GCE

Mathematics

Advanced GCE A2 7890-2
Advanced Subsidiary GCE AS 3890-2

Mark Schemes for the Units

January 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890)
Advanced GCE Pure Mathematics (7891) Advanced GCE Further Mathematics (7892)
Advanced Subsidiary GCE Mathematics (3890)
Advanced Subsidiary GCE Pure Mathematics (3891)
Advanced Subsidiary GCE Further Mathematics (3892)
\section*{MARK SCHEMES FOR THE UNITS}

Unit/Content Page
4721 Core Mathematics 1 1
4722 Core Mathematics 2 5
4723 Core Mathematics 3 9
4724 Core Mathematics 4 13
4725 Further Pure Mathematics 1 17
4726 Further Pure Mathematics 2 21
4727 Further Pure Mathematics 3 24
4728 Mechanics 1 28
4729 Mechanics 2 31
4730 Mechanics 3 34
4732 Probability \& Statistics 1 37
4733 Probability \& Statistics 2 40
4734 Probability \& Statistics 3 43
4736 Decision Mathematics 1 46
4737 Decision Mathematics 2 52
Grade Thresholds 58

4721 Core Mathematics 1

(ii) Translation

1 unit right parallel to x axis

B1
B1

2 Allow:
1 unit right,
1 along the x axis,
1 in x direction,
allow vector notation e.g. $\binom{1}{0}$,
1 unit horizontally

4

When $x=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-4$
\therefore Gradient of normal to curve $=\frac{1}{4}$
$y+1=\frac{1}{4}(x-2)$
$3 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}-8 x$

Correct equation of straight line through $(2,-1)$, any nonzero numerical gradient
$x-4 y-6=0$

A1

Attempt to differentiate (one of $3 x^{2},-8 x$)
Correct derivative
Substitutes $x=2$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$

Must be numerical

$$
=-1 \div \text { their } m
$$

7 Correct equation in required form

4 (
(i) $\quad m=4$

B1 1 May be embedded

(ii)	$\begin{aligned} & 6 p^{2}=24 \\ & p^{2}=4 \\ & p=2 \\ & \text { or } p=-2 \end{aligned}$	M1 A1 A1	3	$\begin{aligned} & (\pm) 6 p^{2}=24 \\ & \text { or } 36 p^{4}=576 \end{aligned}$
(iii)	$5^{2 n+4}=25$	M1		Addition of indices as powers of 5
	$\therefore 2 n+4=2$		3	Equate powers of 5 or 25
	$n=-1$	A1	7	
5	$k=\sqrt{x}$			
	$k^{2}-8 k+13=0$	M1*		Use a substitution to obtain a quadratic (may be implied by squaring or rooting later) or factorise into 2 brackets each containing \sqrt{x}
	$k-4= \pm \sqrt{3} \quad$ or $k=\frac{8 \pm \sqrt{(-8)^{2}-4 \times 1 \times 13}}{2}$	$\begin{aligned} & \text { M1 } \\ & \text { dep } \end{aligned}$ A1		Correct method to solve resulting quadratic
	$k=4 \pm \sqrt{3}$	A1		$\begin{aligned} & k=4 \pm \sqrt{3} \text { or } k=\frac{8 \pm \sqrt{12}}{2} \\ & \text { or } k=4 \pm \frac{\sqrt{12}}{2} \end{aligned}$
	$\therefore x=(4+\sqrt{3})^{2}$ or $x=(4-\sqrt{3})^{2}$	M1 M1		Recognise the need to square to obtain x Correct method for squaring a $+\sqrt{b}$ (3 or 4 term expansion)
	$x=19 \pm 8 \sqrt{3}$ or $19 \pm 4 \sqrt{12}$	A1	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	

6
(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x$

B1*

When $x=1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=2$
B1 2
(ii) $\frac{a^{2}+5-6}{a-1}=2.3$
dep
$a^{2}-2.3 a+1.3=0$
$(a-1.3)(a-1)=0$

$$
a=1.3
$$

uses $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
A1
correct expression
M1
correct method to solve a quadratic or correct factorisation and cancelling to get $a+1=2.3$
A1 $4 \quad 1.3$ only

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\begin{tabular}{l}
Alternative method: \\
Equation of straight line through \((1,6)\) with \(m=2.3\) found then \(\mathrm{a}^{2}+5=2.3 \mathrm{a}+\) "c" seen M1 \\
with \(c=3.7\) \\
A1 \\
then as main scheme
\end{tabular}} \& \& \& \\
\hline (iii) \& A value between 2 and 2.3 \& B1 \& 1 \& \(2<\) value \(<2.3\) (strict inequality signs) \\
\hline 7 (i) \& \begin{tabular}{l}
(a) Fig 3 \\
(b) Fig 1 \\
(c) Fig 4
\end{tabular} \& \[
\begin{aligned}
\& \hline \text { B1 } \\
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& 3 \& \\
\hline (ii) \& \(-(x-3)^{2}\)
\(y=-(x-3)^{2}\) \& M1

A1 \& \& | Quadratic expression with correct x^{2} term and correct y-intercept and/or roots for their unmatched diagram (e.g. negative quadratic with y-intercept of -9 or root of 3 for Fig 2) |
| :--- |
| Completely correct equation for Fig 2 |

\hline $$
\begin{array}{ll}
\hline 8 & \text { (i) }
\end{array}
$$ \& \[

$$
\begin{aligned}
& \text { Centre }(-3,2) \\
& (x+3)^{2}-9+(y-2)^{2}-4-4=0 \\
& r^{2}=17 \\
& r=\sqrt{17}
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 |
| |
| A1 | \& 3 \& | Correct method to find r^{2} |
| :--- |
| Correct radius |

\hline (ii) \& $$
x^{2}+(3 x+4)^{2}+6 x-4(3 x+4)-4=0
$$

\[
$$
\begin{aligned}
& 10 x^{2}+18 x-4=0 \\
& (5 x-1)(x+2)=0 \\
& x=\frac{1}{5} \quad \text { or } x=-2 \\
& y=\frac{23}{5} \quad \text { or } y=-2
\end{aligned}
$$

\] \& | M1* |
| :--- |
| A1 |
| A1 |
| M1 |
| dep |
| A1 |
| A1 | \& 9 \& | substitute for x / y or attempt to get an equation in 1 variable only correct unsimplified expression obtain correct 3 term quadratic correct method to solve their quadratic |
| :--- |
| SR If A0 A0, one correct pair of values, spotted or from correct factorisation www B1 |

\hline $$
\begin{array}{ll}
\hline 9 & \text { (i) }
\end{array}
$$ \& \[

\mathrm{f}^{\prime}(x)=-x^{-2}-\frac{1}{2} x^{-\frac{1}{2}}

\] \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& \& | Attempt to differentiate |
| :--- |
| $-x^{-2}$ or $-\frac{1}{2} k x^{-\frac{1}{2}} \mathbf{w w w}$ |
| Fully correct expression |

\hline
\end{tabular}

(ii)

$$
\mathrm{f}^{\prime \prime}(x)=2 x^{-3}+\frac{1}{4} x^{-\frac{3}{2}}
$$

M1 Attempt to differentiate their f (x)
A1 ft One correctly differentiated term
A1 Fully correct expression www in either part of the question

$$
\begin{aligned}
\mathrm{f}^{/ \prime}(4) & =\frac{2}{4^{3}}+\frac{1}{4} \cdot \frac{1}{8} \\
& =\frac{1}{16}
\end{aligned}
$$

M1 Substitution of $x=4$ into their $\mathrm{f}^{\prime \prime}(x)$

A1 5 oe single fraction $\mathbf{w w w}$ in either part of the question

Attempts $b^{2}-4 a c$ involving k
$900-100 k^{2}=0$ States their discriminant $=0$

B1
B1
M1

M1
$k=3$
or $k=-3$ 4
4

11 (i) $\quad P=2+x+3 x+2+5 x+5 x$
$=14 x+4$

M1
Adds lengths of all 4 edges with attempt to use Pythagoras to find the missing length
A1 $\quad 2$ May be left unsimplified
M1 Correct method - splitting or formula for area of trapezium

Area of triangle $=\frac{1}{2}(3 x)(4 x)=6 x^{2}$
Total area $=9 x^{2}+6 x$
A1 2 Convincing working leading to given expression AG
(iii) $14 x+4 \geq 39$

B1 ft
ft on their expression for P from (i) unless restarted in
(iii). (Allow >)
$\frac{5}{2}$
B1
$9 x^{2}+6 x<99$
$3 x^{2}+2 x-33<0$
$(3 x+11)(x-3)<0$
$\left(-\frac{11}{3}<\right) x<3$
B1

M1
Allow \leq

Correct method to find critical values

B1
$x<3$ identified
M1 root from linear $<x<$ upper root from quadratic

A1 7 Fully correct including
11 inequality signs or exact equivalent in words cwo

Total

4722 Core Mathematics 2

1
(i) $\quad 2\left(1-\cos ^{2} x\right)=5 \cos x-1$ $2 \cos ^{2} x+5 \cos x-3=0$ A.G.
M1 Use $\sin ^{2} x=1-\cos ^{2} x$
A1 2 Show given equation correctly
(ii) $(2 \cos x-1)(\cos x+3)=0$

M1

M1
$\cos x=1 / 2 \quad$ M1
$x=60^{\circ}$
$x=300^{\circ}$

Recognise equation as quadratic in $\cos x$ and attempt recognisable method to solve

A1 Obtain 60° or $\pi / 3$ or 1.05 rad
A1 $\sqrt{ } 4$ Obtain 300° only (or 360° - their x) and no extra in range
$\mathbf{S R}$ answer only is B 1 B 1

2 (i) $\int(6 x-4) \mathrm{d} x=3 x^{2}-4 x+c$
M1* Attempt integration (inc. in power for at least one term)

A1 Obtain $3 x^{2}-4 x$ (or unsimplified equiv), with or without $+c$
$y=3 x^{2}-4 x+c \Rightarrow 5=12-8+c$
M1dep* Use $(2,5)$ to find c
$\Rightarrow c=1$
Hence $y=3 x^{2}-4 x+1$
A1 4 Obtain $y=3 x^{2}-4 x+1$
(ii) $3 p^{2}-4 p+1=5$
$3 p^{2}-4 p-4=0$
$(p-2)(3 p+2)=0$
$p=-2 / 3$

M1* Equate their y (from integration attempt) to 5
M1dep* Attempt to solve three term quadratic
A1 3 Obtain $p=-2 / 3$ (allow any variable) from correct working; condone $p=2$ still present, but A0 if extra incorrect solution

7

3
(i) $(2-x)^{7}=128-448 x+672 x^{2}-560 x^{3}$

M1 Attempt (at least) two relevant terms product of binomial coeff, 2 and x (or expansion attempt that considers all 7 brackets)
A1 Obtain 128-448x
A1 Obtain 672 x^{2}
A1 4 Obtain $-560 x^{3}$
(ii) $-560 \times(1 / 4)^{3}=-35 / 4$
M1 Attempt to use coeff of x^{3} from (i), with clear intention to cube $1 / 4$
A1 2 Obtain ${ }^{-35} / 4\left(w^{6}\right)$,
(allow ${ }^{35} / 4$ from $+560 x^{3}$ in (i))

4 (i) $\int_{3}^{5} \log _{10}(2+x) \mathrm{d} x \approx \frac{1}{2} \times \frac{1}{2} \times(\log 5+2 \log 5.5+$
$2 \log 6+2 \log 6.5+\log 7)$

M1 Correct h (soi) for their y-values
A1 4 Obtain 1.55
(ii) $\int_{3}^{5} \log _{10}(2+x)^{\frac{1}{2}} \mathrm{~d} x=\frac{1}{2} \int_{3}^{5} \log _{10}(2+x) \mathrm{d} x$

$$
\approx 1 / 2 \times 1.55
$$

$$
\approx 0.78
$$

B1 $\sqrt{ }$ Divide by 2, or equiv, at any stage to obtain 0.78 or 0.77 ,
following their answer to (i)
B1 2 Explicitly use $\log \sqrt{ } a=1 / 2 \log a$ on a single term
$5 \int_{1}^{3}\left\{\left(11-9 x^{-2}\right)-\left(x^{2}+1\right)\right\} d x=\left[9 x^{-1}-\frac{1}{3} x^{3}+10 x\right]_{1}^{3}$
$=(3-9+30)-\left(9-\frac{1}{3}+10\right)$
$=24-18^{2} / 3$
$=5^{1} / 3$
OR
$\left[11 x+9 x^{-1}\right]_{1}^{3}-\left[\frac{1}{3} x^{3}+x\right]_{1}^{3}$
$=[(33+3)-(11+9)]-[(9+3)-(1 / 3+1)]$
$=16-10^{2} / 3$
$=5^{1 / 3}$

M1 Attempt subtraction (correct order) at any point
M1 Attempt integration - inc. in power for at least one term
A1 \quad Obtain $\pm\left(-\frac{1}{3} x^{3}+10 x\right)$ or $11 x$ and $\frac{1}{3} x^{3}+x$
M1
A1
M1

A1 7 Obtain $5 \frac{1}{3}$, or exact equiv

6
(i) $\mathrm{f}(-3)=0 \Rightarrow-54+9 a-3 b+15=0 \quad$ M1

$$
3 a-b=13
$$

$$
f(2)=35 \Rightarrow 16+4 a+2 b+15=35
$$

$$
2 a+b=2
$$

Hence $a=3, b=-4$

M1 Attempt $\mathrm{f}(-3)$ and equate to 0 , or equiv method
A1 Obtain $3 a-b=13$, or unsimplified equiv
M1 Attempt $f(2)$ and equate to 35 , or equiv method
A1 Obtain $2 a+b=2$, or unsimplified equiv
M1 Attempt to solve simultaneous eqns
A1 6 Obtain $a=3, b=-4$
(ii) $\mathrm{f}(x)=(x+3)\left(2 x^{2}-3 x+5\right)$
ie quotient is $\left(2 x^{2}-3 x+5\right)$

M1 Attempt complete division by $(x+3)$, or equiv
A1 Obtain $2 x^{2}-3 x+c$ or $2 x^{2}+b x+5$, from correct $\mathrm{f}(x)$
A1 3 Obtain $2 x^{2}-3 x+5$ (state or imply as quotient)

7 (i) $13^{2}=10^{2}+14^{2}-2 \times 10 \times 14 \times \cos \theta$
$\cos \theta=0.4536$
$\theta=1.10$ A.G.
(ii) $\operatorname{arc} E F=4 \times 1.10=4.4$

$$
\text { perimeter }=4.4+10+13+6
$$

$$
=33.4 \mathrm{~cm}
$$

(iii) area $A E F=1 / 2 \times 4^{2} \times 1.1$

$$
\begin{aligned}
& =8.8 \\
\text { area } A B C & =1 / 2 \times 10 \times 14 \times \sin 1.1 \\
& =62.4
\end{aligned}
$$

hence total area $=53.6 \mathrm{~cm}^{2}$

M1

A1 2 Obtain 1.10 radians (allow 1.1 radians)
SR B1 only for verification of 1.10, unless complete method

B1 State or imply $E F=4.4 \mathrm{~cm}$ (allow 4×1.10)
Attempt to use correct cosine rule in

$\triangle A B C$

Attempt perimeter of region - sum of arc and three sides with attempt to subtract 4 from at least one relevant side
A1 3 Obtain 33.4 cm

M1 Attempt use of $(1 / 2) r^{2} \theta$, with $r=4$ and $\theta=1.10$

Obtain 8.8

M1 Attempt use of ($1 / 2$)absinθ, sides consistent with angle used
A1 Obtain 62.4 or better (allow 62.38 or 62.39)

A1 5 Obtain total area as $53.6 \mathrm{~cm}^{2}$ 10
$8 \quad$ (i) $\quad u_{5}=8+4 \times 3$
M1 \quad Attempt $a+(n-1) d$ or equiv inc list of terms
A1 2 Obtain 20
B1 Obtain correct expression, poss unsimplified, eg $8+3(n-1)$
B1 2 Obtain correct $3 n+5$, or $p=3, q=5$ stated
(iii) arithmetic progression

B1 1 Any mention of arithmetic
(iv) $\begin{aligned} & \frac{2 N}{2}(16+(2 N-1) 3)-\frac{N}{2}(16+(N-1) 3)=1256 \\ & 26 N+12 N^{2}-13 N-3 N^{2}=2512 \\ & 9 N^{2}+13 N-2512=0 \\ &(9 N+157)(N-16)=0 \\ & N=16\end{aligned}$

M1 Attempt S_{N}, using any correct formula (inc $\sum(3 n+5)$)
M1 Attempt $S_{2 N}$, using any correct formula, with $2 N$ consistent (inc $\sum(3 n+5)$)
M1* Attempt subtraction (correct order) and equate to 1256
M1dep* Attempt to solve quadratic in N
A1 5 Obtain $N=16$ only, from correct working
OR: alternative method is to use $n / 2(a+l)=1256$
M1 Attempt given difference as single summation with N terms
M1 \quad Attempt $a=u_{N+1}$
M1 \quad Attempt $l=u_{2 N}$
M1 Equate to 1256 and attempt to solve quadratic
A1 Obtain $N=16$ only, from correct working
$9 \quad$ (i)

M1 Reasonable graph in both quadrants
A1 Correct graph in both quadrants
B1 3 State or imply $(0,6)$
(ii) $9^{x}=150$
$x \log 9=\log 150$
$x=2.28$

M1 Introduce logarithms throughout, or equiv with $\log _{9}$
M1 Use $\log a^{b}=b \log a$ and attempt correct method to find x
A1 3 Obtain $x=2.28$
(iii) $6 \times 5^{x}=9^{x}$
$\log _{3}\left(6 \times 5^{x}\right)=\log _{3} 9^{x}$
$\log _{3} 6+x \log _{3} 5=x \log _{3} 9$
$\log _{3} 3+\log _{3} 2+x \log _{3} 5=2 x$
$x\left(2-\log _{3} 5\right)=1+\log _{3} 2$
$x=\frac{1+\log _{3} 2}{2-\log _{3} 5} \quad$ A.G.

