

GCE

Mathematics

Advanced GCE

Unit 4733: Probability and Statistics 2

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

1		160	D1	52 stated
1		$\hat{\mu} = \bar{x} = \frac{468}{9} = 52$	B1	52 stated
			M1	Correct method for biased estimator
		24820 52^2 [= 53.78]	M1	Multiply by 9/8
		$\frac{24820}{9} - 52^2 \ [= 53.78]$		[if single formula, allow M0 M1 if wrong but divisor 8 seen
				anywhere]
		$\hat{\sigma}^2 = \frac{9}{8} \times 53.78 = 60.5$	A1 4	Answer 60.5 or exact equivalent
		8		
2		$53.28 - \mu$	M1dep	Standardise with \sqrt{n} once & equate to z, allow sign, square/ \sqrt{n}
		$\frac{53.28 - \mu}{5/\sqrt{n}} = 1.96$		errors
		· ·	A1	twice, signs correct, zs may be wrong
		$\frac{\mu - 51.65}{5/\sqrt{n}} = 1.3$	B1	Both correct z values seen
		$5/\sqrt{n}$	depM1	Solve to get \sqrt{n} or μ , needs first M1
		$\sqrt{n} = 10, \qquad n = 100$	A1	n = 100, not from wrong signs
		$\mu = 52.3$	B1 6	a.r.t. 52.3, right arithmetic needed but \sqrt{n} can be omitted
2				
3		B(200, 0.0228)	M1	B(200, 0.0228) stated or implied
		Po(4.56)	A1	Po(4.56) stated or implied, allow 4.6 here
		$e^{-4.56}(1+4.56+\frac{4.56^2}{2})$	M1	Correct formula for $P(\le 2) \pm 1$ term, any λ (tables: M0)
		2	A1	Correct formula, 4.56 needed
		= 0.167	A1	Answer, a.r.t. 0.167 [0.16694]
		n large or n > 50; p small or np < 5	B1 6	Both, can be merely asserted. If numbers, must be these
		71 1		SR interpolation: clear method M1, answer A2
				MR: typically B(200, 0.228) \approx N(45.6, 3.52): M1A1;
				standardise correctly, M1; state np , $nq > 5$, B1
4	(i)	Fither 213.4-230	M1	Standardise z with $\sqrt{50}$, ignore sign or $$ or squaring errors
		Either $z = \frac{213.4 - 230}{45/\sqrt{50}}$		7 6 6 1 6
		=-2.608	A 1	z-value, a.r.t. –2.61, or p in range [0.0044, 0.005)
			A1	Correctly compare (–)2.576, signs consistent,
		$-2.608 < -2.576 \ or \ 0.0047 < 0.005$	B1	or p explicitly with 0.005
	Or	CV is $230 - 2.576 \times \frac{45}{\sqrt{50}} = 213.6$	M1	$230 - z\sigma/\sqrt{50}$, allow $$ or squaring errors, allow \pm but not
		$CV = 230 - 2.576 \times \frac{1}{\sqrt{50}} = 213.0$	B1	just +; $z = 2.576$
1		213.4 < 213.6	A1	Explicitly compare 213.4 with 213.6
1		Reject H ₀ . Significant evidence	M1	"Reject", FT, needs correct method and form of
		that population mean is not 230	A1 FT 5	comparison; interpreted, acknowledge uncertainty
	(ii)	Yes, population distribution is not	B2 2	Not, "yes, sample size is large" but ignore "can use it as"
		known to be normal		SR: Both right and wrong answers: B1
1				α "Yes as it must be assumed normal": B1
5		H_0 : $\lambda = 12$; H_1 : $\lambda > 12$	B2	Both correct: B2. Allow μ . One error, B1, but <i>not x</i> , r etc.
		Either: $P(\ge 19) = 1 - P(\le 18)$	M1	Po(12) stated or implied, e.g. 0.9787
		= 1 - 0.9626		1 , 5
		= 0.0374	A1	0.0374, or 0.9626 if compared with 0.9
1		< 0.1	B1	Explicitly compare $P(\ge 19)$ with 0.1, or $P(\le 18)$ with 0.9
1		<i>Or</i> : CR is ≥ 18 , $p = 0.063$	A1	\geq 18 and 0.063 stated
1		* *	B1	
		19 ≥ 18		Explicit comparison of CV (right-hand CR) with 19
		Reject H ₀ . Significant evidence of	M1	"Reject" FT, needs correct method and comparison, e.g. <i>not</i>
		increase in mean number of	4.1 FG -	from \leq 19 or = 19, withhold if inconsistent
		applicants	A1 FT 7	Interpreted in context, acknowledge uncertainty

