GCE

Mathematics

Advanced GCE

Unit 4730: Mechanics 3

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1	$(-) 15 \cos \alpha=(0-) 0.5 \times 22$ or $15 \sin \beta=0.5 \times 22$ Impulse makes angle $42.8^{\circ}(0.748$ rads $)$ with negative x -axis	M1 A1 A1 [3]	M1 for using $\mathrm{I}=\Delta(\mathrm{mv})$ in ' x ' direction or for sketching Δ reflecting $\underline{\mathbf{I}}=\mathrm{m}(\underline{\mathbf{v}}-\underline{\mathbf{u}})$ AEF, but angle must be clear
11	$15 \sin \alpha=0.5 \mathrm{v}$ or $15 \cos \beta=0.5 \mathrm{v}$ or $(0.5 \mathrm{v})^{2}=15^{2}-11^{2}$ Correct explicit expression for v Speed is $20.4 \mathrm{~ms}^{-1}$	M1 A1 A1 [3]	For using $\mathrm{I}=\Delta(\mathrm{mv})$ in ' y ' direction or using sketched Δ

2	$\begin{aligned} & 1 / 2(\mathrm{~m})\left(\mathrm{v}^{2}-6^{2}\right)=-(\mathrm{m}) \mathrm{g} \times 0.5 \text { in (i) or } \\ & 1 / 2(\mathrm{~m})\left(\mathrm{v}^{2}-6^{2}\right)=-(\mathrm{m}) \mathrm{g} \times 1 \text { in (ii) } \\ & \mathrm{v}^{2}=26.2 \text { in (i) and } 16.4 \text { in (ii) } \\ & \mathrm{T}=0.4 \mathrm{v}^{2} / 0.5 \text { in (i) or } \\ & \mathrm{T}+0.4 \mathrm{~g}=0.4 \mathrm{v}^{2} / 0.5 \\ & \text { Tension is } 21.0 \mathrm{~N} \text { in (i) (20.96) } \\ & \quad 9.2 \mathrm{~N} \text { in (ii) } \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { A1 } \\ \hline 6] \end{gathered}$	For using the principle of conservation of energy in (i) or (ii) soi For using Newton's second law with $a=v^{2} /$ L. M1 for either attempt, A1 for both right

3			
i	$2.8 V=1.4 \times 72$ Vertical component at P is 36 N	M1 A1 $[2]$	For taking moments about Q for $P Q$ or for using symmetry
ii	$36+N=72+54$ Normal component at R is 90 N	M1 A1 $[2]$	For resolving forces vertically on both rods AG
iii			For taking moments about Q for $Q R$ or about P for the whole structure (all terms needed)
	$1.44 \mathrm{~F}=1.2 \times 90-0.8 \times 54$ or $72 \times 1.4+54 \times 3.6+1.44 \mathrm{~F}=90 \times 4$ with not more than 1 error in either case Equation correct and leading to $\mathrm{F}=45$ For using $\mathrm{F}=\mu \mathrm{R}$	M1 A1 A1 Coefficient is 0.5	
M1			
A1			

i	$\begin{aligned} & 0.4(7 \times 0.6)-0.3 \times 2.8=0.4 a+0.3 b \\ & 0.7(7 \times 0.6+2.8)=b-a \end{aligned}$ Speed of B is $4 \mathrm{~ms}^{-1}$	M1 A1 M1 A1 M1 A1 [6]	For using the principle of conservation of momentum For using $\mathrm{e}(\Delta \mathrm{u})=\Delta \mathrm{v}$ For eliminating a from equations
ii	$a=(-) 0.9$ Component perp. to l.o.c. is 5.6 $\begin{aligned} & \tan \alpha=5.6 / 0.9 \\ & \alpha=80.9^{\circ} \end{aligned}$ Angle turned through is $46.0^{\circ}\left(0.803^{\circ}\right)$	B1 B1 M1 A1 A1ft [5]	For attempting to find α - the angle between the direction of motion of A after collision and the l.o.c. to the left, or $90^{\circ}-\alpha$ $126.9^{\circ}-\alpha$

5	$\begin{aligned} & 2.45 e / 0.5=0.05 g \\ & (e=0.1) \end{aligned}$ Distance from O is $0.5+0.1=0.6 \mathrm{~m}$	M1 A1 A1 $[3]$	For using $T=\lambda e / L$ and resolving forces vertically accept use of 0.1 to show both sides equal to 0.49 AG
ii	$\begin{aligned} & m g-T=m \ddot{x} \\ & 0.05 g-2.45(0.1+x) / 0.5=0.05 \ddot{x} \\ & \ddot{x}=-98 x \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{gathered}$	For using Newton's second law with 3 terms AG
iii	$\begin{aligned} & a=0.075 \\ & n=7 \sqrt{2} \mathrm{oe} \\ & x=0.075 \cos (7 \sqrt{2} t) \\ & x(0.2)=-0.0298 \\ & v=-0.075(7 \sqrt{2}) \sin (7 \sqrt{2} t) \\ & v(0.2)=-0.681 \rightarrow \text { velocity is } 0.681 \mathrm{~ms}^{-1} \\ & \text { upwards } \end{aligned}$	B1 B1 M1 A1 M1 A1ft A1 [7]	accept 9.90 For using $x=a \cos n t$ oe For differentiating $\mathrm{x}=a \cos n t$ and using it ft incorrect a and/or n If from $v^{2}=n^{2}\left(a^{2}-x^{2}\right)$ the direction must be clearly established