M1 \quad Form eqn in x and take logs throughout (any base)
M1 Use $\log a^{b}=b \log a$ correctly on $\log 5^{x}$ or $\log 9^{x}$ or legitimate combination of these two
M1 Use $\log a b=\log a+\log b$ correctly on \log (6×5^{x}) or $\log 6$
M1 Use $\log _{3} 9=2$ or equiv (need base 3 throughout that line)

A1 5 Obtain $x=\frac{1+\log _{3} 2}{2-\log _{3} 5}$ convincingly
(inc base 3 throughout)

4723 Core Mathematics 3

1 Obtain integral of form $k(2 x-7)^{-1}$
Obtain correct $-5(2 x-7)^{-1}$
Include $\ldots+c$

M1 any constant k
A1 or equiv
B1 3 at least once; following any integral 3

4 (i) Attempt correct process for composition Obtain (7 and hence) 0
(ii) Attempt to find x-intercept Obtain $x \leq 7$
(iii) Attempt correct process for finding inverse Obtain $\pm(2-y)^{3}-1$ or $\pm(2-x)^{3}-1$
Obtain correct $(2-x)^{3}-1$

M1 numerical or algebraic
A1 2
M1
A1 2 or equiv; condone use of $<$
M1
A1
A1 3 or equiv in terms of x

B1 $\mathbf{1}$ or clear equiv
8

5 (i) Obtain derivative of form $k x\left(x^{2}+1\right)^{7}$
Obtain $16 x\left(x^{2}+1\right)^{7}$
Equate first derivative to 0 and confirm $x=0$ or substitute $x=0$ and verify first derivative zero
Refer, in some way, to $x^{2}+1=0$ having no root

M1 any constant k
A1 or equiv

M1 AG; allow for deriv of form $k x\left(x^{2}+1\right)^{7}$
A1 4 or equiv
*M1 obtaining $\ldots+\ldots$ form
A1 $\sqrt{ }$ follow their $k x\left(x^{2}+1\right)^{7}$
A1 $\sqrt{ }$ follow their $k x\left(x^{2}+1\right)^{7}$; or unsimplified equiv
M1 dep *M
A1 5 from second derivative which is correct at some point

6 Integrate $\mathrm{e}^{3 x}$ to obtain $\frac{1}{3} \mathrm{e}^{3 x}$ or $\mathrm{e}^{-\frac{1}{2} x}$ to obtain $-2 \mathrm{e}^{-\frac{1}{2} x}$
Obtain indefinite integral of form $m_{1} \mathrm{e}^{3 x}+m_{2} \mathrm{e}^{-\frac{1}{2} x}$
Obtain correct $\frac{1}{3} k \mathrm{e}^{3 x}-2(k-2) \mathrm{e}^{-\frac{1}{2} x}$

Obtain $\mathrm{e}^{3 \ln 4}=64$ or $\mathrm{e}^{-\frac{1}{2} \ln 4}=\frac{1}{2}$
Apply limits and equate to 185
Obtain $\frac{64}{3} k-(k-2)-\frac{1}{3} k+2(k-2)=185$
Obtain $\frac{17}{2}$

B1 or both
M1 any constants m_{1} and m_{2}
A1 or equiv

B1 or both
M1 including substitution of lower limit
A1 or equiv
A1 7 or equiv 7

7 (a) Either: State or imply either $\frac{\mathrm{d} A}{\mathrm{~d} r}=2 \pi r$ or $\frac{\mathrm{d} A}{\mathrm{~d} t}=250 \quad$ B1 or both
Attempt manipulation of derivatives
to find $\frac{\mathrm{d} r}{\mathrm{~d} t}$
Obtain correct $\frac{250}{2 \pi r}$
Obtain 1.6
Or: Attempt to express r in terms of t
Obtain $r=\sqrt{\frac{250 t}{\pi}}$
Differentiate $k t^{\frac{1}{2}}$ to produce $\frac{1}{2} k t^{-\frac{1}{2}}$
Substitute $t=7.6$ to obtain 1.6

A1 or equiv
A1 4 or equiv; allow greater accuracy
M1 using $A=250 t$
A1 or equiv
M1 any constant k
A1 (4) allow greater accuracy
(b) State $\frac{\mathrm{d} m}{\mathrm{~d} t}=-150 k \mathrm{e}^{-k t}$

Equate to $(\pm) 3$ and attempt value for t
Obtain $-\frac{1}{k} \ln \left(\frac{1}{50 k}\right)$ or $\frac{1}{k} \ln (50 k)$ or $\frac{\ln 50+\ln k}{k}$

B1
M1 using valid process; condone sign confusion
A1 3 or equiv but with correct treatment of signs
7

8 (i) State scale factor is $\sqrt{2}$
State translation is in negative x-direction ...
... by $\frac{3}{2}$ units
B1 allow 1.4
B1 or clear equiv
B1 3
(ii) Draw (more or less) correct sketch of $y=\sqrt{2 x+3}$

Draw (more or less) correct sketch of $y=\frac{N}{x^{3}}$
Indicate one point of intersection
[SC: if neither sketch complete or correct but diagram correct for both in first quadrant \quad B1]
B1 'starting' at point on negative x-axis
B1 showing both branches
B1 $\mathbf{3}$ with both sketches correct
(iii) (a) Substitute 1.9037 into $x=N^{\frac{1}{3}}(2 x+3)^{-\frac{1}{6}}$

Obtain 18 or value rounding to 18
(b) State or imply $2.6282=N^{\frac{1}{3}}(2 \times 2.6022+3)^{-\frac{1}{6}}$

Attempt solution for N
Obtain 52

M1 or into equation $\sqrt{2 x+3}=\frac{N}{x^{3}}$; or equiv
A1 2 with no error seen

B1
M1 using correct process
A1 3 concluding with integer value 11

9 (i) Identify $\tan 55^{\circ}$ as $\tan \left(45^{\circ}+10^{\circ}\right)$
Use correct angle sum formula for $\tan (A+B)$
Obtain $\frac{1+p}{1-p}$

B1 or equiv
M1 or equiv
A1 3 with $\tan 45^{\circ}$ replaced by 1
(ii) Either: Attempt use of identity for $\tan 2 A$

Obtain $p=\frac{2 t}{1-t^{2}}$
Attempt solution for t of quadratic equation
Obtain $\frac{-1+\sqrt{1+p^{2}}}{p}$
Or (1): Attempt expansion of $\tan \left(60^{\circ}-55^{\circ}\right)$
Obtain $\frac{\sqrt{3}-\frac{1+p}{1-p}}{1+\sqrt{3} \frac{1+p}{1-p}}$
Attempt simplification to remove
denominators
Obtain $\frac{\sqrt{3}(1-p)-(1+p)}{1-p+\sqrt{3}(1+p)}$
*M1 linking 10° and 5°
A1
M1 dep *M
A1 4 or equiv; and no second expression

*M1

A1 $\sqrt{ }$ follow their answer from (i)

M1 dep *M
A1 (4) or equiv

Or (2): State or imply $\tan 15^{\circ}=2-\sqrt{3}$
Attempt expansion of $\tan \left(15^{\circ}-10^{\circ}\right)$
Obtain $\frac{2-\sqrt{3}-p}{1+p(2-\sqrt{3})}$

Or (3): State or imply $\tan 15^{\circ}=\frac{\sqrt{3}-1}{\sqrt{3}+1}$
Attempt expansion of $\tan \left(15^{\circ}-10^{\circ}\right)$
Obtain $\frac{\sqrt{3}-1-p \sqrt{3}-p}{\sqrt{3}+1+p \sqrt{3}-p}$

Or (4): Attempt expansion of $\tan \left(10^{\circ}-5^{\circ}\right)$
Obtain $t=\frac{p-t}{1+p t}$
Attempt solution for t of quadratic equation
Obtain $\frac{-2+\sqrt{4+4 p^{2}}}{2 p}$

B1

M1 with exact attempt for $\tan 15^{\circ}$
A2 (4)

B1 or exact equiv
M1 with exact attempt for $\tan 15^{\circ}$
A2 (4) or equiv
*M1
A1
M1 $\quad \operatorname{dep}$ *M
A1 (4) or equiv; and no second
expression
(iii) Attempt expansion of both sides

M1
Obtain $3 \sin \theta \cos 10^{\circ}+3 \cos \theta \sin 10^{\circ}=$ $7 \cos \theta \cos 10^{\circ}+7 \sin \theta \sin 10^{\circ}$
Attempt division throughout by $\cos \theta \cos 10^{\circ}$
Obtain $3 t+3 p=7+7 p t$
Obtain $\frac{3 p-7}{7 p-3}$

A1 or equiv
M1 or by $\cos \theta\left(\right.$ or $\left.\cos 10^{\circ}\right)$ only
A1 or equiv
A1 5 or equiv
12

4724 Core Mathematics 4

1 Long division method
Correct leading term x^{2} in quotient
B1

Evidence of correct div process
M1
A1
A1
(Remainder $=$) $11 x+9$
Identity method
$x^{4}+11 x^{3}+28 x^{2}+3 x+1=Q\left(x^{2}+5 x+2\right)+R$
M1
$Q=a x^{2}+b x+c$ or $x^{2}+b x+c ; R=d x+e \& \geq 3$ ops
$a=1, b=6, c=-4, d=11, e=9 \quad$ (for all 5)

Sufficient to convince
N.B. $a=1 \Rightarrow 1$ of the 3 ops
S.R. $\underline{B} 1$ for 3 of these

2 (i) Find at least 2 of $(\overrightarrow{A B}$ or $\overrightarrow{B A}),(\overrightarrow{B C}$ or $\overrightarrow{C B}),(\overrightarrow{A C}$ or $\overrightarrow{C A})$ M1
(ii) Use equal ratios of appropriate vectors

Obtain $p=-8$
or scalar product method
A1 2
6

Use correct method to find scal prod of any 2 vectors M1
Use $\overrightarrow{A B} \cdot \overrightarrow{B C}=0$ or $\frac{\overrightarrow{A B} \cdot \overrightarrow{B C}}{|A B||B C|}=0$
Obtain $p=1$ (dep 3 @ M1)
irrespect of label; any notation or use corr meth for modulus or use $|\overrightarrow{A B}|^{2}+|\overrightarrow{B C}|^{2}=|\overrightarrow{A C}|^{2}$

5 (i) $(1+x)^{\frac{1}{3}}=1+\frac{1}{3} x+\ldots$
... $-\frac{1}{9} x^{2}$
B1 $2-\frac{2}{18} x^{2}$ acceptable
(ii) (a) $(8+16 x)^{\frac{1}{3}}=8^{\frac{1}{3}}(1+2 x)^{\frac{1}{3}}$

B1 not $16^{\frac{1}{3}}\left(\frac{1}{2}+x\right)^{\frac{1}{3}}$
$(1+2 x)^{\frac{1}{3}}=$ their (i) expansion with $2 x$ replacing x M1 not dep on prev B1
$=1+\frac{2}{3} x-\frac{4}{9} x^{2}+\ldots$
$\sqrt{ }$ A1 $\quad-\frac{8}{18} x^{2}$ acceptable
Required expansion $=2$ (expansion just found)
N.B. If not based on part (i), award M1 for $8^{1 / 3}+\frac{1}{3} \cdot 8^{-2 / 3}(16 x)+\frac{\frac{1}{3} \cdot-\frac{2}{3}}{1 \cdot 2} 8^{-5 / 3}(16 x)^{2}$, allowing $16 x^{2}$ for $(16 x)^{2}$, with $3 @$ A1 for $2 \ldots+\frac{4}{3} x_{\ldots}-\frac{8}{9} x^{2}$, accepting equivalent fractions \& ISW
(ii) (b) $-\frac{1}{2}<x<\frac{1}{2}$ or $|x|<\frac{1}{2}$

B1 $\mathbf{1}$ no equality
7
$6 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}$
$\frac{\mathrm{d} x}{\mathrm{~d} t}=9-\frac{9}{9 t} \quad$ ISW
B1
$\frac{\mathrm{d} y}{\mathrm{~d} t}=3 t^{2}-\frac{3 t^{2}}{t^{3}} \quad$ ISW
Stating/implying $\frac{3 t^{2}-\frac{3}{t}}{9-\frac{1}{t}}=3 \Rightarrow t^{2}=9$ or $t^{3}-9 t=0$
$t=3$ as final ans with clear log indication of
invalidity of -3 ; ignore (non) mention of $t=0$
M1 quoted/implied

B1

A1 WWW, totally correct at this stage
S.R. A1 if $t= \pm 3$ or $t=-3$ or $(t=3 \underline{\&}$ wrong/no indication)
$7 \quad$ Treat $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{2} y\right)$ as a product
$\frac{\mathrm{d}}{\mathrm{d} x}\left(y^{3}\right)=3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$
B1
$3 x^{2}+2 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 x y=3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$
A1 Ignore $\frac{\mathrm{d} y}{\mathrm{~d} x}=$ if not used
Subst $(2,1)$ and solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or vice-versa M1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-4 \quad$ WWW
grad normal $=-\frac{1}{\text { their } \frac{\mathrm{d} y}{\mathrm{~d} x}}$
A1

Find eqn of line, through $(2,1)$, with either gradient
8 (i) $-\sin x \mathrm{e}^{\cos x}$
B1 $\quad \mathbf{1}$
(ii) $\int \sin x \mathrm{e}^{\cos x} \mathrm{~d} x=-\mathrm{e}^{\cos x}$

B1 anywhere in part (ii)
Parts with split $u=\cos x, \mathrm{~d} v=\sin x \mathrm{e}^{\cos x}$
M1
result $\mathrm{f}(x)+/-\int \mathrm{g}(x) \mathrm{d} x$
Indef Integ, 1st stage $-\cos x \mathrm{e}^{\cos x}-\int \sin x \mathrm{e}^{\cos x} \mathrm{~d} x \quad$ A1 \quad accept $\ldots-\int-\mathrm{e}^{\cos x} .-\sin x \mathrm{~d} x$
Second stage $=-\cos x \mathrm{e}^{\cos x}+\mathrm{e}^{\cos x}$
Final answer $=1$
*A1 dep*A2 6