Solution If one customer arrives, it does not change the probability that another one does so; customers probably arrive in groups of at least 2. Ciii
one does so; customers probably arrive in groups of at least 2 (ii) 0.1730 M1 A1 2 Correct use of tables or formula, e.g., 3007, or .4405 from Po(if Po(7) stated; answer 0.173, 0.1730 or better Po(5×7) stated; answer 0.173, 0.1730 or better Normal, μ = their λ Both parameters correct, allow 35², $\sqrt{35}$ Standardise 40 with λ , $\sqrt{\lambda}$, allow $\sqrt{\lambda}$, cc errors Both $\sqrt{\lambda}$ and cc correct Answer, a.r.t. 0.176 [penalise 0.1765] To (ii) $\int_{1}^{3} \frac{a}{x^{2}} dx = 1, \left[\frac{-a}{x} \right]_{1}^{3} = 1; a = \frac{3}{2}$ M1 B1 Correct including approx relationship, not extending beyond [1, 3], verticals and scale not needed (iii) $\int_{1}^{3} \frac{a}{x^{2}} dx = \left[a \ln x \right]_{1}^{3}$ $= \frac{3}{2} \ln 3$ M1 Attempt $\int_{1}^{3} x(x) dx$, limits 1, 3 at some stage Correct indefinite integral Correct indefinite integral, FT on a Answer, any exact equivalent or a.r.t 1.65, FT on a , or a ln 3 (iv) T is equally likely to take any value between 1 and 3 (iii) T is equally likely to take any value between 1 and 3 (iv) T is equally likely to take any value between 1 and 3
arrive in groups of at least 2 (ii) 0.1730 M1 A1 2 Correct use of tables or formula, e.g3007, or .4405 from Po(if Po(7) stated; answer 0.173, 0.1730 or better Po(35) N(35, 35) $1 - \Phi\left(\frac{40.5 - 35}{\sqrt{35}}\right) = 1 - \Phi(0.9297)$ $= 0.1763$ M1 B1 Normal, μ = their λ B1 Normal, μ = their λ B1 A1 B1 Horizontal line above axis Concave decreasing curve above axis B1 B1 B1 Correct including approx relationship, not extending beyond [1, 3], verticals and scale not needed (iii) $\int_{1}^{3} \frac{a}{x^{2}} dx = 1, \left[\frac{-a}{x} \right]^{3} = 1; a = \frac{3}{2}$ M1 A1 B1 A1 A1 B1 Correct use of tables or formula, e.g3007, or .4405 from Po(if Po(7) stated; answer 0.173, 0.1730 or better Po(5×7) stated or implied Normal, μ = their λ Both parameters correct, allow 35², √35 Standardise 40 with λ, √λ, allow √, cc errors Both √λ and cc correct Answer, a.r.t. 0.176 [penalise 0.1765] Horizontal line above axis Concave decreasing curve above axis Both correct including approx relationship, not extending beyond [1, 3], verticals and scale not needed (iii) $\int_{1}^{3} \frac{a}{x^{2}} dx = 1, \left[\frac{-a}{x} \right]^{3} = 1; a = \frac{3}{2}$ M1 A1 A1 A1 A1 A1 A1 A1 A1 A1
(ii) Po(35) N(35, 35) $1 - \Phi\left(\frac{40.5 - 35}{\sqrt{35}}\right) = 1 - \Phi(0.9297)$ $= 0.1763$ (iii) $\int_{1}^{3} \frac{a}{x^{2}} dx = 1, \begin{bmatrix} -a \\ x \end{bmatrix}_{1}^{3} = \frac{3}{2} \ln 3$ (iv) T is equally likely to take any value between 1 and 3 3': 0 M1 A1 2 Correct use of tables or formula, e.g3007, or .4405 from Po(all Al alov All and c.g.) .3007, or .4405 from Po(all Al alov All alov All alov All alov All alov All and c.g3007, or .4405 from Po(all All alov All alov All alov All and c.g.) .301730 or better Po(5×7) stated or implied Normal, $\mu = \text{their } \lambda$ Both parameters correct, allow 35², $\sqrt{35}$ Standardise 40 with λ , $\sqrt{\lambda}$, allow $\sqrt{\lambda}$, cc errors Both $\sqrt{\lambda}$ and cc correct Answer, a.r.t. 0.176 [penalise 0.1765] Horizontal line above axis Concave decreasing curve above axis Both correct including approx relationship, not extending beyond [1, 3], verticals and scale not needed All alove Alove All alove Alov
