, y = 7.7$ may be implied from $(3, 8)$	
	Checking other feasible integer points near (non-integer) optimum for continuous problem $(3, 8) \rightarrow 75$	M1	Could be implied from identifying point (3, 8) in any form	
	Put 3 clients on program X, 8 on program Y and 1 on program Z	A1	cao, in context and including program Z Total =	[3] 11

4 (i)	A B B	M1 M1 A1	15 A's, 4 D's, 3 C's, 8B's (but not just A D C B) Three boxes each containing A A A A A (or shown using weights) A box containing all the rest Completely correct, including order of packing into boxes Any identification of a (specific) volume conflict	[5]
(ii)	B B B B B B B B B C C C D D D D A A A A A A A A A A A A A A Box 1 B D A A A A A Box 2 B D A A A A A Box 3 B D A A A A A Box 4 B D A A A A A Box 6 B A A A A A A Box 8 B B B B B B B C C Box 5 is over the weight limit B B B B B B B B B B B B B	M1 M1 A1	8 <i>B</i> 's, 3 <i>C</i> 's, 4 <i>D</i> 's, 15 <i>A</i> 's (but not just <i>B C D A</i>) Four boxes each containing <i>B D A A</i> (in any order) Using exactly 9 boxes, the first eight of which each contain a <i>B</i> (with or without other items) and the ninth contains three <i>C</i> 's. Completely correct, including order of packing into boxes Any identification of a (specific) weight conflict	[5]
(iii)	Items may be the wrong shape for the boxes eg too tall	B1	Reference to shape, height, etc. but not practical issues connected with the food	[1]
			Total =	11

Item type	A	В	C	D
Number to be packed	15	8	3	4
Length (cm)	10	40	20	10
Width (cm)	10	30	50	40
Height (cm)	10	20	10	10
Volume (cm ³)	1 000	24 000	10 000	4 000
Weight (g)	1 000	250	300	400

5	(i)	Minimise 2a - 3b + c + 18		(Constant has no effect on slope of	
	(1)	\Rightarrow minimise $2(20-x) - 3(10-y) + (8-z) + 18$		objective)	
		\Rightarrow minimise $-2x + 3y - z$	B1	Replacing a , b and c in objective to get	
		\Rightarrow maximise $2x - 3y + z$ (given)		-2x + 3y - z	
				(Condone omission of conversion to	
		$a+b-c \ge 14$		maximisation here)	
		\Rightarrow (20-x) + (10-y) - (8-z) \geq 14			
		$\Rightarrow x + y - z \le 8 $ (given)	M1		
		-2a + 3c < 50	1,11	Replacing a , b and c in the first three	
		$\Rightarrow -2(20-x) + 3(8-z) \le 50$		constraints to get given expressions	
		$\Rightarrow 2x - 3z \le 66 $ (given)			
		_			
		$10 + 4a \ge 5b$			
		$\Rightarrow 10 + 4(20-x) \ge 5(10-y)$			
		$\Rightarrow 4x - 5y \le 40 $ (given)			
		~ < 20 → 20 ·· < 20 → ·· > 0			
		$a \le 20 \Rightarrow 20 - x \le 20 \Rightarrow x \ge 0$ $b \le 10 \Rightarrow 10 - y \le 10 \Rightarrow y \ge 0$	A1	Showing how $a \le 20$, $b \le 10$, $c \le 8$ give	
		$\begin{vmatrix} c \le 10 \Rightarrow 10 \Rightarrow z \le 10 \Rightarrow z \le 0 \\ c \le 8 \Rightarrow 8 - z \le 8 \Rightarrow z \ge 0 \end{vmatrix}$		$x \ge 0, y \ge 0, z \ge 0$	
					[3]
	(ii)	P x y z s t u RHS			
		1 -2 3 -1 0 0 0 0	M1	Constraint rows correct, with three slack	
		0 1 1 -1 1 0 0 8	A 1	variable columns	[0]
		0 2 0 -3 0 1 0 66 0 4 -5 0 0 0 1 40	A1	Objective row correct	[2]
		0 4 -5 0 0 0 1 40			
		x and z columns have negative entries in			
		objective row, but z column has no positive	M1	Choosing to pivot on x column	
		entries in constraint rows, so pivot on x col		(may be implied from pivot choice)	
		$8 \div 1 = 8$; $66 \div 2 = 33$; $40 \div 4 = 10$	A 1	Coloulations soon or referred to and correct	
		Least ratio is $8 \div 1$, so pivot on 1 from x col	A1	Calculations seen or referred to and correct pivot choice made (cao)	[2]
		New row 2 = row 2		prior enoise made (eac)	[-]
		New row $1 = \text{row } 1 + 2(\text{new row } 2)$	M1	Pivot row unchanged (may be implied)	
		New row $3 = \text{row } 3 - 2(\text{new row } 2)$		or follow through for their +ve pivot	
		New row $4 = \text{row } 4 - 4(\text{new row } 2)$	A 1	Coloulations for other rows shown (acc)	503
			A1	Calculations for other rows shown (cao)	[2]
ĺ		P x y z s t u RHS 1 0 5 -3 2 0 0 16	M1	An augmented tableau with three basis	
		1 0 5 -3 2 0 0 16 0 1 1 -1 1 0 0 8		columns, non-negative values in final	
		0 0 -2 -1 -2 1 0 50		column and value of objective having not	
		0 0 -9 4 -4 0 1 8		decreased	
			A1	Correct tableau after one iteration (cao)	[2]
		x = 8, y = 0, z = 0	B1	Non-negative values for x , y and z from	1
1		··· -, / -,	-1	their tableau	
		$x = 8 \Rightarrow a = 20 - 8 = 12$	M1	Putting their values for x , y and z into	
		$y = 0 \Rightarrow b = 10 - 0 = 10$		a = 20 - x, $b = 10 - y$ and $c = 8 - z$	
		$z = 0 \Rightarrow c = 8 - 0 = 8$	A1	Correct values for a , b and c , from their	[3]
ĺ		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	111	non-negative x , y and z	رحا
				, , , , , , , , , , , , , , , , , , ,	
	(iii)	$x \le 20, \ y \le 10 \ \text{and} \ z \le 8$	M1	20, 10, 8	
ĺ			A1	Correct inequalities for x , y and z	[2]
<u> </u>				Total =	16
1				10tal =	10