7
9 (i) P is $\left(\begin{array}{l}3 \\ 1 \\ 1\end{array}\right)+\left(\begin{array}{l}1 \\ -1 \\ 2\end{array}\right)=\left(\begin{array}{l}4 \\ 0 \\ 3\end{array}\right)$
B1
direction vector of ℓ is $\left(\begin{array}{l}1 \\ -1 \\ 2\end{array}\right)$ and of $\overrightarrow{O P}$ is their $P \quad \sqrt{ } \mathrm{~B} 1$
Use $\cos \theta=\frac{\mathbf{a} . \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$ for $\left(\begin{array}{l}1 \\ -1 \\ 2\end{array}\right)$ and their OP
M1
$\theta=35.3$ or better ($0.615 \ldots \mathrm{rad}$)
A1 4
(ii) Use $\left(\begin{array}{l}1 \\ -1 \\ 2\end{array}\right) \cdot\left(\begin{array}{l}3+t \\ 1-t \\ 1+2 t\end{array}\right)=0$

M1
$1(3+t)-1(1-t)+2(1+2 t)=0$
A1
$\mathrm{t}=-\frac{2}{3}$
A1
Subst. into $\left(\begin{array}{l}3+t \\ 1-t \\ 1+2 t\end{array}\right)$ to produce $\left(\begin{array}{l}7 / 3 \\ 5 / 3 \\ -1 / 3\end{array}\right)$ ISW \quad A1 4
(iii) Use $\sqrt{x^{2}+y^{2}+z^{2}}$ where $\left(\begin{array}{l}\bar{x} \\ y \\ z\end{array}\right)^{-\cdots-\cdots}$ is part (ii) answer M1

Obtain $\sqrt{\frac{75}{9}}$ AEF, 2.89 or better $(2.8867513 \ldots$. $)$ A1 2
10 (i) $\frac{\frac{1}{3}}{3-x} \ldots \ldots-\frac{\frac{1}{3}}{6-x}$
B1 +12
(ii) (a) Separate variables $\int \frac{1}{(3-x)(6-x)} \mathrm{d} x=\int k \mathrm{~d} t \quad$ M1 \quad or invert both sides
$\underline{\text { Style: For the } \mathrm{M} 1, \mathrm{~d} x \& \mathrm{~d} t \text { must appear on correct sides or there must be } \int \text { sign on both sides }}$
Change $\frac{1}{(3-x)(6-x)}$ into partial fractions from (i) $\sqrt{ } \mathrm{B} 1$
$\int \frac{A}{3-x} \mathrm{~d} x=\left(-A\right.$ or $\left.-\frac{1}{\mathrm{~A}}\right) \ln (3-x) \quad$ B1 \quad or $\int \frac{B}{6-x} \mathrm{~d} x=\left(-B\right.$ or $\left.-\frac{1}{B}\right) \ln (6-x)$
$-\frac{1}{3} \ln (3-x)+\frac{1}{3} \ln (6-x)=k t(+c) \quad$ VA1 \quad f.t. from wrong multiples in (i)
Subst $(x=0, t=0) \&(x=1, t=1)$ into eqn with ' c ' M1 and solve for ' k '
Use $\ln a+\ln b=\ln a b$ or $\ln a-\ln b=\ln \frac{a}{b} \quad$ M1
Obtain $k=\frac{1}{3} \ln \frac{5}{4}$ with sufficient working \& WWW A1 $7 \quad$ AG
(b) Substitute $k=\frac{1}{3} \ln \frac{5}{4}, t=2 \&$ their value of ' c ' $\quad * \mathrm{M} 1$

Reduce to an eqn of form $\frac{6-x}{3-x}=\lambda \quad$ dep*M1 where λ is a const
Obtain $x=\frac{27}{17}$ or $\quad 1.6$ or better $(1.5882353 \ldots) \quad$ A2 $\quad 4 \quad$ S.R. A $1 \sqrt{ }$ for $x=\frac{3 \lambda-6}{\lambda-1}$

4725 Further Pure Mathematics 1

1 (i) $\left(\begin{array}{cc}a-4 & 2 \\ 3 & 0\end{array}\right)$
B1 Two elements correct
B1 2 Remaining elements correct

(ii) $4 a-6$	B1	Correct determinant		
	M1	Equate det A to 0 and solve		
$a=\frac{3}{2}$	A1	$\mathbf{3}$		Obtain correct answer a. e. f
:---				

5

(ii) $\frac{1}{\Delta}\left(\begin{array}{c}5 a-7 \\ 4 a-5 \\ 3\end{array}\right)$

M1 Attempt product of form $\mathbf{A}^{-1} \mathbf{C}$ or eliminate to get 2 equations and solve

A1A1A1 Obtain correct answer
ft all 3
4 S.C. if det now omitted, allow max A2 ft 11

10 (i)

$$
\mathbf{M}^{2}=\left(\begin{array}{ll}
1 & 4 \\
0 & 1
\end{array}\right) \quad \mathbf{M}^{3}=\left(\begin{array}{ll}
1 & 6 \\
0 & 1
\end{array}\right)
$$

B1 Correct \mathbf{M}^{2} seen
M1 Convincing attempt at matrix multiplication for \mathbf{M}^{3}
A1 3 Obtain correct answer
(ii) $\mathbf{M}^{n}=\left(\begin{array}{cc}1 & 2 n \\ 0 & 1\end{array}\right)$

B1ft 1 State correct form, consistent with (i)

10 (iii)	M1 A1 A1 B1 4	Correct attempt to multiply $\mathbf{M} \& \mathbf{M}^{k}$ or v.v. Obtain element 2($k+1$) Clear statement of induction step, from correct working Clear statement of induction conclusion, following their working
(iv)	B1 DB1 DB1 3 11	Shear x-axis invariant e.g. $(1,1) \rightarrow(21,1)$ or equivalent using scale factor or angles

4726 Further Pure Mathematics 2

1 (i)	Get 0.876096, 0.876496, 0.876642	$\begin{aligned} & \hline \mathrm{B} 1 \sqrt{ } \\ & \mathrm{~B} 1 \end{aligned}$	For any one correct or $\sqrt{ }$ from wrong answer; radians only All correct
(ii)	Subtract correctly (0.00023(0), 0.000084) Divide their errors as e_{4} / e_{3} only Get $0.365(21 . .$.	$\begin{aligned} & \text { B1V } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	On their answers May be implied Cao
2 (i)	Find $\mathrm{f}^{\prime}(x)=1 /\left(1+(1+x)^{2}\right)$ Get $f(0)=1 / 4 \pi$ and $f^{\prime}(0)=1 / 2$ Attempt $\mathrm{f}^{\prime \prime}(x)$ Correctly get $\mathrm{f}^{\prime \prime}(0)=-1 / 2$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \sqrt{ } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Quoted or derived; may be simplified or left as $\sec ^{2} y \mathrm{~d} y / \mathrm{d} x=1$ On their $\mathrm{f}^{\prime}(0)$; allow $\mathrm{f}(0)=0.785$ but not 45 Reasonable attempt at chain/quotient rule or implicit differentiation A.G.
(ii)	Attempt Maclaurin as $a \mathrm{f}(0)+b \mathrm{f}^{\prime}(0)+c \mathrm{f}^{\prime \prime}(0)$ Get $1 / 4 \pi+1 / 2 x-1 / 4 x^{2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Using their $\mathrm{f}(0)$ and $\mathrm{f}^{\prime}(0)$ Cao; allow 0.785
3 (i)	Attempt gradient as $\pm \mathrm{f}\left(x_{1}\right) /\left(x_{2}-x_{1}\right)$ Equate to gradient of curve at x_{1} Clearly arrive at A.G. SC Attempt equation of tangent Put $\left(x_{2}, 0\right)$ into their equation Clearly arrive at A.G.	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow reasonable y-step $/ x$-step Allow \pm Beware confusing use of \pm As $y-\mathrm{f}\left(x_{1}\right)=\mathrm{f}^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)$
(ii)	Diagram showing at least one more tangent Description of tangent meeting x-axis, used as next starting value	B1 B1	
(iii)	Reasonable attempt at $\mathrm{N}-\mathrm{R}$ Get 1.60	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Clear attempt at differentiation Or answer which rounds
$4 \quad \text { (i) }$	State $r=1$ and $\theta=0$.	B1 B1	May be seen or implied Correct shape, decreasing r (not through O)
(ii)	Use $1 / 2 \int r^{2} \mathrm{~d} \theta$ with $r=\mathrm{e}^{-2 \theta}$ seen or implied Integrate correctly as $-1 / 8 \mathrm{e}^{-4 \theta}$ Use limits in correct order Use $r_{1}{ }^{2}=\mathrm{e}^{-4 \theta}$ etc. Clearly get $k=1 / 8$	M1 A1 M1 M1 A1	Allow $1 / 2 \int \mathrm{e}^{4 \theta} \mathrm{~d} \theta$ In their answer May be implied

$5 \text { (i) }$	Use correct definitions of cosh and sinh Attempt to square and subtract Clearly get A.G. Show division by cosh 2	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	On their definitions Or clear use of first result
(ii)	Rewrite as quadratic in sech and attempt to solve Eliminate values outside $0<\operatorname{sech} \leq 1$ Get $x=\ln (2+\sqrt{3})$ Get $x=-\ln (2+\sqrt{3})$ or $\ln (2-\sqrt{3})$	M1 B1 A1 A1	Or quadratic in cosh Or eliminate values outside cosh ≥ 1 (allow positive)
6 (i)	Attempt at correct form of P.F. Rewrite as $4=$ $A(1+x)\left(1+x^{2}\right)+B(1-x)\left(1+x^{2}\right)+$ $(C x+D)(1-x)(1+x)$ Use values of $x /$ equate coefficients Get $A=1, B=1$ Get $C=0, D=2$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \sqrt{ } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Allow $C x /\left(x^{2}+1\right)$ here; $\operatorname{not} C=0$ From their P.F. cwo SC Use of cover-up rule for A, B M1 If both correct A1 cwo
(ii)	Get $A \ln (1+x)-B \ln (1-x)$ Get $D \tan ^{-1} x$ Use limits in their integrated expressions Clearly get A.G.	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Or quote from List of Formulae
7 (i)	LHS $=$ sum of areas of rectangles, area $=$ $1 \mathrm{x} y$-value from $x=1$ to $x=n$ RHS $=$ Area under curve from $x=0$ to n	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
(ii)	Diagram showing areas required Use sum of areas of rectangles Explain/show area inequality with limits in integral clearly specified	B1 B1 B1	
(iii)	Attempt integral as $k x^{4 / 3}$ Limits gives 348(.1) and 352(.0) Get 350	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Allow one correct From two correct values only

8 (i)	Get $x=1, y=0$	B1,B1	
(ii)	Rewrite as quadratic in x	M1	$\left(x^{2} y-x(2 y+k)+y=0\right)$
	Use $b^{2}-4 a c \geq 0$ for all real x	M1	Allow $>$, = here
	Get correct inequality	A1	$4 k y+k^{2} \geq 0$
	State use of $k>0$ to A.G.	A1	
			SC Use differentiation (parts (ii) and (iii))
			Attempt prod/quotient rule M1
			Solve $=0$ for $x=-1 \quad$ A1
			Use $x=-1$ only (reject $x=1$), $y=-1 / 4 k \mathrm{~A} 1$
			Fully justify minimum B1
			Attempt to justify for all x M1
			Clearly get A.G. A1

(iii) Replace $y=-1 / 4 k$ in quadratic in $x \quad$ M1

Get $x=-1$ only A1

B1 Through origin with minimum at $(-1,-1 / 4 k)$ seen or given in the answer

B1 Correct shape (asymptotes and approaches)

SC (Start again)
Differentiate and solve $\mathrm{d} y / \mathrm{d} x=0$ for at least one x-value, independent of $k \quad$ M1 Get $x=-1$ only A1

9 (i) Rewrite tanh y as $\left(e^{y}-e^{-y}\right) /\left(e^{y}+\mathrm{e}^{-y}\right) \quad$ B1 Or equivalent
Attempt to write as quadratic in $\mathrm{e}^{2 y} \quad$ M1
Clearly get A.G.
A1
(ii) (a) Attempt to diff. and solve $=0$

Get $\tanh x=b / a$
Use $(-1)<\tanh x<1$ to show $b<a$

$$
\begin{array}{rlrl}
\text { SC Use exponentials } & & \text { M1 } \\
\text { Get } \mathrm{e}^{2 x} & =(a+b) /(a-b) & & \text { A1 } \\
\text { Use } \mathrm{e}^{2 x} & >0 \text { to show } b<a & & \text { B1 } \\
& & & \\
\text { SC Write } x & =\tanh ^{-1}(b / a) & & \text { M1 } \\
& =1 / 2 \ln ((1+b / a) /(1-b / a)) & \text { A1 } \\
\text { Use }() & >0 \text { to show } b<a & & \text { B1 }
\end{array}
$$

(b) Get $\tanh x=1 / a$ from part (ii)(a) B1

Replace as \ln from their answer M1
Get $x=1 / 2 \ln ((a+1) /(a-1)) \quad$ A1
Use $\mathrm{e}^{1 / \ln ((a+1)(a-1))}=\sqrt{ }((a+1) /(a-1)) \quad$ M1 \quad At least once
Clearly get A.G. A1
Test for minimum correctly B1

SC Use of $y=\cosh x(a-\tanh x)$ and $\cosh x=1 / \operatorname{sech} x=1 / \sqrt{ }\left(1-\tanh ^{2} x\right)$

METHOD 1

line segment between l_{1} and $l_{2}= \pm[4,-3,-9]$
$\mathbf{n}=[1,-1,2] \times[2,3,4]=(\pm)[-2,0,1]$
distance $=\frac{|[4,-3,-9] \cdot[-2,0,1]|}{\left(\sqrt{2^{2}+0^{2}+1^{2}}\right)}=\frac{17}{(\sqrt{5})}$
$\neq 0$, so skew
METHOD 2 lines would intersect where

$$
\left.\begin{array}{rl}
1+s & =-3+2 t \\
-2-s & =1+3 t \\
-4+2 s & =5+4 t
\end{array}\right\} \Rightarrow\left\{\begin{aligned}
s-2 t & =-4 \\
s+3 t & =-3 \\
2 s-4 t & =9
\end{aligned}\right.
$$

\Rightarrow contradiction, so skew

B1 For correct vector
M1* For finding vector product of direction A1

M1 For using numerator of distance formula (*dep)
A1 5 For correct scalar product and correct conclusion

B1 For correct parametric form for either line
M1* For 3 equations using 2 different parameters
A1
M1 For attempting to solve
(*dep) to show (in)consistency
A1 For correct conclusion
5

2 (i) $(a+b \sqrt{5})(c+d \sqrt{5})$
M1 For using product of 2 distinct elements
$=a c+5 b d+(b c+a d) \sqrt{5} \in H$
A1 2 For correct expression
(ii) $(e=) 1 O R 1+0 \sqrt{5}$

B1 1. For correct identity
(iii) EITHER $\frac{1}{a+b \sqrt{5}} \times \frac{a-b \sqrt{5}}{a-b \sqrt{5}}$

M1 For correct inverse as $(a+b \sqrt{5})^{-1}$
$O R(a+b \sqrt{5})(c+d \sqrt{5})=1 \Rightarrow\left\{\begin{aligned} a c+5 b d & =1 \\ b c+a d & =0\end{aligned}\right.$
inverse $=\frac{a}{a^{2}-5 b^{2}}-\frac{b}{a^{2}-5 b^{2}} \sqrt{5}$
(iv) 5 is prime $O R \sqrt{5} \notin \mathbb{Q}$

B1 1 For a correct property (or equivalent)
6
3 Integrating factor $=\mathrm{e}^{\int 2 \mathrm{~d} x}=\mathrm{e}^{2 x}$
B1 For correct IF

A1 For correct integration both sides and multiplying top and bottom by $a-b \sqrt{5}$
$O R$ for using definition and equating parts
A1 2 For correct inverse. Allow as a single fraction \qquad
1 For a correct property (or equivalent)

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{2 x}\right)=\mathrm{e}^{-x} \\
& \Rightarrow y \mathrm{e}^{2 x}=-\mathrm{e}^{-x}(+c) \\
& (0,1) \Rightarrow c=2 \\
& \Rightarrow y=-\mathrm{e}^{-3 x}+2 \mathrm{e}^{-2 x}
\end{aligned}
$$