(iii) $Po(35)$ $N(35, 35)$ $Po(35)$ $N(35, 35)$ $Po(5 \times 7)$ stated; answer 0.173, 0.1730 or better $Po(5 \times 7)$ stated or implied $Po(5 \times 7)$ stated or impl
(iii) $Po(35)$ $N(35, 35)$ N
Normal, $\mu = \text{their } \lambda$ Both parameters correct, allow 35^2 , $\sqrt{3}5$ 1 - $\Phi\left(\frac{40.5 - 35}{\sqrt{35}}\right) = 1$ - $\Phi(0.9297)$ Both parameters correct, allow 35^2 , $\sqrt{3}5$ Standardise 40 with λ , $\sqrt{\lambda}$, allow $\sqrt{\lambda}$, cc errors Both $\sqrt{\lambda}$ and cc correct Answer, a.r.t. 0.176 [penalise 0.1765] 1 or $\frac{1}{\lambda}$ and $\frac{1}{\lambda}$ and $\frac{1}{\lambda}$ both correct including approx relationship, not extending beyond $[1, 3]$, verticals and scale not needed 1 or $\frac{1}{\lambda}$ and $\frac{1}{\lambda}$ and $\frac{1}{\lambda}$ both correct including approx relationship, not extending beyond $[1, 3]$, verticals and scale not needed 2 or $\frac{1}{\lambda}$ and $\frac{1}{\lambda}$ both correct including approx relationship, not extending beyond $[1, 3]$, verticals and scale not needed 3 or $\frac{1}{\lambda}$ at some stage, and equate to 1 correctly obtain $\frac{1}{\lambda}$ or $\frac{1}{\lambda}$ at some stage, and equate to 1 correctly obtain $\frac{1}{\lambda}$ or $\frac{1}{\lambda}$ at some stage 3 correctly obtain $\frac{1}{\lambda}$ at some stage 4 correct indefinite integral, FT on a 5 or a and a answer, any exact equivalent or a.r.t 1.65, FT on a , or a in 3 and a and
The content of the sequence
a content of the penaltic o
a content of the penaltic o
7 (i) B1 Horizontal line above axis Concave decreasing curve above axis B1 Soth correct including approx relationship, not extending beyond [1, 3], verticals and scale not needed (ii) $\int_{1}^{3} \frac{a}{x^{2}} dx = 1, \left[\frac{-a}{x} \right]_{1}^{3} = 1; a = \frac{3}{2}$ M1 Attempt $\int_{1}^{3} f_{x}(x) dx$, limits 1, 3 at some stage, and equate to 1 Correct indefinite integral Correctly obtain 3/2 or 1.5 or exact equivalent (iii) $\int_{1}^{3} \frac{a}{x} dx = [a \ln x]_{1}^{3}$ $= \frac{3}{2} \ln 3$ M1 Attempt $\int_{1}^{3} f_{x}(x) dx$, limits 1, 3 at some stage Correct indefinite integral, FT on a Answer, any exact equivalent or a.r.t 1.65, FT on a, or a ln 3 (iv) T is equally likely to take any value between 1 and 3 B1 1 Must be "values taken by T" (or "of T") or clear equivalent Any hint that they think T is an event gets B0. \[\alpha \] \[\text{"Same chance of occurring anywhere between 1 and 3": 0} \]