6	$\begin{aligned} & 112 e / 4=3.5 \times 9.8 \times \frac{40}{49} \\ & V^{2}=2 \times 8 \times(4+1) \\ & V^{2}=80 \end{aligned}$ $0.5 \sqrt{80}=(0.5+3.5) u$ Initial speed of combined particles is $1 / 2 \sqrt{5} \mathrm{~ms}^{-1}$	M1 A1 M1 A1 M1 A1 [6]	For using $m g \sin \theta$ and $\lambda e / L$ For using $s=4+e$ and a $=8$ in $v^{2}=2 a s$, or by energy For using the principle of conservation of momentum AG
ii	$\begin{aligned} & \text { Gain in } \mathrm{EE}=(112 /(2 \times 4))\left\{(X+1)^{2}-1^{2}\right\} \\ & \text { Loss of } \mathrm{KE}=1 / 2(0.5+3.5) \times 5 / 4 \\ & \text { Loss of } \mathrm{PE}=(0.5+3.5) \times 9.8 \times \frac{40}{49} X \\ & 14\left(\mathrm{X}^{2}+2 \mathrm{X}\right)=2.5+32 \mathrm{X} \\ & 28 \mathrm{X}^{2}-8 \mathrm{X}-5=0 \end{aligned}$	M1 A1 B1 B1 M1 A1 [6]	For using $\mathrm{EE}=\lambda \mathrm{x}^{2} / 2 \mathrm{~L}$ For using the principle of conservation of energy AG
OR	$\begin{aligned} & \frac{T-m g \sin \theta=-m a}{4}-4 g \frac{40}{49}=-4 \mathrm{a} \\ & \int(7 x-1) \mathrm{d} x=-\int v \mathrm{~d} v(+c) \\ & \frac{7 x^{2}}{2}-x=-\frac{v^{2}}{2}+c \\ & c=\frac{5}{8} \\ & 28 X^{2}-8 X-5=0 \end{aligned}$	M1 A1 M1 A1 A1 A1 [6]	For use of $F=m a$ allow one sign slip for A1 Using $\mathrm{a}=v \frac{\mathrm{~d} v}{\mathrm{~d} x}$ and integrating AG Convincingly

7	$\begin{aligned} & 0.2 g-v^{2} / 2000=0.2 v(\mathrm{~d} v / \mathrm{d} x) \\ & \left(\frac{400 v}{3920-v^{2}}\right) \frac{d v}{d x}=1 . \end{aligned}$	M1 A1 [2]	For using Newton's second law with $a=v(\mathrm{~d} v / \mathrm{d} x)$ AG Convincing, with no slips.
ii	$\begin{aligned} & -200 \ln \left(3920-v^{2}\right)=x+(A) \\ & -200 \ln (3920)=A \\ & x=200 \ln \left(\frac{3920}{3920-v^{2}}\right) \\ & \mathrm{e}^{x / 200}=3920 /\left(3920-v^{2}\right) \\ & v^{2}=3920\left(1-\mathrm{e}^{-x / 200}\right) \\ & 0<\mathrm{e}^{-x / 200} \rightarrow v^{2}<3920 \end{aligned}$	M1 A1 M1 A1 M1 A1 B1 [7]	For separating variables and integrating For using $\mathrm{v}(0)=0$ For using inverse \ln process AG Convincingly - dep on correct answer
iii	$\begin{aligned} & \text { Using } 0.2 g-v^{2} / 2000=0.2 a \\ & v=40 \\ & \text { Gain in } \mathrm{KE}=1 / 20.2 \mathrm{x} 1600 \\ & x=200 \ln \left(\frac{3920}{3920-1600}\right)(=104.90) \\ & 0.2 \mathrm{~g} \mathrm{x}(104.9)-160 \\ & \text { Work done is } 45.6 \mathrm{~J} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1ft } \\ & \text { B1ft } \\ & \text { M1 } \\ & \text { A1 } \\ & {[6]} \end{aligned}$	For using WD = loss of PE - gain in KE
OR	$\begin{aligned} & \text { Using } 0.2 g-v^{2} / 2000=0.2 a \\ & v=40 \\ & x=200 \ln \left(\frac{3920}{3920-1600}\right)(=104.90 \ldots) \\ & \text { WD }=\int \frac{v^{2}}{2000} d x+c \\ & =\int \frac{3920}{2000}\left(1-\mathrm{e}^{-x / 200}\right) \mathrm{d} x \\ & =3920 / 2000\left(x+200 e^{(-x / 200)}-392\right. \end{aligned}$ Work done is 45.6 J	M1 A1 B1ft M1 A1 A1 [6]	Use of WD $=\int F \mathrm{~d} x$ and subst for v^{2}

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