				TO BE ANSWERED ON INSERT	
6	(i)	$ \begin{array}{c} 10 \\ \frac{1}{2}n(n-1) \end{array} $	B1 B1	10 1+2++(n -1) seen, or equivalent Check that sum stops at n -1 not n	[2]
	(ii)(a)	9	B1	Their 10 minus 1	
		2	M1	1, 2 and 3	
		3 45	A1	45 following from method mark earned cao	[3]
	(b)	1+2+3++(N-1) = $\frac{1}{2}N(N-1)$, where $N = \frac{1}{2}n(n-1)$	M1	1+2+3++(N-1) or $\frac{1}{2}N(N-1)$, where $N = \frac{1}{2}n(n-1)$	
		$= \frac{1}{4}n(n-1)(\frac{1}{2}n(n-1) - 1) $ (given)	A1	Convincingly achieving the given result	[2]
	(iii)	M1 Vertices in treeM2 Arcs in treeM3 Vertices not in treeM4 Sorted list DE $D \mid 2 \mid E$ $ABCDE$ $D \mid 2 \mid E$ $A \mid 3 \mid E$ $D \mid 2 \mid E$ $A \mid 3 \mid E$ $DEACB$ $D \mid 2 \mid E$ $A \mid 3 \mid E$ B $DEACB$ $D \mid 2 \mid E$ $A \mid 3 \mid E$ 	M1 M1 M1	(Order of entries in $M1$, $M2$ and $M3$ does not matter) Arc $\boxed{A \mid 3 \mid E}$ is added to $M2$, A is added to $M1$ and deleted from $M3$ Arc $\boxed{A \mid 4 \mid C}$ is added to $M2$, C is added to $M1$ and deleted from $M3$ Arc $\boxed{C \mid 5 \mid D}$ is not added to $M2$ and arc $\boxed{B \mid 6 \mid E}$ is added to $M2$ and arc cao (lists $M1$, $M2$ and $M3$ totally correct, ignore what is done in list $M4$).	[4]
	(iv)	(500)4	3.54		
		$30 \times \left(\frac{300}{100}\right)$	M1	Or equivalent	
		= 18750 seconds	A1	cao, with units (312 min 30 sec or 5 hours 12 min 30 sec)	[2]
				Total =	13