M1 For $\frac{\mathrm{d}}{\mathrm{d} x}(y$.their IF $)=\mathrm{e}^{-3 x}$. their IF

M1 For substituting $(0,1)$ into their GS and solving for c
A1 $\sqrt{ } \quad$ For correct c f.t. from their GS
A1 6 For correct solution

6

4 (i) $\quad(z=) 2,-2,2 \mathrm{i},-2 \mathrm{i}$
M1 For at least 2 roots of the form $k\{1, \mathrm{i}\}$ AEF
A1 2 For correct values
(ii) $\frac{w}{1-w}=2,-2,2 \mathrm{i},-2 \mathrm{i}$
$w=\frac{z}{1+z}$
$w=\frac{2}{3}, 2$
$w=\frac{4}{5} \pm \frac{2}{5} \mathrm{i}$

M1 For $\frac{w}{1-w}=$ any one solution from (i)
For attempting to solve for w, using any solution or in general
B1 For any one of the 4 solutions
A1 For both real solutions
A1 5 For both complex solutions
SR Allow B $1 \sqrt{ }$ and one $\operatorname{A} 1 \sqrt{ }$ from $k \neq 2$

7

5 (i) $\mathbf{A B}=k\left[\frac{2}{3} \sqrt{3}, 0,-\frac{2}{3} \sqrt{6}\right]$,
B1 For any one edge vector of $\triangle A B C$
$\mathbf{B C}=k[-\sqrt{3}, 1,0], \quad \mathbf{C A}=k\left[\frac{1}{3} \sqrt{3},-1, \frac{2}{3} \sqrt{6}\right]$
$\mathbf{n}=k_{1}\left[\frac{2}{3} \sqrt{6}, \frac{2}{3} \sqrt{18}, \frac{2}{3} \sqrt{3}\right]=k_{2}\left[1, \sqrt{3}, \frac{1}{2} \sqrt{2}\right]$
M1 For attempting to find vector product of any two edges
substitute A, B or $C \Rightarrow x+\sqrt{3} y+\frac{1}{2} \sqrt{2} z=\frac{2}{3} \sqrt{3}$
M1 For substituting A, B or C into r.n
A1 5 For correct equation AG
SR For verification only allow M1, then A1 for 2 points and A1 for the third point
$\begin{array}{lll}\text { (ii) Symmetry } & \text { B1* } & \text { For quoting symmetry or reflection } \\ \text { in plane } O A B \text { or } O x z \text { or } y=0 & \text { B1 } & \text { For correct plane }\end{array}$ in plane $O A B$ or $O x z$ or $y=0$

B1 For correct plane
(*dep)2 Allow "in y coordinates" or "in y axis" SR For symmetry implied by reference to opposite signs in y coordinates of C and D, award B1 only
(iii) $\cos \theta=\frac{\left|\left[1, \sqrt{3}, \frac{1}{2} \sqrt{2}\right] \cdot\left[1,-\sqrt{3}, \frac{1}{2} \sqrt{2}\right]\right|}{\sqrt{1+3+\frac{1}{2}} \sqrt{1+3+\frac{1}{2}}}$

$$
=\frac{\left|1-3+\frac{1}{2}\right|}{\frac{9}{2}}=\frac{\frac{3}{2}}{\frac{9}{2}}=\frac{1}{3}
$$

M1 For using scalar product of normal vectors
A1 For correct scalar product
M1 For product of both moduli in denominator
A1 4 For correct answer. Allow $-\frac{1}{3}$

6 (i) $\left(m^{2}+16=0 \Rightarrow\right) m= \pm 4 \mathrm{i}$
$\mathrm{CF}=A \cos 4 x+B \sin 4 x$
(ii) $\frac{\mathrm{d} y}{\mathrm{~d} x}=p \sin 4 x+4 p x \cos 4 x$
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=8 p \cos 4 x-16 p x \sin 4 x$
$\Rightarrow 8 p \cos 4 x=8 \cos 4 x$
$\Rightarrow p=1$
$\Rightarrow(y=) A \cos 4 x+B \sin 4 x+x \sin 4 x$

M1 For attempt to solve correct auxiliary equation (may be implied by correct CF)
A1 2 For correct CF
(AEtrig but not $A \mathrm{e}^{4 \mathrm{i} x}+B \mathrm{e}^{-4 \mathrm{i} x}$ only)
M1 For differentiating PI twice, using product rule
A1 For correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$
$A 1 \sqrt{ } \quad$ For unsimplified $\frac{d^{2} y}{d x^{2}}$. f.t. from $\frac{d y}{d x}$
M1 For substituting into DE
A1 For correct p
$B 1 \sqrt{ } 6$

For using GS $=\mathrm{CF}+\mathrm{PI}$, with 2 arbitrary constants in CF and none in PI
(iii) $(0,2) \Rightarrow A=2$

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=-4 A \sin 4 x+4 B \cos 4 x+\sin 4 x+4 x \cos 4 x \\
& x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \Rightarrow B=0 \\
& \Rightarrow y=2 \cos 4 x+x \sin 4 x
\end{aligned}
$$

$\mathrm{B} 1 \sqrt{ } \quad$ For correct A. f.t. from their GS
M1 For differentiating their GS
M1 For substituting values for x and $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to find B
A1 4 For stating correct solution
CAO including $y=$

12

7 (i) $\cos 6 \theta=0 \Rightarrow 6 \theta=k \times \frac{1}{2} \pi$
$\Rightarrow \theta=\frac{1}{12} \pi\{1,3,5,7,9,11\}$

M1 For multiples of $\frac{1}{2} \pi$ seen or implied
A1 A1 for any 3 correct
A1 3 A1 for the rest, and no extras in $0<\theta<\pi$
(ii) METHOD 1
$\operatorname{Re}(c+\mathrm{i} s)^{6}=\cos 6 \theta=c^{6}-15 c^{4} s^{2}+15 c^{2} s^{4}-s^{6}$
$\cos 6 \theta=c^{6}-15 c^{4}\left(1-c^{2}\right)+15 c^{2}\left(1-c^{2}\right)^{2}-\left(1-c^{2}\right)^{3}$
$\Rightarrow \cos 6 \theta=32 c^{6}-48 c^{4}+18 c^{2}-1$
$\Rightarrow \cos 6 \theta=\left(2 c^{2}-1\right)\left(16 c^{4}-16 c^{2}+1\right)$

METHOD 2
$\operatorname{Re}(c+\mathrm{i} s)^{3}=\cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta$
$\Rightarrow \cos 6 \theta=\cos 2 \theta\left(\cos ^{2} 2 \theta-3 \sin ^{2} 2 \theta\right)$
$\Rightarrow \cos 6 \theta=\left(2 \cos ^{2} \theta-1\right)\left(4\left(2 \cos ^{2} \theta-1\right)^{2}-3\right)$
$\Rightarrow \cos 6 \theta=\left(2 c^{2}-1\right)\left(16 c^{4}-16 c^{2}+1\right)$
(iii) METHOD 1
$\cos 6 \theta=0$
$\Rightarrow 6$ roots of $\cos 6 \theta=0$ satisfy
$16 c^{4}-16 c^{2}+1=0$ and $2 c^{2}-1=0$
But $\theta=\frac{1}{4} \pi, \frac{3}{4} \pi$ satisfy $2 c^{2}-1=0$
EITHER Product of 4 roots $O R \quad c= \pm \frac{1}{2} \sqrt{2 \pm \sqrt{3}}$
$\Rightarrow \cos \frac{1}{12} \pi \cos \frac{5}{12} \pi \cos \frac{7}{12} \pi \cos \frac{11}{12} \pi=\frac{1}{16}$

M1

A1 For 4 correct terms
For expanding $(c+\mathrm{i} s)^{6}$
at least 4 terms and 2 binomial coefficients needed

M1 For using $s^{2}=1-c^{2}$

A1 For correct expression for $\cos 6 \theta$
A1 5 For correct result AG
(may be written down from correct $\cos 6 \theta$)

M1 For expanding $(c+\mathrm{i} s)^{3}$
at least 2 terms and 1 binomial coefficient needed
A1 For 2 correct terms
M1 For replacing θ by 2θ
A1 For correct expression in $\cos \theta$ (unsimplified)
A1 For correct result AG

M1 For putting $\cos 6 \theta=0$ quadratic
B1 For correct association of roots with quadratic
M1 For using product of 4 roots $O R$ for solving quartic

A1 For association of roots with quartic and

A1 5 For correct value (may follow A0 and B0)

METHOD 2
$\cos 6 \theta=0$
$\Rightarrow 6$ roots of $\cos 6 \theta=0$ satisfy
$32 c^{6}-48 c^{4}+18 c^{2}-1=0$
Product of 6 roots \Rightarrow
$\cos \frac{1}{12} \pi \cdot \frac{1}{\sqrt{2}} \cdot \cos \frac{5}{12} \pi \cos \frac{7}{12} \pi \cdot \frac{-1}{\sqrt{2}} \cdot \cos \frac{11}{12} \pi=-\frac{1}{32}$
$\cos \frac{1}{12} \pi \cos \frac{5}{12} \pi \cos \frac{7}{12} \pi \cos \frac{11}{12} \pi=\frac{1}{16}$

M1 For putting $\cos 6 \theta=0$
A1 For association of roots with sextic
M1 For using product of 6 roots
B1 For using $\cos \left\{\frac{3}{12} \pi, \frac{9}{12} \pi\right\}=\left\{\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right\}$
A1 For correct value

8 (i)
$\mathrm{g}(x)=\frac{1}{2-2 \cdot \frac{1}{2-2 x}}=\frac{2-2 x}{2-4 x}=\frac{1-x}{1-2 x}$
M1 For use of $\mathrm{ff}(x)$
A1 For correct expression AG
$\operatorname{gg}(x)=\frac{1-\frac{1-x}{1-2 x}}{1-2 \cdot \frac{1-x}{1-2 x}}=\frac{-x}{-1}=x$
M1 For use of $\operatorname{gg}(x)$
A1 4 For correct expression AG
(ii) Order of $\mathrm{f}=4$

B1 For correct order
order of $\mathrm{g}=2$
B1 . 2 . For correct order
(iii) METHOD 1
$y=\frac{1}{2-2 x} \Rightarrow x=\frac{2 y-1}{2 y} \quad$ M1 For attempt to find inverse
$\Rightarrow \mathrm{f}^{-1}(x)=\mathrm{h}(x)=\frac{2 x-1}{2 x}$ OR $1-\frac{1}{2 x}$
A1 2 For correct expression
METHOD 2
$\mathrm{f}^{-1}=\mathrm{f}^{3}=\mathrm{f} g$ or gf
M1 For use of $\mathrm{fg}(x)$ or $\mathrm{g} f(x)$
$\mathrm{f} \mathrm{g}(x)=\mathrm{h}(x)=\frac{1}{2-2\left(\frac{1-x}{1-2 x}\right)}=\frac{1-2 x}{-2 x}$
A1 For correct expression
(iv)

	e	f	g	h
e	e	f	g	h
f	f	g	h	e
g	g	h	e	f
h	h	e	f	g

M1 For correct row 1 and column 1
A1 For e, f, g, h in a latin square
A1 For correct diagonal e-g-e-g
A1 4 For correct table

4728 Mechanics 1

1 i	$\begin{aligned} & \mathrm{v}=4.2+9.8 \times 1.5 \\ & \mathrm{v}=18.9 \mathrm{~ms}^{-1} . \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	$\begin{aligned} & \text { Uses } v=u+g t \\ & 18.9(15) \text { from } g=9.81 \end{aligned}$
ii	$\begin{aligned} & \mathrm{s}=4.2 \times 1.5+9.8 \times 1.5^{2} / 2 \text { or } \\ & \\ & \mathrm{s}=17.325 \mathrm{~m} \quad 18.9^{2}=4.2^{2}+2 \times 9.8 \mathrm{~s} \end{aligned}$	M1 A1 [2]	Uses $\mathrm{s}=\mathrm{ut}+\mathrm{gt}^{2} / 2$ or $\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{gs}$ Accept 17.3
iii	$\begin{aligned} & \hline \mathrm{v}^{2}=4.2+2 \times 9.8 \times(17.3(25)-5) \\ & \mathrm{v}=16.1 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	$\begin{aligned} & 18.9^{2}=\mathrm{u}^{2}+2 \times 9.8 \times 5 \\ & \mathrm{u}=16.1 \mathrm{~ms}^{-1} . \end{aligned}$ Accept answers close to 16.1 from correct working
2 i	Resolves a force in 2 perpendicular directions Uses Pythagoras $\begin{aligned} \mathrm{R}^{2}= & (12+19 \cos 60)^{2} \\ & +(19 \sin 60)^{2} \\ \mathrm{R} & =27.1 \mathrm{~N} \\ \{\mathrm{R}= & \left.\sqrt{ }\left((19+12 \cos 60)^{2}+(12 \sin 60)^{2}\right)=27.1\right\} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { DM1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[5]} \end{aligned}$	Diagram for vector addition/subtraction Uses Cosine Rule $\begin{aligned} & R^{2}=12^{2}+19^{2}- \\ & \quad 2 \times 12 \times 19 \cos 120 \\ & R=27.1 \end{aligned}$
ii	Trig on a valid triangle for correct angle $\tan \theta=(19 \sin 60) /(12+19 \cos 60)$ etc Angle is $37.4^{\circ}, 37.5^{\circ}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	Either Pythagoras or vector add/sub triangle $\sin \theta / 19=\sin 120 /(27.1)$ etc
$3 i a$ ib	$\begin{aligned} & +/-(9 \mathrm{~m}+2 \times 0.8) \quad\{+/-(3.5 \times 0.8-2 \times 0.8)\} \\ & +/-(-3.5 \mathrm{~m}+3.5 \times 0.8) \quad\{+/-(9 \mathrm{~m}+3.5 \mathrm{~m})\} \\ & +/-(9 \mathrm{~m}+2 \times 0.8)=+/-(-3.5 \mathrm{~m}+3.5 \times 0.8) \\ & \mathrm{m}=0.096 \mathrm{~kg} \\ & +/-0.096(9+/-3.5) O R+/-0.8(3.5-2) \\ & +/-1.2 \mathrm{kgms}^{-1} \end{aligned}$	B1 B1 M1 A1 [4] M1 A1ft [2]	Before mom, or mom change Q, OK with g After mom, or mom change P , OK with g Equates moms, or changes, accept with g Do not award if g used Using before \& after speeds of P or Q , no g ft $12.5 \times \operatorname{cv}(0.096)$
ii	$\begin{aligned} & (0.8+0.4) \mathrm{v} \text { or } 0.8 \mathrm{v}+0.4 \mathrm{v} \\ & 3.5 \times 0.8+0.4 \times 2.75=(0.8+0.4) \mathrm{v} \\ & \mathrm{v}=3.25 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{array}{\|c\|} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{array}$	Using Q and R common speed after, no g $2.8+1.1=1.2 \mathrm{v}$
4ia ib	$0.3 \operatorname{gcos} 60$ and $0.3 \operatorname{gsin} 60$ $0.4 \mathrm{~g} \cos 60$ and $0.4 \mathrm{~g} \sin 60$ Calculates either relevant difference Perp $=0.1 \mathrm{gcos} 60$ and Para $=+/-0.1 \mathrm{~g} \sin 60$ $0.1 \operatorname{gsin} 60=\mu 0.1 \operatorname{gcos} 60$ $=1.73(=\sqrt{ } 3)$	B1 B1 M1 A1 [4] M1 A1 [2]	Accept use of " $\mathrm{m}=0.1 \mathrm{~kg}$ " for M1 and $0.1 \mathrm{~g} \cos 60$ (B1) $0.1 \mathrm{~g} \sin 60(\mathrm{~B} 1)$ $\begin{aligned} & =0.49 \text { and }=0.849(\text { accept } 0.85 \text { and } 0.84) \\ & F=\mu R, F>R>0 \end{aligned}$ From correct R, F values

