GCE

Mathematics (MEI)

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

\begin{tabular}{|c|c|c|c|c|}
\hline Q1 \& \multicolumn{3}{|l|}{\begin{tabular}{l}
\[
E \sim \mathrm{~N}\left(406,12^{2}\right)
\] \\
When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.
\end{tabular}} \& \\
\hline (i) \& \[
\begin{aligned}
\mathrm{P}(E<420) \& =\mathrm{P}\left(Z<\frac{420-406}{12}=1.1666\right) \\
\& =0.8783 / 4
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 }
\end{aligned}
\] \& \begin{tabular}{l}
For standardising. Award once, here or elsewhere. \\
c.a.o.
\end{tabular} \& 3 \\
\hline (ii) \& \[
\begin{aligned}
\& C \sim \mathrm{~N}(406 \times 14.6=5927.6, \\
\& \left.\qquad \sigma^{2}=12^{2} \times 14.6^{2}=30695.04\right) \\
\& \mathrm{P}(\text { this }>6000)= \\
\& \mathrm{P}\left(Z>\frac{6000-5927.6}{175.2}=0.4132\right)=1-0.6602=0.3398
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
B1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Accept equivalent in \(£\). \\
Mean. \\
Variance. Accept sd (= 175.2). \\
Accept \(\mathrm{P}(E>6000 / 14.6)\) o.e. c.a.o.
\end{tabular} \& 3 \\
\hline (iii) \& \[
\begin{aligned}
\& B=C_{1}+C_{2}+C_{3} \sim \mathrm{~N}(17782.8, \\
\& \left.\quad \sigma^{2}=175.2^{2}+175.2^{2}+175.2^{2}=92085.12\right) \\
\& \text { Require } b \text { s.t. } \mathrm{P}(B<100 b)=0.99 \\
\& \therefore \frac{100 b-17782.8}{303.455}=2.326 \\
\& \therefore 100 b=17782.8+2.326 \times 303.455=18488.6 \ldots(\text { p }) \\
\& \quad b=£ 184.89
\end{aligned}
\] \& B1
B1

B1

A1 \& | Accept equivalent in $£$, or $E_{1}+E_{2}+E_{3}$. Mean. ft from (ii). |
| :--- |
| Variance. Accept sd (= $=303.455 \ldots$... |
| ft from (ii). |
| Accept $\mathrm{P}\left(E_{1}+E_{2}+E_{3}<100 b / 14.6\right)$ o.e. 2.326 seen. |
| c.a.o. (Minimum 4 s.f. required in final answer.) | \& 4

\hline (iv) \& | $\begin{aligned} & \mathrm{H}_{0}: \mu=432 \\ & \mathrm{H}_{1}: \mu<432 \end{aligned}$ |
| :--- |
| where μ is the mean amount of electricity used. $\bar{x}=422.16 \ldots \quad s_{n-1}=13.075(4)$ |
| Test statistic is $\frac{422.16-432}{\frac{13.075}{\sqrt{6}}}$ $=-1.842(13) .$ |
| Refer to t_{5}. |
| Single-tailed 5\% point is -2.015 . |
| Not significant. |
| Insufficient evidence to suggest that the amount of electricity used has decreased on average. | \& B1 \& | Both hypotheses. Hypotheses in words only must include "population". |
| :--- |
| For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\bar{X}=\ldots$ " or similar unless \bar{X} is clearly and explicitly stated to be a population mean. |
| $s_{\mathrm{n}}=11.936$ but do NOT allow this here or in construction of test statistic, but FT from there. |
| Allow c's \bar{x} and/or s_{n-1}. |
| Allow alternative: $432+(c$'s -2.015$) \times$ 13.075/ $\sqrt{6}(=421.24)$ for subsequent comparison with \bar{x}. |
| (Or $\bar{x}-\left(c^{\prime} s-2.015\right) \times 13.075 / \sqrt{6}$ |
| (= 432.92) for comparison with 432.) c.a.o. but ft from here in any case if wrong. Use of $\mu-\bar{x}$ scores M1A0. |
| No ft from here if wrong. $\mathrm{P}(t<-1.842(13))=0.0624$. |
| Must be minus 2.015 unless absolute values are being compared. No ft from here if wrong. |
| ft only c's test statistic. |
| ft only c's test statistic. Conclusion in context to include "on average" o.e. | \& 9