4737 Decision Mathematics 2

-	(iii)	Andy = food Beth = television			
		Dean = television Elly = history	B1	A = F, E = H written down	[4]
		Andy = food Beth = science Chelsey = geography	A1	B = S, $C = G$ and $D = T$ written down	
		D = T - C = G - B = S	M1	This alternating path written down, not read off from labels on graph	
	(**)	$A \bullet \longrightarrow F$ $B \bullet \longrightarrow G$ $C \bullet \longrightarrow H$ $D \bullet [\bullet P]$ $E \bullet \longrightarrow T$	B1	A new bipartite graph showing the pairings <i>AF</i> , <i>BG</i> , <i>CT</i> and <i>EH</i> but not <i>DS</i>	
	(ii)	$ \begin{array}{c} B \\ C \\ D \end{array} $ $ \begin{array}{c} F \\ F \end{array} $	B1	Bipartite graph correct	[1]

2	Add a dumm	v row						
	Add a dummi	P	R	S	T			
	April	30	28	32	25			
	May	32	34	32	35	B1	Adding a dummy row of all equal values	
	June	40	40	39	38			
	Dummy	40	40	40	40			
				1 1				
	Reduce rows							
		5	3	7	0	M1	Substantially correct attempt to reduce matrix	
		0	2	0	3		(condone 1 numerical slip)	
		2	2	1	0	A 1	C	
		0	0	0	0	A1	Correct reduced cost matrix from reducing rows first and statement of how table was formed,	F23
	Columns are	already	y reduc	ed			including reference to columns (cao)	[3]
					_		meriding reference to columns (cao)	
	Incomplete m	natchin	g, cros	s throug				
		5	3	7	0			
		0	2	0	3	B1	Cross through zeros using minimum number of	
	-	2	2	1	0		lines	
		0	0	0	0			
	Augment by	1						
	Augment by	4	2	6	0			
	-	0	2	0	4			
	-	1	1	0	0	B1	Correct augmented matrix and statement of how	[2]
	-	0	0	0	1		table was formed (cao)	
		Ü	1	. • .	•			
	Complete ma	tching						
	1	P	R	S	T			
	April	4	2	6	0			
	May	0	2	0	4			
	June	1	1	0	0			
	Dummy	0	0	0	1			
	April = Tall 7			£250				
	May = Palac			£320		B1	A = T, M = P, J = S (cao)	
	June = Sunn	yside		£390	00			
	T-4-14 6	20700				-		
	Total $cost = £$	29000				B1	£9600 (cao) with units	[2]
							Total =	7
							1 otal =	1

3	(i)				
,	(4)	A(6) $B(5)$ $E(2)$ $G(2)$ $F(1)$	M1 A1	Durations not necessary Correct structure, even without directions shown Activities must be labelled Completely correct, with exactly three dummies and all arcs directed	[2]
	(ii)	A(6) $D(1)$ $C(4)$ $D(1)$ $F(2)$ $F(3)$ $F(1)$ $F(1)$ $F(3)$ $F(1)$ $F(1)$ $F(3)$ $F(1)$ $F(1)$ $F(3)$ $F(1)$ $F(3)$ $F(3)$ $F(3)$ $F(4)$ $F(1)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(4)$ $F(3)$	M1 M1 A1ft B1 M1	Follow through their activity network if possible Substantially correct attempt at forward pass (at most 1 independent error) Substantially correct attempt at backward pass (at most 1 independent error) Both passes wholly correct 10 hours (with units) cao Either <i>B</i> , <i>E</i> , <i>H</i> or <i>A</i> , <i>D</i> , <i>H</i> (possibly with other critical activities, but <i>C</i> , <i>F</i> , <i>G</i> not listed). Not follow through.	[3]
			A1	A, B, D, E, H (and no others) cao	[3]
	(iii)	No. of workers 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 hours	M1	On graph paper A plausible resource histogram with no holes or overhangs Axes scaled and labelled and histogram completely correct, cao	[2]
	(iv)	1 hour	B1	Accept 1 (with units missing) cao	[1]
	(v)	No need to change start times for A, B, C, D and E Activities G and H cannot happen at the same time, so they must follow one another This causes a 2 hour delay	M1 A1	G and H cannot happen together (stated, not just implied from a diagram) 2 cao	[2]
		F could be delayed until 1 hour before H starts H should be started as late as possible \Rightarrow a maximum delay of 3 hours	B1 B1	Diagram or explaining that for max delay on <i>F</i> need <i>H</i> to happen as late as possible 3 cao	[2]
				Total =	15