4 ii	$\begin{aligned} & 0.5 \mathrm{~g}-\mathrm{T}=0.5 \mathrm{a} \\ & \mathrm{~T}-0.4 \mathrm{~g}=0.4 \mathrm{a} \\ & \mathrm{a}=1.09 \mathrm{~ms}^{-2} \\ & \mathrm{~T}=4.36 \mathrm{~N} \end{aligned}$	M1 A1 B1 B1 [4]	N2L for either particle no resolving, at least 1 unknown Formula round the pulley, M0A0. But award M1 for T- $0.4 \mathrm{~g}=0.4 \times 1.09$ etc later Both equations correct
5 i	$\begin{array}{ll} 11=3+20 \mathrm{a} & (\mathrm{a}=0.4) \\ 8=3+(11-3) \mathrm{t} / 20 & \\ \mathrm{t}=12.5 & \end{array}$	M1 M1 A1 [3]	Uses $\mathrm{v}=\mathrm{u}+\mathrm{at}$, no zero terms Their $\mathrm{a}>0 . \mathrm{t} / 20=(8-3) /(11-3)$ is M1M1
ii	$\begin{aligned} & \mathrm{s}(\mathrm{~A}, 20)=8 \times 20(=160) \\ & \mathrm{s}(\mathrm{~B}, 20)=(3+11) \times 20 / 2= \\ & 3 \times 20+0.4 \times 20^{2} / 2(=140) \\ & 8 \mathrm{~T}=(3+11) \times 20 / 2+11 \times(\mathrm{T}-20) \\ & \text { or }(160-140)=11 \mathrm{t}-8 \mathrm{t} \\ & \mathrm{~T}=262 / 3 \end{aligned}$	B1 B1 M1 A1 A1 [5]	$\operatorname{Or} \mathrm{s}(\mathrm{~A})=8 \mathrm{~T}$ or as stage of $s(B)=(3+11) \times 20 / 2+11 \times(T-20)$ 3 part equation balancing distances Accept 26.6 or 26.7
iii		B1 B1 B1 [3]	Linear rising graph (for A) starting at B's start Non-linear rising graph for B below A's initially. Accept 2 straight lines as non-linear. Single valued graphs graphs intersect and continue
6 i	$\begin{aligned} & \mathrm{a}=2 \times 0.006 \mathrm{t}-0.18 \\ & \mathrm{a}=0.012 \mathrm{t}-0.18 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$	Differentiates v (not v/t) Award for unsimplified form, accept +c , not $+\mathrm{k}$
ii	$\begin{align*} & 0.012 t-0.18=0 \\ & t=15 \\ & 0.006 \times 15^{2}-0.18 \times 15+k=0.65 \\ & k=2 \tag{AG} \end{align*}$	$\begin{aligned} & \hline \text { M1* } \\ & \text { A1 } \\ & \text { D}^{*} \mathrm{M} 1 \\ & \text { A1 } \\ & \text { A1 } \\ & {[5]} \\ & \hline \end{aligned}$	Sets $\mathrm{a}=0$, and solves for t Substitutes $\mathrm{t}(\mathrm{v}(\mathrm{min}))$ in $\mathrm{v}(\mathrm{t})$
iii	$\begin{aligned} & \mathrm{s}=0.006 \mathrm{t}^{3} / 3-0.18 \mathrm{t}^{2} / 2+2 \mathrm{t}(+\mathrm{c}) \\ & \left(\mathrm{s}=0.002 \mathrm{t}^{3}-0.09 \mathrm{t}^{2}+2 \mathrm{t}(+\mathrm{c})\right) \\ & \mathrm{t}=0, \mathrm{~s}=0 \text { hence } \mathrm{c}=0 \\ & \mathrm{~L}=0.002 \times 28.4^{3}-0.09 \times 28.4^{2}+2 \times 28.4 \\ & \mathrm{~L}=30.0 \mathrm{~m} \end{aligned}$	M1A1 B1 M1 A1 [5]	Integrates v (not multiplies by t). Award if $+c$ omitted, accept kt Explicit, not implied (or uses limits 0, 28.4) Substitutes 28.4 or 14.2 in $\mathrm{s}(\mathrm{t})$, (and $\mathrm{k}=2$) Accept a r t 30(.0), accept +c

7 i	$\begin{aligned} & (\mathrm{Fr}=0.15 \times 600 \mathrm{gcos} 10 \\ & (\mathrm{Wt} \mathrm{cmpt}=600 \mathrm{gsin} 10 \\ & 600 \times 0.11=\mathrm{T}-0.15 \times 600 \mathrm{gcos} 10- \\ & (66=\mathrm{T}-868.6-1021) \\ & \mathrm{T}=1960 \mathrm{~N} \end{aligned}$	B1 B1 M1 A1 A1 [5]	Implied by $\mathrm{Fr}=0.15 \times 600 \mathrm{gcos} 10$ ($=868.6$.) N2L. T with at least 1 resolved forces and 600×0.11 1955.6..
ii a	$\begin{aligned} & \mathrm{a}(\text { up })=+/-(600 \mathrm{gsin} 10+.15 \times 600 \mathrm{~g} \cos 10) / 600 \\ & \mathrm{a}(\text { up })=+/-3.15 \mathrm{~ms}^{-2} \end{aligned}$	$\begin{array}{\|c} \hline \mathrm{M} 1 \\ \mathrm{~A} 1 \\ {[2]} \end{array}$	2 resolved forces and 600a or "unit mass" Disregard sign, accept 3.149
b	$\begin{array}{ll} \text { UP } \quad \begin{array}{l} \mathrm{v}^{2} \end{array}=2 \times 0.11 \times 10 \\ \mathrm{v} & =1.48 \text { when cable breaks } \\ \mathrm{t} & =1.48 / 3.149 \\ \mathrm{t} & \mathrm{t}=0.471 \text { time for log to come to rest }) \\ \mathrm{s} & =1.48^{2} /(2 \times 3.149) \\ \mathrm{s} & =0.349 \text { distance for log to come to } \\ \text { rest } \\ \text { DOWN } \\ \text { a(down })=(600 \mathrm{~g} \sin 10-0.15 \times 600 \mathrm{gcos} 10) / 600 \\ 10+0.349=0.254 \mathrm{t}^{2} / 2 \\ \mathrm{t} & =9.025 \\ \mathrm{~T} & =(9.025+0.471)=9.5 \mathrm{~s} \end{array}$	M1 A1 M1 M1 A1 B1 M1 A1 A1 [9]	Correct, need not be accurate Or $1.48=0+3.15 \mathrm{t}$ Correct, need not be accurate $=0.254$ Needs $\mathrm{a}<3.15, \mathrm{~s}>10$. Or $\mathrm{V}^{2}=$ $2 \times 0.254 \times(10+0.349)[\mathrm{V}=2.29 . .], \mathrm{V}=0.254 \mathrm{t}$ Correct, need not be accurate Accept 9.49

4729 Mechanics 2

1	$\begin{aligned} & 75 \times 9.8 \times 40 \\ & (75 \times 9.8 \times 40) \div 120 \\ & 245 \mathrm{~W} \end{aligned}$		Average Speed $=40 \div 120$ $(75 \times 9.8) \times$ (Average speed)	3
2 (i)	$\begin{aligned} & \mathrm{v}^{2}=2 \times 9.8 \times 3 \text { or } 2 \times 9.8 \times 1.8 \\ & \mathrm{v}_{1}=\sqrt{6 g} \text { or } \sqrt{58.8} \text { or } \frac{7}{5} \sqrt{30} \text { or } 7.67 \\ & \mathrm{v}_{2}=\sqrt{3.6 g} \text { or } \sqrt{35.28} \text { or } \frac{21}{5} \sqrt{2} \text { or } 5.94 \\ & \mathrm{I}= \pm 0.2(5.94+7.67) \\ & 2.72 \end{aligned}$	M1 A1 A1 M1 A1ft [5]	Kinematics or energy Speed of impact (\pm) Speed of rebound (\pm) $+\mathrm{ve}, \mathrm{ft}$ on $\mathrm{v}_{1 \text { and }} \mathrm{V}_{2}$	
(ii)	$\begin{aligned} & \mathrm{e}=5.94 / 7.67 \\ & 0.775 \text { or } \frac{\sqrt{15}}{5} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1ft [2] } \end{aligned}$	Allow 0.774, ft on v_{1} and v_{2}	7
3 (i)	$\begin{aligned} & \hline \overline{\mathrm{u}}=0.2 \text { (from vertex) or } 0.8 \text { or } 0.1 \\ & 0.5 \mathrm{~d}=0.2 \times \overline{\mathrm{u}}+0.3 \times 0.65 \end{aligned}$ $\mathrm{d}=0.47$	 B1 M1 A1 A1 $[4]$	com of conical shell AG	
(ii)	$\begin{aligned} & \mathrm{s}=0.5 \\ & \mathrm{~T} \sin 80^{\circ} \times 0.5=0.47 \times 0.5 \times 9.8 \\ & \mathrm{~T}=4.68 \mathrm{~N} \end{aligned}$	 B1 M1 A1 	slant height, may be implied	8
4 (i)	$\begin{aligned} & \mathrm{D}-400=700 \times 0.5 \\ & \mathrm{D}=750 \mathrm{~N} \end{aligned}$	$\begin{array}{\|lr} \hline \text { M1 } & \\ \text { A1 } & {[2]} \end{array}$	3 terms	
(ii)	$\begin{aligned} & \mathrm{P}=750 \times 12 \\ & 9000 \mathrm{~W} \text { or } 9 \mathrm{~kW} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1ft [2] } \end{array}$		
(iii)	$\begin{aligned} & \mathrm{P} / 35=400 \\ & 14000 \mathrm{~W} \text { or } 14 \mathrm{~kW} \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & {[2]} \end{array}$		
(iv)	$\begin{aligned} & \mathrm{D}=14000 / 12 \\ & 3500 / 3=400+700 \times 9.8 \sin \theta \\ & \theta=6.42^{\circ} \end{aligned}$	B1ft M1 A1 A1 $\quad[4]$	$\begin{aligned} & \text { May be implied } \\ & 3 \text { terms } \\ & \text { Their P/12 } \end{aligned}$	10

5	$\begin{aligned} & 16-12=2 x+3 y \\ & 4=2 x+3 y \\ & 1 / 2.2(8)^{2}+1 / 2.3(4)^{2} \text { or } 1 / 2.2 x^{2}+1 / 2.3 y^{2} \text { or } \\ & \pm 1 / 2.2\left(8^{2}-x^{2}\right) \text { or } \pm 1 / 23\left(4^{2}-y^{2}\right) \\ & 1 / 2.2(8)^{2}+1 / 2.3(4)^{2}-1 / 2.2 x^{2}-1 / 2 . .3 y^{2}=81 \\ & 2 x^{2}+3 y^{2}=14 \end{aligned}$ Attempt to eliminate x or y from a linear and a quadratic equation $15 y^{2}-24 y-12=0 \text { or } 10 x^{2}-16 x-26=0$ Attempt to solve a three term quadratic $\begin{aligned} & x=-1(\text { or } x=2.6) \\ & y=2(\text { or } y=-2 / 5) \\ & x=-1 \text { and } y=2 \text { only } \end{aligned}$ speeds 1, 2 away from each other	M1 A1 B1 M1 A1 M1 A1 M1 A1 A1 A1 A1 [12]	aef aef aef
6 (i)	$\begin{aligned} & 30^{2}=V_{1}^{2} \sin ^{2} \theta_{1}-2 \times 9.8 \times 250 \\ & V_{1}^{2} \sin ^{2} \theta_{1}=5800 \mathrm{AEF} \\ & V_{1} \cos \theta_{1}=40 \\ & V_{1}=86.0 \\ & \theta_{1}=62.3^{\circ} \end{aligned}$	M1 A1 B1 A1 A1 [5]	$1 / 2 m V_{1}^{2}=1 / 2 m 50^{2}+m \times 9.8 \times 250$ AG AG
(ii)	$\begin{aligned} & 0=\sqrt{ } 5800 \mathrm{t}_{\mathrm{p}}-4.9 \mathrm{t}_{\mathrm{p}}^{2} \\ & \mathrm{t}_{\mathrm{p}}=15.5 \\ & -\sqrt{ } 5800=30-9.8 \mathrm{t}_{\mathrm{q}} \\ & \mathrm{t}_{\mathrm{q}}=10.8 \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & {[4]} \end{array}$	$\begin{aligned} & 30=V_{1} \sin \theta_{1}-9.8 \mathrm{t} \\ & \mathrm{t}=4.71 \end{aligned}$
(iii)	$\begin{array}{\|l\|} \hline \mathrm{R}=40 \times 15.5 \\ \mathrm{R}=621 \\ V_{2} \cos \theta_{2} \times 10.8=621 \\ 0=V_{2} \sin \theta_{2} \times 10.8-4.9 \times 10.8^{2} \\ V_{2} \sin \theta_{2}=53.1 \text { or } 53.0 \end{array}$ Method to find a value of V_{2} or θ_{2} $\begin{array}{\|l} \theta_{2}=42.8^{\circ} \\ V_{2}=78.2 \mathrm{~m} \mathrm{~s}^{-1} \text { or } 78.1 \mathrm{~m} \mathrm{~s}^{-1} \end{array}$	$\begin{array}{lll} & \\ \text { M1 } & \\ \text { A1 } & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \text { [8] } & \end{array}$	$\begin{aligned} & (620,622) \\ & V_{2} \cos \theta_{2}=57.4 \\ & (52.9,53.1) \\ & 42.6^{\circ} \text { to } 42.9^{\circ} \\ & \text { or } 78.1^{\circ} \end{aligned}$
7 (i)	$\begin{aligned} & \cos \theta=3 / 5 \text { or } \sin \theta=4 / 5 \text { or } \tan \theta=4 / 3 \\ & \text { or } \theta=53.1^{\circ} \\ & R \cos \theta=0.2 \times 9.8 \\ & R=3.27 \mathrm{~N} \text { or } 49 / 15 \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & {[3]} \end{array}$	$\theta=$ angle to vertical
(ii)	$\begin{aligned} & \mathrm{r}=4 \\ & \mathrm{R} \sin \theta=0.2 \times 4 \times \omega^{2} \\ & \omega=1.81 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	B1 M1 A1 A1 [4]	

(iii)	$\begin{aligned} & \varphi=26.6^{\circ} \text { or } \sin \varphi=\frac{1}{\sqrt{5}} \text { or } \cos \varphi=\frac{2}{\sqrt{5}} \text { or } \\ & \tan \varphi=0.5 \\ & \mathrm{~T}=0.98 \text { or } 0.1 \mathrm{~g} \\ & \mathrm{~N} \cos \theta=\mathrm{T} \sin \varphi+0.2 \times 9.8 \\ & \mathrm{~N} \times 3 / 5=0.438+1.96 \\ & \mathrm{~N}=4.00 \\ & \mathrm{~N} \sin \theta+\mathrm{T} \cos \varphi=0.2 \times 4 \times \omega^{2} \\ & 4 \times 4 / 5+0.98 \cos 26.6^{\circ}=0.8 \omega^{2} \\ & \omega=2.26 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$		$\varphi=$ angle to horizontal Vertically, 3 terms may be implied Horizontally, 3 terms	15