\hline \& \& \& \& 19

\hline
\end{tabular}

Q3				
(i)	Using mid- intervals $1.5,1.7$, etc $\begin{aligned} & \bar{x}=\frac{205}{100}=2.05 \\ & s=\sqrt{\frac{425.16-100 \times 2.05^{2}}{99}}=0.2227(01 \ldots) \end{aligned}$	M1 A1 E1	Mean. s.d. Answer given; must show convincingly.	3
(ii)	$\begin{aligned} f & =100 \times \mathrm{P}(1.8 \leq M<2.0) \\ & =100 \times \mathrm{P}(-1.1226 \leq z<-0.2245) \\ & =100 \times((1-0.5888)-(1-0.8691)) \\ & =100 \times(0.4112-0.1309)=28.03 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Probability $\times 100$. Correct Normal probabilities. ft c's mean. Must show convincingly using Normal distribution. ft c's mean.	3
(iii)	H_{0} : The Normal model fits the data. H_{1} : The Normal model does not fit the data. $\begin{aligned} X^{2} & =0.7294+0.1384+1.9623+3.5155+0.2437 \\ & =6.589(3) \end{aligned}$ Refer to χ_{2}^{2}. Upper 5\% point is 5.991. Significant. Evidence suggests that the model does not fit the data.	B1 B1 M1 M1 A1 M1 A1 A1 A1	Ignore any reference to parameters. Merge first 2 and last 2 cells. Calculation of X^{2}. c.a.o. Allow correct df (= cells -3) from wrongly grouped table and ft . Otherwise, no ft if wrong. $\mathrm{P}\left(X^{2}>6.589\right)=0.0371 .$ No ft from here if wrong. ft only c's test statistic. ft only c 's test statistic. Conclusion in context.	9
(iv)	The model - overestimates in the $2.2-2.4$ class, - underestimates in the $2-2.2$ class. At lower significance levels the test would not have been significant.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \\ & \text { E1 } \end{aligned}$		3
				18

Q4				
(i)		$\begin{aligned} & \text { G1 } \\ & \text { G1 } \\ & \text { G1 } \end{aligned}$	One (straight) line segment correct. Second (straight) line segment correct. Fully labelled intercepts + no spurious other lines.	3
(ii)	$\mathrm{E}(X)=0$ (By symmetry.) $\begin{aligned} & \mathrm{E}\left(X^{2}\right)=\int_{-1}^{0} x^{2}(1+x) \mathrm{d} x+\int_{0}^{1} x^{2}(1-x) \mathrm{d} x \\ & \\ & =\left[\frac{x^{3}}{3}+\frac{x^{4}}{4}\right]_{-1}^{0}+\left[\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{1} \\ & \\ & =0-\left(\frac{-1}{3}+\frac{1}{4}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)-0 \\ & \\ & =\frac{1}{6} \\ & \therefore \operatorname{Var}(X)=\frac{1}{6}\left(-0^{2}\right)=\frac{1}{6} \end{aligned}$	B1 M1 M1 M1 A1	One correct integral with limits (which may be implied subsequently). Second integral correct (with limits) or allow use of symmetry. Correctly integrated and attempt to use limits. c.a.o. Condone absence of explicit evidence of use of $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-$ $\mathrm{E}(X)^{2}$.	5
(iii)	$\bar{L} \sim N\left(k, \frac{1}{300}\right)$ Normal distribution because of the Central Limit Theorem.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \\ & \text { E1 } \end{aligned}$	Normal. Mean. Variance. ft c 's variance in (ii) $(>0) / 50$. Any reference to the CLT.	4
(iv)		M1 B1 M1 A1	ft c 's variance in (ii) (>0) / 50 . Must be expressed as an interval.	4
(v)	It is reasonable, because 90 lies within the interval found in (iv).	E1	Or equivalent.	1
				17

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