4	(i)	(0;0) = (1;0) = 6 + (2;0) $(0;0) = (2;1)$ $(0;0) = (2;1)$ $(0;0) = (2;1)$ $(0;0) = (3;0)$ $(1;1) = 8 + (2;2)$	B1 M1	Correct structure (vertex labels and graph correct) Assigning weights to their graph (no more than 1 error or no more than 2 arcs missing/extra) Completely correct network	[3]
	(ii)	Maximin	B1	cao	[1]
	(iii)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1 B1 M1 A1	Four or five columns, including 'stage', 'state' and 'action' Stage and state columns completed correctly Action column completed correctly Min values correct for stage 1 Suboptimal maximin values correct for stages 2 and 1 (follow through their network if possible, no more than 2 arcs missing/extra) Min values correct for stage 0 Maximin value for stage 0 (follow through their network if possible, no more than 2 arcs missing/extra)	[3] [2]
		Weight of heaviest truck = 8 tonnes Maximin route = $(0; 0) - (1; 0) - (2; 2) - (3; 0)$	B1 B1	8, cao Correct route, or in reverse	[2]
				Total =	13

SR		Specia	al rulin	g for wo	orking forwards				
	(iii)	Stage	•		Suboptimal maximin	B1	Four or five columns, including 'stage', 'state'		
		1	0	0	9	9 7	В0	and 'action'	
			0	0	min(9, 6) = 6 min(7, 6) = 6	6	B0 M1 A0	No follow through from incorrect networks Min values correct for stage 2 and suboptmal maximin values correct for stages 1 and 2 (cao)	[3]
		2	1	0	min(9, 7) = 7 min(7, 7) = 7	7			
			2	0	min(9, 8) = 8 min(7, 8) = 7	8			[2]
		3	0	0 1 2	min(6,10) = 6 min(7,10) = 7 min(8,10) = 8		M1	No follow through from incorrect networks Correct min values for stage 3 and maximin value for stage 3 (cao)	[2]
							A0		
					ruck = 8 tonnes 0) - (1; 0) - (2; 0)		B1 B1	8, cao Correct route, or in reverse	[2]
								Maximum = B1 M1 M1 B1 B1 = 5 marks out of 9	

5 (i)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	M1 M1	Calculating row minima (cao) Calculating column maxima (or their negatives) (cao)	
	Play-safe for Robbie is fairy Play-safe for Conan is hag	A1 A1	Fairy or F (not just -1 or identifying row) Hag or H (not just ± 1 or identifying column)	
	Robbie should choose the elf	B1	Follow through their play-safe for Conan Elf or <i>E</i>	[5]
(ii)	Dwarf: $\frac{1}{3}[(-1) + (-4) + (2)] = -1$ Elf: $\frac{1}{3}[(3) + (1) + (-4)] = 0$ Fairy: $\frac{1}{3}[(1) + (-1) + (1)] = \frac{1}{3}$	M1 A1	$D = -1$ or $F = \frac{1}{3}$ or -3, 0, 1 All three correct	[2]
(iii)	Goblin: $3p + (1-p) = 1 + 2p$ Hag: $p - (1-p) = 2p - 1$ Imp: $-4p + (1-p) = 1 - 5p$	M1 A1	Any one correct (in any form) All three correct (in any form)	[2]
	$2p - 1 = 1 - 5p$ $\Rightarrow p = \frac{2}{7}$	M1 A1	Appropriate equation seen for their expressions $\frac{2}{7}$ or 0.286 (or better) from method seen	[2]
(iv)	4 is added throughout the table to make all the entries non-negative If Conan chooses the goblin, this gives an expected value (in the new table) of $3x + 7y + 5z$	B1 B1	Add 4 to remove negative values Expected value when Conan chooses the goblin	[2]
(v)	$z = \frac{5}{7} \implies m \le 5.571, m \le 3.571, m \le 3.571$ $\implies m \le 3.571 (3\frac{4}{7})(\frac{25}{7})$ Hence, maximum value for <i>M</i> is 3.571 – 4 = -0.429 or $-\frac{3}{7}$	M1 M1 A1	Using $z = \frac{5}{7}$ to find a value for m (or implied) Subtacting 4 from their m value cao	[3]
,	•		Total =	16