4730 Mechanics 3

1	$\begin{aligned} & 0.4\left(3 \cos 60^{\circ}-4\right)=-\mathrm{I} \cos \theta \\ & 0.4\left(3 \sin 60^{\circ}\right)=\mathrm{I} \sin \theta \\ & \\ & \\ & {[\tan \theta=-1.5 \sqrt{3} /(1.5-4) ;} \\ & \left.\mathrm{I}^{2}=0.4^{2}\left[(1.5-4)^{2}+(1.5 \sqrt{3})^{2}\right]\right] \\ & \theta=46.1 \text { or } \mathrm{I}=1.44 \\ & \\ & \mathrm{I}=1.44 \text { or } \theta=46.1 \end{aligned}$	A1 M1 A1ft [7]	For using $\mathrm{I}=\Delta \mathrm{mv}$ in one direction SR: Allow B1 (max $1 / 3$) for $3 \cos 60^{\circ}-4=-\mathrm{I} \cos \theta \text { and } 3 \sin 60^{\circ}=\mathrm{I} \sin \theta$ For eliminating I or θ (allow following SR case) Allow for θ (only) following SR case. For substituting for θ or for I (allow following SR case) ft incorrect θ or I ; allow for θ (only) following SR case.
	Alternatively $\begin{aligned} & \mathrm{I}^{2}=1.2^{2}+1.6^{2}-2 \times 1.2 \times 1.6 \cos 60^{\circ} \quad \text { or } \\ & { }^{\prime} \mathrm{V}^{, 2}=3^{2}+4^{2}-2 \times 3 \times 4 \cos 60^{\circ} \\ & \mathrm{I}=1.44 \\ & \frac{\sin \theta}{3(\text { or } 1.2)}=\frac{\sin 60}{\sqrt{13(\text { or } 2.08)}} \text { or } \\ & \frac{\sin \alpha}{4(\text { or } 1.6)}=\frac{\sin 60}{\sqrt{13(\text { or } 2.08)}} \text { and } \theta=120-\alpha \\ & \theta=46.1 \end{aligned}$	M1 A1 M1 A1 M1 A1ft A1 [7]	For use of cosine rule For correct use of factor $0.4(=\mathrm{m})$ For use of sine rule α must be angle opposite 1.6 ; $\begin{aligned} & (\alpha=73.9) \\ & f t \text { value of } I \text { or ' } V \text { ' } \end{aligned}$
2	$\begin{aligned} & 2 a+3 b=2 \times 4 \\ & b-a=0.6 \times 4 \\ & {[2(b-2.4)+3 b=8]} \\ & b=2.56 \\ & v=2.56 \end{aligned}$	M1 A1 M1 A1 M1 A1 B1ft [7]	For using the principle of conservation of momentum For using NEL For eliminating a $\mathrm{ft} \mathrm{v}=\mathrm{b}$
3(i)	$\begin{aligned} & 2 \mathrm{~W}\left(\mathrm{a} \cos 45^{\circ}\right)=\mathrm{T}(2 \mathrm{a}) \\ & \mathrm{W}=\sqrt{2} \mathrm{~T} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$ $[3]$	For using ' mmt of $2 \mathrm{~W}=\mathrm{mmt}$ of T ' AG
(ii)	Components (H, V) of force on BC at B are $\mathrm{H}=-\mathrm{T} / \sqrt{2}$ and $\mathrm{V}=\mathrm{T} / \sqrt{2}-2 \mathrm{~W}$ $\mathrm{W}(\mathrm{a} \cos \alpha)+\mathrm{H}(2 \mathrm{a} \sin \alpha)=\mathrm{V}(2 \mathrm{a} \cos \alpha)$ $[\mathrm{W} \cos \alpha-\mathrm{T} \sqrt{2} \sin \alpha=\mathrm{T} \sqrt{2} \cos \alpha-4 \mathrm{~W} \cos \alpha]$ $\mathrm{T} \sqrt{2} \sin \alpha=(5 \mathrm{~W}-\mathrm{T} \sqrt{2}) \cos \alpha$ $\tan \alpha=4$	B1 M1 A1 M1 A1ft A1 [6]	For taking moments about C for BC For substituting for H and V and reducing equation to the form $\mathrm{X} \sin \alpha=\mathrm{Y} \cos \alpha$


	```Alternatively for part (ii) anticlockwise \(\mathrm{mmt}=\) \(\mathrm{W}(\mathrm{a} \cos \alpha)+2 \mathrm{~W}\left(2 \mathrm{a} \cos \alpha+\mathrm{a} \cos 45^{\circ}\right)\) \(=\mathrm{T}\left[2 \mathrm{a} \cos \left(\alpha-45^{\circ}\right)+2 \mathrm{a}\right]\) \([5 \mathrm{~W} \cos \alpha+\sqrt{2} \mathrm{~W}=\) \(\mathrm{T}(\sqrt{2} \cos \alpha+\sqrt{2} \sin \alpha)+2]\) \(\mathrm{T} \sqrt{2} \sin \alpha=(5 \mathrm{~W}-\mathrm{T} \sqrt{2}) \cos \alpha\) \(\tan \alpha=4\)```	M1   A1   A1   M1   Alft   A1   [6]	For taking moments about C for the whole   For reducing equation to the form $\mathrm{X} \sin \alpha=\mathrm{Y} \cos \alpha$
4(i)	$\begin{aligned} & {\left[-0.2\left(\mathrm{v}+\mathrm{v}^{2}\right)=0.2 \mathrm{a}\right]} \\ & {\left[\mathrm{vdv} / \mathrm{dx}=-\left(\mathrm{v}+\mathrm{v}^{2}\right)\right.} \\ & {[1 /(1+\mathrm{v})] \mathrm{dv} / \mathrm{dx}=-1} \end{aligned}$	$\begin{array}{\|c} \hline \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{array}$	For using Newton's second law For using $\mathrm{a}=\mathrm{v} \mathrm{dv} / \mathrm{dx}$ AG
(ii)	$\left.\left.\begin{array}{l} \ln (1+v)=-x(+C) \\ \ln (1+v)=-x+\ln 3 \\ {\left[(1+d x / d t) / 3=e^{-x} \rightarrow d x / d t=3 e^{-x}-1\right.} \\ {\left[-e^{x} /\left(3-e^{x}\right)\right] d x / d t=-1} \end{array} \quad e^{x} d x / d t=3-e^{x}\right] \quad\right]$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \\ \text { M1 } \\ \text { A1 } \\ {[5]} \end{gathered}$	For integrating   For transposing for v and using $\mathrm{v}=\mathrm{dx} / \mathrm{dt}$ AG
(iii)	$\begin{aligned} & {\left[\ln \left(3-\mathrm{e}^{\mathrm{x}}\right)=-\mathrm{t}+\ln 2\right]} \\ & \ln \left(3-\mathrm{e}^{\mathrm{x}}\right)=-\mathrm{t}+\ln 2 \end{aligned}$   Value of t is 1.96 (or $\ln \{2 \div(3-\mathrm{e})\}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	For integrating and using $\mathrm{x}(0)=0$
5(i)	$\begin{aligned} & \text { Loss of } \mathrm{EE}=120\left(0.5^{2}-0.3^{2}\right) /(2 \times 1.6) \\ & \text { and gain in } \mathrm{PE}=1.5 \times 4 \\ & \mathrm{v}=0 \text { at } \mathrm{B} \text { and loss of } \mathrm{EE}=\text { gain in } \mathrm{PE}(=6) \\ & \rightarrow \text { distance } \mathrm{AB} \text { is } 4 \mathrm{~m} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \hline[4] \\ \hline \end{gathered}$	For using $\mathrm{EE}=\lambda \mathrm{x}^{2} / 2 \mathrm{~L}$ and $\mathrm{PE}=\mathrm{Wh}$   For comparing EE loss and PE gain AG
(ii)	$\begin{aligned} & {[120 \mathrm{e} / 1.6=1.5]} \\ & \mathrm{e}=0.02 \\ & \text { Loss of } \mathrm{EE}=120\left(0.5^{2}-0.02^{2}\right) /(2 \times 1.6) \\ & \quad\left(\text { or } 120\left(0.3^{2}-0.02^{2}\right) /(2 \times 1.6)\right) \\ & \text { Gain in } \mathrm{PE}=1.5(2.1-1.6-0.02) \\ & \quad \text { (or } 1.5(1.9+1.6+0.02) \text { loss) } \\ & {[\mathrm{KE} \text { at max speed }=9.36-0.72} \\ & \text { (or } 3.36+5.28)] \\ & 1 / 2(1.5 / 9.8) \mathrm{v}^{2}=9.36-0.72 \text { ( } \\ & \text { Maximum speed is } 10.6 \mathrm{~ms}^{-1} \end{aligned}$	M1   A1   B1ft   B1ft   M1   A1   A1   [7]	For using $T=m g$ and $T=\lambda x / L$   ft incorrect e only   ft incorrect e only   For using KE at max speed   $=$ Loss of EE - Gain (or + loss) in PE
	First alternative for (ii)   x is distance AP $\left[1 / 2(1.5 / 9.8) v^{2}+1.5 x+120(0.5-x)^{2} / 3.2=\right.$ $\left.120 \times 0.5^{2} / 3.2\right]$   KE and PE terms correct   EE terms correct $\begin{aligned} & \mathrm{v}^{2}=470.4 \mathrm{x}-490 \mathrm{x}^{2} \\ & {[470.4-980 \mathrm{x}=0]} \\ & \mathrm{x}=0.48 \end{aligned}$   Maximum speed is $10.6 \mathrm{~ms}^{-1}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For using energy at $\mathrm{P}=$ energy at A   For attempting to solve $\mathrm{dv}^{2} / \mathrm{dx}=0$


	$\begin{aligned} & \text { Second alternative for (ii) } \\ & {[120 \mathrm{e} / 1.6=1.5]} \\ & \mathrm{e}=0.02 \\ & {[1.5-120(0.02+\mathrm{x}) / 1.6=1.5 \ddot{x} / \mathrm{g}]} \\ & \\ & \mathrm{n}=\sqrt{490} \\ & \mathrm{a}=0.48 \end{aligned}$ $\text { Maximum speed is } 10.6 \mathrm{~ms}^{-1}$	M1   A1   M1   M1   A1   A1   A1	For using $T=m g$ and $T=\lambda x / L$   For using Newton's second law For obtaining the equation in the form $\ddot{x}=-n^{2} \mathrm{x}$, using $\left(A B-L-e_{\text {equil }}\right)$ for amplitude and using $\mathrm{v}_{\text {max }}=$ na.
6(i)	PE gain by $\mathrm{P}=0.4 \mathrm{~g} \times 0.8 \sin \theta$   PE loss by $\mathrm{Q}=0.58 \mathrm{~g} \times 0.8 \theta$ $\begin{aligned} & 1 / 2(0.4+0.58) \mathrm{v}^{2}=\mathrm{g} \times 0.8(0.58 \theta-0.4 \sin \theta) \\ & \mathrm{v}^{2}=9.28 \theta-6.4 \sin \theta \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 ft } \\ \text { A1 } \\ {[5]} \\ \hline \end{gathered}$	For using KE gain $=$ PE loss AEF
(ii)	$\begin{aligned} & 0.4 \mathrm{~g} \sin \theta-\mathrm{R}=0.4 \mathrm{v}^{2} / 0.8 \\ & {[0.4 \mathrm{~g} \sin \theta-\mathrm{R}=4.64 \theta-3.2 \sin \theta]} \\ & \mathrm{R}=7.12 \sin \theta-4.64 \theta \end{aligned}$	M1   A1   M1   A1   [4]	For applying Newton's second law to P and using $\mathrm{a}=\mathrm{v}^{2} / \mathrm{r}$   For substituting for $\mathrm{v}^{2}$ $\mathrm{AG}$
(iii)	$R(1.53)=0.01(48 \ldots), R(1.54)=-0.02(9 \ldots)$ or simply $\mathrm{R}(1.53)>0$ and $\mathrm{R}(1.54)<0$ $\mathrm{R}(1.53) \times \mathrm{R}(1.54)<0 \rightarrow 1.53<\alpha<1.54$	M1   A1   M1   A1   [4]	For substituting 1.53 and 1.54 into $\mathrm{R}(\theta)$   For using the idea that if $\mathrm{R}(1.53)$ and $\mathrm{R}(1.54)$ are of opposite signs then R is zero (and thus P leaves the surface) for some value of $\theta$ between 1.53 and 1.54 . AG
7(i)	$\begin{aligned} & \mathrm{T}_{\mathrm{AP}}=19.6 \mathrm{e} / 1.6 \text { and } \mathrm{T}_{\mathrm{BP}}=19.6(1.6-\mathrm{e}) / 1.6 \\ & 0.5 \mathrm{~g} \sin 30^{\circ}+12.25(1.6-\mathrm{e})=12.25 \mathrm{e} \\ & \text { Distance AP is } 2.5 \mathrm{~m} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1ft } \\ \text { A1 } \\ {[5]} \\ \hline \end{gathered}$	For using $\mathrm{T}=\lambda \mathrm{e} / \mathrm{L}$   For resolving forces parallel to the plane
(ii)	Extensions of AP and BP are $0.9+\mathrm{x}$ and 0.7 - x respectively $\left\lvert\, \begin{aligned} & 0.5 \mathrm{~g} \sin 30^{\circ}+19.6(0.7-\mathrm{x}) / 1.6 \\ & \ddot{x}=-49 \mathrm{x} \end{aligned}-19.6(0.9+\mathrm{x}) / 1.6=0.5 \ddot{x}\right.$   Period is 0.898 s	B1   B1ft   B1   M1   A1   [5]	AG   For stating $\mathrm{k}<0$ and using $\mathrm{T}=2 \pi / \sqrt{-k}$
(iii)	$\begin{aligned} & 2.8^{2}=49\left(0.5^{2}-x^{2}\right) \\ & x^{2}=0.09 \\ & x=0.3 \text { and }-0.3 \end{aligned}$	M1   Alft   A1   Alft   [4]	For using $\mathrm{v}^{2}=\omega^{2}\left(\mathrm{~A}^{2}-\mathrm{x}^{2}\right)$ where $\omega^{2}=-\mathrm{k}$ ft incorrect value of k   May be implied by a value of x ft incorrect value of k or incorrect value of $\mathrm{x}^{2}$ (stated)

## 4732 Probability \& Statistics 1

Note: "( 3 sfs )" means "answer which rounds to ... to $3 \mathrm{sfs} "$. If correct ans seen to $\geq 3 \mathrm{sfs}$, ISW for later rounding Penalise over-rounding only once in paper.

1 (i)	attempts at threading indep prob of succeeding in threading const	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & 2 \\ \hline \end{array}$	in context in context
(ii) (a)	$\begin{aligned} & 0.7^{4} \times 0.3 \\ & =0.0720(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	Condone 0.072
(b)	$\begin{aligned} & 0.7^{5} \\ & =0.168(3 \mathrm{sfs}) \end{aligned}$	M2 $\text { A1 } 3$	or $\begin{gathered} 0.3+0.7^{3} \times 0.3 \\ \left.+0.7^{4} \times 0.3\right) \end{gathered}$   M1 for one term omitted or extra or wrong or $1-0.7^{5}$ or $\left(0.3+\ldots+0.7^{4} \times 0.3\right)$ or $0.3,0.7$ muddle or $0.7^{4}$ or $0.7^{6}$ alone. 0.6 not 0.7 M 0 in (a) M1 in (b) $1 / 3,2 / 3$ used M1 in (a) M1 in (b)
(iii)	likely to improve with practice hence independence unlikely or prob will increase each time	$\mathrm{B} 1$ $\text { B1 } 2$	or thread strands gradually separate   $1^{\text {st }} \mathrm{B} 1$ must be in context.   hence independence unlikely   or prob will decrease each time or similar   Allow 'change'
Total		[9]	
2 (i) (a)	Use of correct midpts $\begin{array}{ll} \Sigma l f \div \Sigma f & (=706 \div 40) \\ =17.65 & \\ \Sigma l^{2} f & (=13050.5) \\ \sqrt{\frac{" 13050.5 "}{40}-" 17.65^{\prime 2}} & (=\sqrt{ } 14.74) \\ =3.84(3 \mathrm{sfs}) & \end{array}$	B1 M1 A1 M1 M1 A1 6	$\begin{aligned} & 11,14,18,25.5 \\ & l \text { within class, } \geq \text { three } l f \text { seen } \\ & {[17.575,17.7]} \\ & \geq \text { three } l^{2} f \text { seen } \\ & \div 40,- \text { mean }^{2}, \sqrt{ } \text {.Dep }>0 . \\ & \sum(1-17.65)^{2} \text { f, at least } 3 \mathrm{M} 1, \div 40, \sqrt{ } \\ & \text { M1,3.84 A1. } \\ & \div 4 \Rightarrow \text { max B1M0A0M1M0A0 } \end{aligned}$
(b)	mid pts used or data grouped or exact values unknown oe	B1 1	not "orig values were guesses"
(ii)	$\begin{aligned} & 20 \div 5 \\ & =4 \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } \end{array}$	condone $20 \div[4,5]$ or ans 5
(iii)	$\begin{aligned} & 20.5^{\text {th }} \text { value requ'd and } \\ & 1^{\text {st }} \text { two classes contain } 14 \text { values } \\ & 16-20 \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { B1 } \end{array}$	condone 20 oe or third class oe
(iv) (a)	increase	B1 1	
(b)	decrease	B1 1	