B1 3 Concave decreasing curve above axis Both correct including approx relationship, not extending beyond [1, 3], verticals and scale not needed (ii) $\int_{1}^{3} \frac{a}{x^{2}} dx = 1, \left[\frac{-a}{x} \right]_{1}^{3} = 1; a = \frac{3}{2}$ M1 Attempt $\int_{1}^{3} f_{X}(x) dx$, limits 1, 3 at some stage, and equate to 1 Correct indefinite integral Correctly obtain 3/2 or 1.5 or exact equivalent M1 Attempt $\int_{1}^{3} f_{X}(x) dx$, limits 1, 3 at some stage Correct indefinite integral, FT on a Answer, any exact equivalent or a.r.t 1.65, FT on a , or $a \ln 3$ (iv) T is equally likely to take any value between 1 and 3 B1 1 Must be "values taken by T" (or "of T") or clear equivalent Any hint that they think T is an event gets B0. α "Same chance of occurring anywhere between 1 and 3": 0
B1 3 Both correct including approx relationship, not extending beyond [1, 3], verticals and scale not needed (ii) $\int_{1}^{3} \frac{a}{x^{2}} dx = 1, \left[\frac{-a}{x} \right]_{1}^{3} = 1; a = \frac{3}{2}$ M1 Attempt $\int_{1}^{3} f_{x}(x) dx$, limits 1, 3 at some stage, and equate to 1 Correct indefinite integral Correctly obtain 3/2 or 1.5 or exact equivalent (iii) $\int_{1}^{3} \frac{a}{x} dx = [a \ln x]_{1}^{3}$ $= \frac{3}{2} \ln 3$ M1 Attempt $\int_{1}^{3} x f_{x}(x) dx$, limits 1, 3 at some stage Correct indefinite integral, FT on a Answer, any exact equivalent or a.r.t 1.65, FT on a, or a ln 3 (iv) T is equally likely to take any value between 1 and 3 (iv) T is equally likely to take any value between 1 and 3 (iv) T is equally likely to take any value between 1 and 3
beyond [1, 3], verticals and scale not needed (ii) $ \int_{1}^{3} \frac{a}{x^{2}} dx = 1, \left[\frac{-a}{x} \right]_{1}^{3} = 1; a = \frac{3}{2} $ M1 B1 Correct indefinite integral Correctly obtain 3/2 or 1.5 or exact equivalent (iii) $ \int_{1}^{3} \frac{a}{x} dx = \left[a \ln x \right]_{1}^{3} $ $ = \frac{3}{2} \ln 3 $ M1 Attempt $\int x f_{X}(x) dx$, limits 1, 3 at some stage Correct indefinite integral, FT on a Answer, any exact equivalent or a.r.t 1.65, FT on a, or a ln 3 (iv) T is equally likely to take any value between 1 and 3 (iv) T is equally likely to take any value between 1 and 3 (iv) T is equally likely to take any value between 1 and 3
(iii) $\int_{1}^{3} \frac{a}{x^{2}} dx = 1, \left[\frac{-a}{x} \right]_{1}^{3} = 1; a = \frac{3}{2}$ (iii) $\int_{1}^{3} \frac{a}{x} dx = \left[a \ln x \right]_{1}^{3}$ (iv) $\int_{1}^{3} \frac{a}{x} dx = \left[a \ln x \right]_{1}^{3}$ (iv) $T \text{ is equally likely to take any value between 1 and 3}$ (iv) $T \text{ is equally likely to take any value between 1 and 3}$ (iv) $T \text{ is equally likely to take any value between 1 and 3}$ (iv) $T \text{ is equally likely to take any value between 1 and 3}$ (iv) $T \text{ is equally likely to take any value between 1 and 3}$ (iv) $T \text{ is equally likely to take any value between 1 and 3}$ (iv) $T \text{ is equally likely to take any value between 1 and 3}$ (iv) $T \text{ is equally likely to take any value between 1 and 3}$
(iii) $\int_{1}^{3} \frac{a}{x} dx = [a \ln x]_{1}^{3}$ $= \frac{3}{2} \ln 3$ M1 Attempt $\int x f_{X}(x) dx$, limits 1, 3 at some stage Correct indefinite integral, FT on a Answer, any exact equivalent or a.r.t 1.65, FT on a , or $a \ln 3$ (iv) T is equally likely to take any value between 1 and 3 B1 1 Must be "values taken by T " (or "of T ") or clear equivalent Any hint that they think T is an event gets B0. α "Same chance of occurring anywhere between 1 and 3": 0