6	(i)	α = 12 litres per second	B1	12		
	(1)	β = 15 litres per second	B1	15	[2]	
	(ii)	At least 3 litres per second must flow into A , so AC and AF cannot both have flows of 1	B1	At least 3 flows along SA	[1]	
	(iii)	At most 4 litres per second can flow into <i>B</i> , and at least 4 must flow out, so <i>BC</i> and <i>BD</i> must have flows of 2	B1	At B: flow in ≤ 4 (and flow out ≥ 4) hence given flows in BC and BD		
		Hence, only 2 litres per second flows into <i>D</i> and at least 2 litres per second must flow out, so <i>DE</i> and <i>DT</i> must both be at their lower capacities	B1	Stating that flow into D is 2 and hence given flows in DE and DT		
	(iv)	Flow across $\{S, A, B, C\}$, $\{D, E, F, G, T\} \ge 11$ (so 10 litres per second is impossible)	M1 A1	Or any equivalent reasoning (eg flow through <i>C</i>) Wholly convincing argument	[2]	
		$ \begin{array}{c} \text{Minimum} = 11 \\ \text{eg} \\ \end{array} $	M1	11	[-]	
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1	Showing that 11 is possible (check <i>C</i>)	[2]	
		B 2 D 2 Maximum = 12 No more than 12 can cross cut α and 12 is	M1	12		
		possible, eg augment flow shown above by 1 litre per second along <i>SAFT</i>	A1	Showing that 12 is possible but 13 is not		
	(v)	$(3,4) \qquad (1,4) \qquad F \qquad (3,6) \qquad (2,3) \qquad (4,8)$				
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	A correct reduced network (vertex E and all arcs incident on E deleted), including arc capacities Or putting $E_{\rm in}$ and $E_{\rm out}$ with a capacity of 0 between them Or giving CE , EG and DE upper and lower capacities of 0		
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	On same diagram or a new diagram $SA = 3$, $SC = 2$, $SB = 4$, $BC = 2$ and $BT = 2$ (and nothing through E , if shown)		
		4 2 2 2 B	A1	A valid flow of 9 litres per second through the network	[3]	
				Total =	14	

Grade Thresholds

Advanced GCE Mathematics (3890-2, 7890-2) January 2010 Examination Series

Unit Threshold Marks

78	392	Maximum Mark	Α	В	С	D	E	U
4721	Raw	72	56	48	41	34	27	0
4/21	UMS	100	80	70	60	50	40	0
4722	Raw	72	61	53	46	39	32	0
4/22	UMS	100	80	70	60	50	40	0
4723	Raw	72	51	43	36	29	22	0
4/23	UMS	100	80	70	60	50	40	0
4724	Raw	72	55	47	39	32	25	0
4724	UMS	100	80	70	60	50	40	0
4725	Raw	72	62	54	46	38	31	0
4725	UMS	100	80	70	60	50	40	0
4726	Raw	72	53	46	39	32	25	0
4/20	UMS	100	80	70	60	50	40	0
4727	Raw	72	55	47	40	33	26	0
4121	UMS	100	80	70	60	50	40	0
4728	Raw	72	52	44	36	28	21	0
4720	UMS	100	80	70	60	50	40	0
4729	Raw	72	56	48	41	34	27	0
4729	UMS	100	80	70	60	50	40	0
4730	Raw	72	51	44	37	30	24	0
4730	UMS	100	80	70	60	50	40	0
4732	Raw	72	54	47	40	33	26	0
4/32	UMS	100	80	70	60	50	40	0
4733	Raw	72	62	53	44	35	26	0
4/33	UMS	100	80	70	60	50	40	0
4734	Raw	72	58	50	42	35	28	0
4134	UMS	100	80	70	60	50	40	0
4736	Raw	72	47	40	34	28	22	0
4130	UMS	100	80	70	60	50	40	0
4737	Raw	72	51	45	39	33	28	0
4/3/	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
3890	300	240	210	180	150	120	0
3891	300	240	210	180	150	120	0
3892	300	240	210	180	150	120	0
7890	600	480	420	360	300	240	0
7891	600	480	420	360	300	240	0
7892	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3890	28.2	53.1	73.0	87.2	96.4	100	1385
3892	39.2	61.7	79.2	92.5	97.5	100	126
7890	30.8	60.1	83.8	95.0	99.3	100	459
7892	21.1	60.5	84.2	100	100	100	43

For a description of how UMS marks are calculated see: http://www.ocr.org.uk/learners/ums/index.html

Statistics are correct at the time of publication.

List of abbreviations

Below is a list of commonly used mark scheme abbreviations. The list is not exhaustive.

AEF Any equivalent form of answer or result is equally acceptable AG Answer given (working leading to the result must be valid)

CAO Correct answer only

ISW Ignore subsequent working

MR Misread
SR Special ruling
SC Special case

ART Allow rounding or truncating

CWO Correct working only
SOI Seen or implied
WWW Without wrong working

Ft or √ Follow through (allow the A or B mark for work correctly following on from

previous incorrect result.)

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