Total		[13]	
3 (i)	$\begin{aligned} & S_{h m}=0.2412 \\ & S_{h h}=0.10992 \\ & S_{m m}=27.212 \\ & r=\frac{S_{h m}}{\left.\sqrt{(S} S_{h h} S_{m m}\right)} \\ & =0.139(3 \mathrm{sfs}) \end{aligned}$	B1   M1   A1 3	Allow x or $\div 5$   any one $S$ correct ft their $S \mathrm{~s}$
(ii)	Small, low or not close to 1 or close to 0 oe pts not close to line oe	B1 ft   B1	$1^{\text {st }} \mathrm{B} 1$ about value of $r$ $2^{\text {nd }} \mathrm{B} 1$ about diag
(iii)	none or unchanged or "0.139" oe	B1 1	
(iv)	Larger oe	B1 1	
Total		[7]	


4 (i)	$\begin{aligned} & \left(0 \times \frac{1}{2}\right)+1 \times \frac{1}{4}+2 \times \frac{1}{8}+3 \times \frac{1}{8} \\ & =\frac{7}{8} \text { or } 0.875 \text { oe } \\ & \left(0 \times \frac{1}{2}\right)+1 \times \frac{1}{4}+2^{2} \times \frac{1}{8}+3^{2} \times \frac{1}{8} \quad(= \\ & \left.1 \frac{7}{8}\right) \\ & -\left(" \frac{7}{8} \text { " }\right)^{2} \\ & =\frac{71}{64} \text { or } 1.11(3 \mathrm{sfs}) \text { oe } \end{aligned}$	M1   A1   M1   M1   A1 5	```2 non-zero terms seen If \div3 or 4 M0M0M1(poss) 2 non-zero terms seen dep +ve result M1 all4 (x-0.875) terms seen. M1 mult p, \Sigma A1 1.11```
(ii)	Bin stated or implied 0.922 ( 3 sfs )	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	Eg table or $\frac{1}{4}^{n} \times \frac{3}{4}^{m}(n+m=10, \mathrm{n}, \mathrm{m} \neq 1)$   or10C4   or 5 (or 4 or 6 ) terms correct
(iii)	$n=10 \& p=\frac{1}{8}$ stated or implied $\begin{aligned} & { }^{10} \mathrm{C}_{4} \times \frac{7^{6}}{}{ }^{6} \times \frac{1}{8}^{4} \\ & =0.0230(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{\|ll} \hline \text { M1 } & \\ \text { M1 } \\ \text { A1 } & 3 \\ \hline \end{array}$	condone 0.023
Total		[10]	
5 (i)	$\begin{aligned} & \frac{6}{14} \times \frac{5}{13} \times \frac{3}{12} \\ & \times 3!\text { oe } \\ & =\frac{45}{182} \text { or } 0.247(3 \mathrm{sfs}) \mathrm{oe} \end{aligned}$	M1   M1   A1 3	$\begin{aligned} & { }^{6} \mathrm{C}_{1} \times{ }^{5} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{1} \\ & \div{ }^{14} \mathrm{C}_{3} \\ & \text { With repl MoM1A0 } \end{aligned}$
(ii)	$\begin{aligned} & \frac{6}{14} \times \frac{5}{13} \times \frac{4}{12}+\frac{5}{14} \times \frac{4}{13} \times \frac{3}{12}+\frac{3}{14} \times \frac{2}{13} \times \frac{1}{12} \\ & =\frac{31}{364} \text { or } 0.0852(3 \mathrm{sf}) \end{aligned}$	$\begin{array}{ll} \mathrm{M} 2 \\ \mathrm{~A} 1 & 3 \\ \hline \end{array}$	${ }^{6} \mathrm{C}_{3}+{ }^{5} \mathrm{C}_{3}+{ }^{3} \mathrm{C}_{3} \quad$ M1 for any one $\left(\div{ }^{14} \mathrm{C}_{3}\right) \mathrm{M} 1$ all 9 numerators correct. With repl M1 $(6 / 14)^{3}+(5 / 14)^{3}+(3 / 14)^{3}$
Total		[6]	
6 (a)	A: diag or explanation showing pts close to st line, always increasing B:Diag or expl based on $\mathrm{r}=1=>\mathrm{pts}$ on st line $=>\mathrm{r}(\mathrm{s})=1$	B1   B1   B1 3	Diag or expl based on $\mathrm{r}(\mathrm{s}) \neq 1=>\mathrm{pts}$ not on st line $\Rightarrow \mathrm{r} \neq 1$ $\mathrm{r}=1=>\mathrm{pts}$ on st line\&r(s) $\neq 1 \Rightarrow$ pts not on st line B1B1 $\mathrm{r}=1=>\mathrm{r}(\mathrm{~s})=1 \mathrm{~B} 2$
(b)	$\begin{aligned} & \bar{y}=2.4 \times 4.5+3.7 \\ & =14.5 \\ & 4.5=0.4 \times \text { " } 14.5 "-c \\ & c=1.3 \\ & \mathrm{a}^{\prime}=\mathrm{x}-\mathrm{b} \mathrm{y} \mathrm{y}:-14.5 \mathrm{M} 1 \mathrm{~A} 1 ; \\ & \text { then } \mathrm{a}^{\prime}=4.5-0.4 \mathrm{x} 14.5=-1.3 \mathrm{M} 1 \mathrm{~A} 1 \end{aligned}$	$\begin{array}{\|ll} \hline \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & 4 \end{array}$	Attempt to sub expression for y $\mathrm{x}=0.96 \mathrm{x}+1.48$-c oe sub $x=4.5$ and solve $\mathrm{c}=1.3$   14.5 M1A1. $(\mathrm{y}-3.7) / 2.4=0.4 \mathrm{y}-\mathrm{c}$ and sub14.5 M1 c=1.3 A1
Total		[7]	
7 (i)	25/37	B2 2	B1 num, B1 denom 25/37xp B1
(ii)	$\frac{15}{23}$ seen or implied   $\times \frac{39}{59}$ seen or implied   $=\frac{585}{1357}$ or $0.431(3 \mathrm{sfs})$ oe	$\begin{aligned} & \text { M1 } \\ & \text { M2 } \\ & \text { A1 } 4 \end{aligned}$	M1 num, M1 denom   Allow M1 for 39/59x or + wrong p
Total		[6]	


8 (i)	$\begin{aligned} & 5!/ 2 \\ & =60 \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$	Allow 5P3
(ii)	$\begin{aligned} & 4! \\ & =24 \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	Allow $2 \times 4$ !
(iii)	$\begin{aligned} & 2 / 5 \times 3 / 4 \text { or } 3 / 5 \times 2 / 4 \\ & \times 2 \\ & =3 / 5 \text { oe } \end{aligned}$	M1   M1   A1 3	allow M1 for $2 / 5 \times 3 / 5 \times 2$ or $12 / 25$ or ( $6 \times 3!) \div(\mathbf{i}) \quad$ M2 or $3!\div(\mathbf{i}), 6 \div(\mathbf{i}),(6+6) \div(\mathbf{i}), 6 \mathrm{k} \div(\mathbf{i})$ or $6 \times 6$ or 36 or 1-correct answer M1 (k,integer $\leq 5$ )
Total		[7]	
9 (i)	$p^{2}$	B1 1	
(ii)	$\left(q^{2} p\right)^{2}$ oe $=\mathrm{AG}$	B1 1	
(iii)	$\mathrm{r}=\mathrm{q}^{2}$   $\mathrm{a} /(1-\mathrm{r})$ used $\left(S_{\infty}=\right) \frac{p^{2}}{1-q^{2}}$	B1	May be impliedWith $a=p^{2}$ and $r=q^{2}$ or $q^{4}$
		M1	
	$=\frac{p^{2}}{1-(1-p)^{2}}$	M1	Attempt to simplify using $\mathrm{p}+\mathrm{q}=1$ correctly. Dep on $r=q^{2}$ or $q^{4}$ $\frac{(1-q)^{2}}{(1-q)(1+q)} \quad \text { or } p^{2} / p(1+q)$
	$\mathrm{p} /(2-\mathrm{p}) \mathrm{AG}$	A1 5	Correctly obtain given answer showing at least one intermediate step.
P2Total		[7]	

Total 72 marks

## 4733 Probability \& Statistics 2

Penalise over-specified answers ( $>6 \mathrm{SF}$ ) first time but only once per paper.
Use (A)or(Cto annotate "over-assertive" or "no context" respectively

1	$\begin{aligned} & \hat{\mu}=\bar{x}=15.16 \\ & \hat{\sigma}^{2}=\frac{5}{4} s^{2} \end{aligned}$ $=1.363$	$\begin{array}{\|l} \hline \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	4	15.16 or 15.2 as answer only Use $\frac{\Sigma x^{2}}{5}-\bar{x}^{2} \quad[=1.0904]$   Multiply by $5 / 4$, or equiv for single formula Final answer 1.36 or 1.363 only, not isw
2 (i)        (ii)	Not all equally likely - those in range 0 to 199 more likely to be chosen	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Not all equally likely stated or implied Justified by reference to numbers, no spurious reasons
	Ignore random numbers greater than 799, or 399	B1	1	Any valid resolution of this problem, no spurious reasons
3	$\begin{aligned} & \mathrm{B}(60,0.35) \approx \mathrm{N}(21,13.65) \\ & \Phi\left(\frac{18.5-21}{\sqrt{13.65}}\right)= \\ & =1-0.7(-0.6767) \\ & \\ & =0.2493 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	6	$\mathrm{B}(60,0.35)$ stated or implied   $\mathrm{N}(21, \ldots)$   Variance or SD $=13.65$   Standardise, their $n p$ and $\sqrt{ } n p q$ or $n p q$, wrong or no cc   Both $\sqrt{n} n p q$ and cc correct   Answer, a.r.t. 0.249
4	$\mathrm{H}_{0}: \mu=60 ; \mathrm{H}_{1}: \mu<60$   $(\alpha)$ $\begin{aligned} & z=\frac{58.9-60}{\sqrt{5^{2} / 80}}=-1.967 \\ & <-1.645 \end{aligned}$	$\begin{aligned} & \hline \text { B2 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$		Both correct, B2   B1 for one error, but not $x, t, \bar{x}$ or $\bar{t}$   Standardise 58.9 \& $\sqrt{ } 80$, allow - or $\sqrt{ }$ errors   $z$, art -1.97 or $p$ in range [ $0.024,0.025$ ]   Explicit comparison with -1.645 or 0.05 , or   +1.645 or 0.95 if 1.967 or 0.976 used
	$\begin{gathered} (\beta)_{c=}=60-1.645 \times \frac{5}{\sqrt{80}}=59.08 \\ 58.9<59.08 \end{gathered}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \downarrow \end{aligned}$		$60-z \times 5 / \sqrt{80}$, any $z=\Phi^{-1}$, allow $\sqrt{ }$ errors or $\pm$, not just $+; z=1.645$ and compare 58.9   59.1 or better, fon wrong $z$
	Reject $\mathrm{H}_{0}$   Significant evidence that people underestimate time	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \end{aligned}$	7	Correct first conclusion, needs essentially correct method including $\sqrt{ } 80$ or 80 Contextualised, uncertainty acknowledged SR: $\mu=58.9$ : B0M1A0B1 max 2/7 SR: 2-tail: max 5/7
5 (i)	$\begin{aligned} \mathrm{H}_{0}: \lambda & =11.0 \\ \mathrm{H}_{\mathrm{H}}: \lambda & >11.0 \\ (\alpha) \quad & \mathrm{P}(\geq 19)=1-0.9823 \\ & =0.0177 \\ & <0.05 \end{aligned}$	$\begin{aligned} & \hline \text { B2 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$		Allow $\mu$. Both correct, B2 One error: B1, but not $C, x$ etc Find $\mathrm{P}(\geq 19)$ [or $\mathrm{P}(<19)$ if later 0.95] art $0.0177 \quad$ [0.9823, ditto] Compare 0.05 [ 0.95 if consistent], needs M1
	( $\beta$ ) $\quad$ $C R \geq 18$,    $P(\geq 18)=0.0322$    $19>18$	M1   A1   B1		CR or CV 16/17/18/19 stated or clearly implied, but not <   18 and 0.0322 both seen, allow 0.9678 Explicit comparison with 19, needs M1
	Reject $\mathrm{H}_{0}$   Significant evidence of an increase in number of customers		7	Needs essentially correct method \& comparison   Contextualised, uncertainty acknowledged SR: Normal, or $\mathrm{P}(=19)$ or $\mathrm{P}(\leq 19)$ or $P(>19)$ : First B2 only.
(ii)	Can't deduce cause-and-effect, or there may be other factors	B1	1	Conclusion needed. No spurious reasons. If "DNR" in (i), "couldn't deduce even if..."


6 (i)	(a) Probabilities don't total 1	B1	1	Equivalent statement
	(b) $\quad \mathrm{P}(>70)$ must be $<\mathrm{P}(>50)$	B1	1	Equivalent statement
	(c) $\quad \begin{aligned} \mathrm{P}(>50)=0.3 \Rightarrow \mu<50 \\ \mathrm{P}(<70)=0.3 \Rightarrow \mu>70\end{aligned}$	B1	1	Any relevant valid statement, e.g. "P(<50) $=0.7$ but $\mathrm{P}(<50)$ must be $<\mathrm{P}(<70)$ "
(ii)	$\begin{aligned} & \mu=60 \text { by symmetry } \\ & \frac{10}{\sigma}=\Phi^{-1}(0.7)=0.524(4) \\ & \sigma=10 / 0.5243 \end{aligned}$ $=19.084$	$\begin{aligned} & \mathrm{B} 1 \\ & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	4	$\mu=60$ obtained at any point, allow from $\Phi$ One standardisation, equate to $\Phi^{-1}$, not 0.758   $\Phi^{-1} \in[0.524,0.5245]$ seen   $\sigma$ in range [19.07, 19.1], e.g. 19.073
7 (i)		$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$	2	Horizontal line Evidence of truncation [no need for labels]
(ii)	$\begin{aligned} & \mu=8 \\ & \int_{5}^{11} \frac{1}{6} t^{2} d t=\left[\frac{1}{18} t^{3}\right]_{5}^{11} \quad[=67] \\ & -8^{2} \end{aligned}$	B1   M1   B1   M1   A1	5	8 only, cwd   Attempt $\int k t^{2} \mathrm{~d} t$, limits 5 and 11 seen $k=1 / 6$ stated or implied   Subtract their (non-zero) mean ${ }^{2}$   Answer 3 only, not from MF1
(iii)	$\begin{aligned} & \begin{array}{l} \mathrm{N}(8,3 / 48) \\ 1-\Phi\left(\frac{8.3-8}{\sqrt{3 / 48}}\right)=1-\Phi(1.2) \\ =1-0.8848 \end{array} \\ & =\mathbf{0 . 1 1 5 1} \end{aligned}$   Normal distribution only approx.	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \hline \end{aligned}$	6	Normal stated or implied   Mean 8   Variance their (non-zero) (ii)/48   Standardise, $\sqrt{ } n$, ignore sign or $\sqrt{ }$ errors. cc:   M0   Answer, art 0.115   Any equivalent comment, e.g. CLT used
8 (i)	$\begin{aligned} & \mathrm{P}(\leq 4)=0.0473 \\ & \text { Therefore CR is } \leq 4 \\ & \mathrm{P}(\text { Type } \mathrm{I} \text { error })= \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	3	$\mathrm{P}(\leq r)$ from $\mathrm{B}(10,0.7), r=3 / 4 / 5, \operatorname{not} \mathrm{~N}$ " $\leq 4$ " stated, not just " 4 ", nothing else Answer, art 0.0473 or $4.73 \%$, must be stated
(ii)	$\begin{aligned} & \mathrm{B}(10,0.4) \text { and find } \mathrm{P}(>4) \\ & 1-\mathrm{P}(\leq 4) \end{aligned}$	$\begin{array}{\|l\|} \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	3	Must be this, not isw, on (i) Allow for 0.6177 or 0.1622 Answer, art 0.367
(iii)	$0.5 \times 0.3669 \quad=\mathbf{0 . 1 8 3 4 5}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$	2	$0.5 \times(\text { ii) }$   Ans correct to 3 SF, e.g. 0.184 from 0.367


9 (i)	$1-\mathrm{P}(\leq 7)=1-0.9881=\mathbf{0 . 0 1 1 9}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & 2 \\ \hline \end{array}$	Allow for 0.0038 or 0.0335 Answer, a.r.t. 0.0119			
(ii)	$\begin{aligned} & \mathrm{Po}(12) \\ & \mathrm{P}(\leq 14)-\mathrm{P}(\leq 12) \\ & {[0.7720-0.5760]} \\ & \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{3} \end{array}$	Po(12) stated or implied Formula, 2 consecutive correct terms, or tables, e.g. 0905 or .3104 or .1629 Answer, art 0.196			