(iii) $\int_{1}^{3} \frac{a}{x} dx = [a \ln x]_{1}^{3}$ $= \frac{3}{2} \ln 3$ MI Attempt $\int x f_{X}(x) dx$, limits 1, 3 at some stage Correct indefinite integral, FT on a Answer, any exact equivalent or a.r.t 1.65, FT on a, or a ln 3 (iv) T is equally likely to take any value between 1 and 3 (iv) T is equally likely to take any value between 1 and 3 (iv) T is equally likely to take any value between 1 and 3
 (iv) T is equally likely to take any value between 1 and 3 B1 Must be "values taken by T" (or "of T") or clear equivalent Any hint that they think T is an event gets B0. α "Same chance of occurring anywhere between 1 and 3": 0
(iv) T is equally likely to take any value between 1 and 3 B1 Must be "values taken by T" (or "of T") or clear equivalent Any hint that they think T is an event gets B0. α "Same chance of occurring anywhere between 1 and 3": 0
between 1 and 3 Any hint that they think T is an <i>event</i> gets B0. α "Same chance of occurring anywhere between 1 and 3": 0
α "Same chance of occurring anywhere between 1 and 3": 0
γ "Each value of T is equally likely to occur": 1
8 (i) B(40, 0.225) M1 B(40, 0.225) stated or implied
$\approx N(9, 6.975)$ M1 Normal, mean 9
$\frac{5.5-9}{\sqrt{6.975}} = -1.325$ A1 Variance 6.975 or SD 2.641 or 6.975 $\text{Standardise with } np \text{ and } \sqrt{npq}, \text{ allow } npq, \text{ no or wrong } cc$
0.9074 A1 CC and \sqrt{npq} correct, allow from N(3600, 0.225)
A1 Answer, in range [0.907, 0.908]
np = 9 > 5 or n large; and B2 8 Full conditions B2; partial, B1 (assertions OK). Allow npq ,
nq = 31 > 5 or p close to 0.5 allow from e.g. $n = 3600$
(ii) Number list sequentially and B1 Number list, don't need "sequentially"
select using random numbers B1 Mention random numbers (not "select numbers randomly")
If # $>$ 3600, ignore (etc) B1 3 Deal with issue of # $>$ 3600, or "ignore repeats"
\(\alpha \) "Randomly pick numbers from 0 to 3599": (B1) B0 B1 \(\begin{align*} \alpha \) "Randomly pick numbers from 0 to 3599": (B1) B0 B1 \(\begin{align*} \begin{align*} \alpha \) (i) \(\begin{align*} \B(14, 0.7) \) stated or implied, e.g. N(9.8, 2.94), can be recovered as the context of
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
with probability 0.0475 A1 CV 13, of > 12 of \{13, 14\}, anow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen
(ii) H_0 : $p = 0.7$, H_1 : $p > 0.7$ B2 Both, B2. Allow π . One error, B1, but r , x etc: B0
12 < 13 B1 Compare CV from correct tail and inequality with 12,
or $P(\ge 12) = 0.1608$ and > 0.05 or $P(< 12) = 0.8392$ and < 0.9
Do not reject H ₀ . Insufficient M1 Correct method & conclusion, requires like-with-like; CV
evidence that proportion who show method needs ≥ 13 or < 12 ; p method needs ≥ 12 or < 12
improvement is greater than 0.7 A1 FT 5 Withhold if inconsistent
Contextualised, acknowledge uncertainty
[SR: Normal or Po: (i) M1, (ii) B2 maximum]
[0.9932 or 0.0068 probably B2 maximum]
(iii) B(14, 0.8) M1 B(14, 0.8) stated or implied, allow from B(14, 0.75)
P(\leq 12) from B(14, 0.8) M1 Attempt prob of acceptance region, e.g. 0.8990, $$ on (i)
0.8021 A1 3 Answer 0.802 or a.r.t. 0.8021

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552

Facsimile: 01223 552553