(iii)	$\begin{aligned} & \operatorname{Po}(60) \approx \mathrm{N}(60,60) \\ & \begin{aligned} \Phi\left(\frac{69.5-60}{\sqrt{60}}\right)= & \Phi(1.226) \\ & =\mathbf{0 . 8 8 9 9} \end{aligned} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\mathrm{N}(60, \ldots)$   Variance or SD 60   Standardise, $\lambda \& \sqrt{ } \lambda$, allow $\lambda$ or wrong or no cc   $\sqrt{ } \lambda$ and cc both correct   Answer 0.89 or a.r.t. 0.890			
(iv)	(a) $1-\mathrm{e}^{-3 m}(1+3 m)$	$\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } & 2 \\ & \end{array}$	M1 for one error, e.g. no " $1-$ ", or extra term, or 0 th term missing; answer, aesf			
	(b) $\quad \begin{aligned} & m=1.29, \\ & p=0.898\end{aligned}$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$	Substitute 1.29 or 1.3 into appropriate fn			
			Comp	0.9	0.1	0
			1.29	0.898	0.10158	-. 00158
			1.3	0.901	0.09918	. 0008146
	Straddles 0.9 , therefore solution between 1.29 and 1.3	A1 4	Explicit comparison with relevant value, \& conclusion, needs both $p$ s correct			
or	Method for iteration; 1.296 1.2965 or better; conclusion stated	$\begin{aligned} & \text { M1A1 } \\ & \text { A1A1 } \end{aligned}$	Can be implied by at least $1.296 \ldots$ Need at least 4 dp for M1A2			

## 4734 Probability \& Statistics 3



4(i)	$\begin{aligned} \mathrm{G}(y) & =\mathrm{P}(Y \leq y)=\mathrm{P}(1 /(1+V) \leq y) \\ & =\mathrm{P}(V \geq 1 / y-1) \\ & =1-\mathrm{F}(1 / y-1) \\ & = \begin{cases}0 & y \leq 0, \\ 8 y^{3} & 0<y \leq 1 / 2, \\ 1 & y>1 / 2 .\end{cases} \\ \mathrm{g}(y) & = \begin{cases}24 y^{2} & 0<y \leq 1 / 2, \\ 0 & \text { otherwise } .\end{cases} \end{aligned}$   $\int 24 y^{2} / y^{2} \mathrm{~d} y$ with limits $=12$	M1    A1    A1        A1    B1    M1    A1 7   M1    A1 2   [9]	Use of F   $8 y^{3}$ obtained correctly Correct range. Condone omission of $y \leq 0$   For $\mathrm{G}^{\prime}(y)$   Correct answer with range $\sqrt{ }$ $\qquad$   With attempt at integration
5(i)	Use $p_{s} \pm z \sqrt{ }\left(p_{s} q_{s} / 200\right)$ $\begin{aligned} & z=1.645 \\ & s=\sqrt{ }(0.135 \times 0.865 / 200) \\ & (0.0952,0.1747) \end{aligned}$   $\mathrm{H}_{0}: p_{1}-p_{2}=0, \mathrm{H}_{1}: p_{1}-p_{2}>0$ $\begin{aligned} & \frac{27 / 200-8 / 100}{\sqrt{35 / 300 \times 265 / 300 \times\left(200^{-1}+100^{-1}\right)}} \\ & =1.399 \\ & >1.282 \end{aligned}$   Reject $\mathrm{H}_{0}$. There is sufficient evidence at the $10 \%$ significance level that the proportion of faulty bars has reduced	M1    B1    A1    A1 4   $---------~$    B1    M1    B1    A1    A1    M1    A1 7       [11]	Or /199   ( $0.095,0.175$ ) to 3DP   Or equivalent   Correct form.   Pooled estimate of $p=35 / 300$   Correct form of sd   OR: $\mathrm{P}(z \geq 1.399)=0.0809<0.10$   SR: No pooled estimate: B1M1B0B0 A1 for 1.514, M1A1 Max 5/7
6(i)	Assumes that decreases have a normal distn $\mathrm{H}_{0}: \mu_{O-F}=0.2$ (or $\geq$ ), $\mathrm{H}_{1}: \mu_{O-F}>0.2$   O-F: $0.6 \quad 0.4 \begin{array}{lllllllll} & 0.2 & 0.1 & 0.3 & 0.2 & 0.4 & 0.3\end{array}$ $\bar{D}=0.3125 \quad s^{2}=0.024107$   (0.3125-0.2) $\sqrt{ }(0.024107 / 8)$ $=2.049$ $\text { > } 1.895$   Reject $\mathrm{H}_{0}$ - there is sufficient evidence at the $5 \%$ significance level that the reduction is more than 0.2 $\begin{aligned} & 0.3125 \pm t \sqrt{ }(0.024107 / 8) \\ & t=2.365 \\ & (0.1827,0.4423) \end{aligned}$	B1   B1   M1   B1 A1   M1   A1   M1   A1   9 $\qquad$   M1   B1   A1   3   [12]	B1   Use paired differences $t$-test   Must have /8   OR: $\mathrm{P}(t \geq 2.049)=0.0398<0.05$   Allow M1 from $t_{14}=1.761$   SR: 2-sample test:B1B1M0B1A0   M1 using $\mathbf{1 . 7 6 1}$ A0 Max 4/9   Allow with $z$ but with $/ 8$   Rounding to ( $0.283,0.442$ )



## 4736 Decision Mathematics 1



2	(i)	A graph cannot have an odd number of odd vertices (nodes)	B1	Or equivalent (eg $3 \times 5=15 \Rightarrow 71 / 2$ arcs) Not from a diagram of a specific case	[1]
	(ii)	It has exactly two odd nodes eg $\quad C A B C D E A D$	B1   B1	2 odd nodes   A valid semi-Eulerian trail	[2]
	(iii)	$\begin{aligned} & A E=2 \\ & A C=3 \\ & A B=5 \\ & C D=7 \end{aligned}$   Weight $=17$	B1   B1   B1	Correct tree (vertices must be labelled)   Order of choosing arcs in a valid application of Prim, starting at $A$ (working shown on a network or matrix) 17	[3]
	(iv)	Lower bound $=29$ $\begin{aligned} & A-E-D-F-C-B-A \\ & =34 \\ & F-C-A-E-D \text { and } F-D-C-A-E \end{aligned}$   Vertex $B$ is missed out	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	29 or $12+$ their tree weight from (iii) $A-E-D-F-C-$   34, from correct working seen Correctly explaining why method fails, need to have explicitly considered both cases	[4]
Total $=10$					

For reference
(ii)

(iii) (iv)

	$A$	$B$	$C$	$D$	$E$
$A$	-	5	3	8	2
$B$	5	-	6	-	-
$C$	3	6	-	7	-
$D$	8	-	7	-	9
$E$	2	-	-	9	-

$$
C F=6
$$

$D F=6$


3 (i)	$\begin{aligned} & x=\text { number of clients who use program } X \\ & y=\text { number of clients who use program } Y \end{aligned}$	B1	Number of clients on $X$ and $Y$, respectively	[1]
(ii)	Spin cycle: $30 x+10 y \leq 180$    $\Rightarrow 3 x+y \leq 18$   Rower: $10 x \leq 40$    $\Rightarrow x \leq 4$   Free weights: $20 x+30 y \leq 300$    $\Rightarrow 2 x+3 y \leq 30$	B1   B1   B1	$3 x+y \leq 18$, or equivalent, simplified $x \leq 4$, or equivalent, simplified $2 x+3 y \leq 30$, or equivalent, simplified Allow use of slack variables instead of inequalities	[3]
(iii)	Both must take non-negative integer values	B1	Non-negative and integer   Accept $x+y \leq 12$ as an alternative answer	[1]
(iv)	  Checking vertices or using a profit line $(4,6) \rightarrow 72$ $\begin{aligned} & \left(3 \frac{3}{7}, 7 \frac{5}{7}\right) \rightarrow 77 \frac{1}{7} \text { or }(24 / 7,54 / 7) \rightarrow 77 \frac{1}{7} \\ & (0,10) \rightarrow 60 \quad(4,0) \rightarrow 36 \end{aligned}$   Checking other feasible integer points near (non-integer) optimum for continuous problem $(3,8) \rightarrow 75$   Put 3 clients on program $X, 8$ on program $Y$ and 1 on program $Z$	B1 M1 A1 M1 M1 A1	Axes scaled and labelled appropriately (on graph paper)   Boundaries of their three constraints shown correctly (non-negativity may be missed)   Correct graph with correct shading or feasible region correct and clearly identified (non-negativity may be missed) (cao)   Follow through their graph if possible $x=3.4, y=7.7$   may be implied from $(3,8)$   Could be implied from identifying point $(3,8)$ in any form   cao, in context and including program $Z$	[3]
			Total $=$	11



For reference

Item type	$A$	$B$	$C$	$D$
Number to be packed	15	8	3	4
Length $(\mathrm{cm})$	10	40	20	10
Width $(\mathrm{cm})$	10	30	50	40
Height $(\mathrm{cm})$	10	20	10	10
Volume $\left(\mathrm{cm}^{3}\right)$	1000	24000	10000	4000
Weight $(\mathrm{g})$	1000	250	300	400




## 4737 Decision Mathematics 2

1	(i)		B1	Bipartite graph correct	[1]
	(ii)		B1   M1   A1   B1	A new bipartite graph showing the pairings $A F, B G, C T$ and $E H$ but not $D S$   This alternating path written down, not read off from labels on graph   $B=S, C=G$ and $D=T$ written down   $A=F, E=H$ written down	[4]
	(iii)	Andy $=$ food   Beth $=$ television   Chelsey = geography   Dean $=$ politics   Elly = history   Science did not arise	B1   B1	$\begin{aligned} & A=F, C=G, D=P \text { and } E=H \text { (cao) } \\ & (B=T \text { may be omitted) } \\ & S \text { (cao) } \end{aligned}$	[2]
					7



\begin{tabular}{|c|c|c|c|c|c|}
\hline 3 \& (i) \&  \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Durations not necessary \\
Correct structure, even without directions shown Activities must be labelled \\
Completely correct, with exactly three dummies and all arcs directed
\end{tabular} \& [2] \\
\hline \& (ii) \& \begin{tabular}{l}
Minimum project completion time \(=10\) hours \\
Critical activities \(A, B, D, E, H\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
A1ft \\
B1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Follow through their activity network if possible Substantially correct attempt at forward pass (at most 1 independent error) \\
Substantially correct attempt at backward pass (at most 1 independent error) \\
Both passes wholly correct \\
10 hours (with units) cao \\
Either \(B, E, H\) or \(A, D, H\) (possibly with other critical activities, but \(C, F, G\) not listed). Not follow through. \\
\(A, B, D, E, H\) (and no others) cao
\end{tabular} \& [3]

[3] <br>

\hline \& (iii) \& No. of workers \& | M1 |
| :--- |
| A1 | \& | On graph paper |
| :--- |
| A plausible resource histogram with no holes or overhangs |
| Axes scaled and labelled and histogram completely correct, cao | \& [2] <br>

\hline \& (iv) \& 1 hour \& B1 \& Accept 1 (with units missing) cao \& [1] <br>

\hline \& (v) \& | No need to change start times for $A, B, C, D$ and $E$ Activities $G$ and $H$ cannot happen at the same time, so they must follow one another This causes a 2 hour delay |
| :--- |
| $F$ could be delayed until 1 hour before $H$ starts $H$ should be started as late as possible $\Rightarrow$ a maximum delay of 3 hours | \& | M1 |
| :--- |
| A1 |
| B1 |
| B1 | \& | $G$ and $H$ cannot happen together (stated, not just implied from a diagram) |
| :--- |
| 2 cao |
| Diagram or explaining that for max delay on $F$ need $H$ to happen as late as possible 3 cao | \& [2]

[2] <br>
\hline \& \& \& \& Total $=$ \& 15 <br>
\hline
\end{tabular}






## Grade Thresholds

Advanced GCE Mathematics (3890-2, 7890-2)
January 2010 Examination Series
Unit Threshold Marks

7892		Maximum Mark	A	B	C	D	E	U
4721	Raw	72	56	48	41	34	27	0
	UMS	100	80	70	60	50	40	0
4722	Raw	72	61	53	46	39	32	0
	UMS	100	80	70	60	50	40	0
4723	Raw	72	51	43	36	29	22	0
	UMS	100	80	70	60	50	40	0
4724	Raw	72	55	47	39	32	25	0
	UMS	100	80	70	60	50	40	0
4725	Raw	72	62	54	46	38	31	0
	UMS	100	80	70	60	50	40	0
4726	Raw	72	53	46	39	32	25	0
	UMS	100	80	70	60	50	40	0
4727	Raw	72	55	47	40	33	26	0
	UMS	100	80	70	60	50	40	0
4728	Raw	72	52	44	36	28	21	0
	UMS	100	80	70	60	50	40	0
4729	Raw	72	56	48	41	34	27	0
	UMS	100	80	70	60	50	40	0
4730	Raw	72	51	44	37	30	24	0
	UMS	100	80	70	60	50	40	0
4732	Raw	72	54	47	40	33	26	0
	UMS	100	80	70	60	50	40	0
4733	Raw	72	62	53	44	35	26	0
	UMS	100	80	70	60	50	40	0
4734	Raw	72	58	50	42	35	28	0
	UMS	100	80	70	60	50	40	0
4736	Raw	72	47	40	34	28	22	0
	UMS	100	80	70	60	50	40	0
4737	Raw	72	51	45	39	33	28	0
	UMS	100	80	70	60	50	40	0

## Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum   Mark	A	B	C	D	E	U
$\mathbf{3 8 9 0}$	300	240	210	180	150	120	0
$\mathbf{3 8 9 1}$	300	240	210	180	150	120	0
$\mathbf{3 8 9 2}$	300	240	210	180	150	120	0
$\mathbf{7 8 9 0}$	600	480	420	360	300	240	0
$\mathbf{7 8 9 1}$	600	480	420	360	300	240	0
$\mathbf{7 8 9 2}$	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	$\mathbf{U}$	Total Number of   Candidates
$\mathbf{3 8 9 0}$	28.2	53.1	73.0	87.2	96.4	100	1385
$\mathbf{3 8 9 2}$	39.2	61.7	79.2	92.5	97.5	100	126
$\mathbf{7 8 9 0}$	30.8	60.1	83.8	95.0	99.3	100	459
$\mathbf{7 8 9 2}$	21.1	60.5	84.2	100	100	100	43

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums/index.html
Statistics are correct at the time of publication.

## List of abbreviations

Below is a list of commonly used mark scheme abbreviations. The list is not exhaustive.
AEF Any equivalent form of answer or result is equally acceptable
AG Answer given (working leading to the result must be valid)
CAO Correct answer only
ISW Ignore subsequent working
MR Misread
SR Special ruling
SC Special case
ART Allow rounding or truncating
CWO Correct working only
SOI
WWW
Ft or $\sqrt{ } \quad$ Follow through (allow the A or B mark for work correctly following on from previous incorrect result.)

## OCR (Oxford Cambridge and RSA Examinations) <br> 1 Hills Road <br> Cambridge <br> CB1 2EU <br> OCR Customer Contact Centre <br> 14-19 Qualifications (General) <br> Telephone: 01223553998 <br> Facsimile: 01223552627 <br> Email: general.qualifications@ocr.org.uk <br> www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

