GCE

Mathematics

Advanced GCE

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1		$\begin{aligned} & \hat{\mu}=\bar{x}=\frac{468}{9}=52 \\ & \frac{24820}{9}-52^{2}[=53.78] \\ & \hat{\sigma}^{2}=\frac{9}{8} \times 53.78=\mathbf{6 0 . 5} \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { M1 } & \\ \text { M1 } & \\ & \\ \text { A1 } & 4 \end{array}$	52 stated Correct method for biased estimator Multiply by $9 / 8$ [if single formula, allow M0 M1 if wrong but divisor 8 seen anywhere] Answer 60.5 or exact equivalent
2		$$	M1dep A1 B1 depM1 A1 B1 6	Standardise with $\sqrt{ } n$ once $\&$ equate to z, allow sign, square $/ \sqrt{ }$ errors twice, signs correct, zs may be wrong Both correct z values seen Solve to get $\sqrt{ } n$ or μ, needs first M1 $n=100$, not from wrong signs a.r.t. 52.3 , right arithmetic needed but $\sqrt{ } n$ can be omitted
3		$\begin{aligned} & \mathrm{B}(200,0.0228) \\ & \operatorname{Po}(4.56) \\ & \begin{aligned} & e^{-4.56}\left(1+4.56+\frac{4.56^{2}}{2}\right) \\ & \quad= \mathbf{0 . 1 6 7} \end{aligned} \\ & n \text { large or } n>50 ; p \text { small or } n p<5 \end{aligned}$	M1 A1 M1 A1 A1 B1 6	$\mathrm{B}(200,0.0228)$ stated or implied $\mathrm{Po}(4.56)$ stated or implied, allow 4.6 here Correct formula for $\mathrm{P}(\leq 2) \pm 1$ term, any λ (tables: M0) Correct formula, 4.56 needed Answer, a.r.t. 0.167 [0.16694] Both, can be merely asserted. If numbers, must be these SR interpolation: clear method M1, answer A2 MR: typically $\mathrm{B}(200,0.228) \approx \mathrm{N}(45.6,3.52)$: M1A1; standardise correctly, M1; state $n p, n q>5$, B1
4	(i)	$\begin{aligned} \text { Either }_{z} & =\frac{213.4-230}{45 / \sqrt{50}} \\ & =-2.608 \\ -2.608 & <-2.576 \text { or } 0.0047<0.005 \end{aligned}$	M1 A1 B1	Standardise z with $\sqrt{ } 50$, ignore sign or $\sqrt{ }$ or squaring errors z-value, a.r.t. -2.61 , or p in range $[0.0044,0.005)$ Correctly compare (-)2.576, signs consistent, or p explicitly with 0.005
	Or	$\begin{aligned} & \mathrm{CV} \text { is } 230-2.576 \times \frac{45}{\sqrt{50}}=213.6 \\ & 213.4<213.6 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	$230-z \sigma / \sqrt{50}$, allow $\sqrt{ }$ or squaring errors, allow \pm but not just $+; \quad z=2.576$ Explicitly compare 213.4 with 213.6
		Reject H_{0}. Significant evidence that population mean is not 230	M1 A1 FT 5	"Reject", FT, needs correct method and form of comparison; interpreted, acknowledge uncertainty
	(ii)	Yes, population distribution is not known to be normal	B2 2	Not, "yes, sample size is large" but ignore "can use it as ..." SR: Both right and wrong answers: B1 α "Yes as it must be assumed normal": B1
5		$\begin{aligned} & \begin{aligned} \mathrm{H}_{0}: \lambda= & 12 ; \quad \mathrm{H}_{1}: \lambda>12 \\ \text { Either }: & \mathrm{P}(\geq 19)=1-\mathrm{P}(\leq 18) \\ & =1-0.9626 \\ & =0.0374 \\ & <0.1 \end{aligned} \end{aligned}$	$\begin{aligned} & \hline \text { B2 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Both correct: B 2 . Allow μ. One error, B 1 , but not x, r etc. $\mathrm{Po}(12)$ stated or implied, e.g. 0.9787 0.0374 , or 0.9626 if compared with 0.9 Explicitly compare $\mathrm{P}(\geq 19)$ with 0.1 , or $\mathrm{P}(\leq 18)$ with 0.9
		$\begin{gathered} \text { Or: } \mathrm{CR} \text { is } \geq 18, p=0.063 \\ 19 \geq 18 \end{gathered}$	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{~B} 1 \\ & \hline \end{aligned}$	≥ 18 and 0.063 stated Explicit comparison of CV (right-hand CR) with 19
		Reject H_{0}. Significant evidence of increase in mean number of applicants	M1 A1 FT 7	"Reject" FT, needs correct method and comparison, e.g. not from ≤ 19 or $=19$, withhold if inconsistent Interpreted in context, acknowledge uncertainty

6	(i)	If one customer arrives, it does not change the probability that another one does so; customers probably arrive in groups of at least 2	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & 2 \\ \hline \end{array}$	Answer that shows correct understanding of "independent", in context; not just equivalent to "singly" Plausible reason, in context, nothing wrong, nothing that suggests "constant average rate"
	(ii)	0.1730	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$	Correct use of tables or formula, e.g. .3007, or . 4405 from Po(5) if $\operatorname{Po}(7)$ stated; answer $0.173,0.1730$ or better
	(iii)	$\begin{aligned} & \operatorname{Po(35)} \begin{aligned} & \mathrm{N}(35,35) \\ & 1-\Phi\left(\frac{40.5-35}{\sqrt{35}}\right)=1-\Phi(0.9297) \\ &=\mathbf{0 . 1 7 6 3} \end{aligned} \end{aligned}$	B1 M1 A1 M1 A1 A1 6	$\mathrm{Po}(5 \times 7)$ stated or implied Normal, $\mu=$ their λ Both parameters correct, allow $35^{2}, \sqrt{ } 35$ Standardise 40 with λ, $\sqrt{ } \lambda$, allow $\sqrt{ }$, cc errors Both $\sqrt{ } \lambda$ and cc correct Answer, a.r.t. 0.176 [penalise 0.1765]
7	(i)		$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 3 \\ \hline \end{array}$	Horizontal line above axis Concave decreasing curve above axis Both correct including approx relationship, not extending beyond $[1,3]$, verticals and scale not needed
	(ii)	$\int_{1}^{3} \frac{a}{x^{2}} \mathrm{~d} x=1,\left[\frac{-a}{x}\right]_{1}^{3}=1 ; a=\frac{3}{2}$	M1 B1 A1 3	Attempt $\int \mathrm{f}_{X}(x) \mathrm{d} x$, limits 1,3 at some stage, and equate to 1 Correct indefinite integral Correctly obtain $3 / 2$ or 1.5 or exact equivalent
	(iii)	$\begin{aligned} & \int_{1}^{3} \frac{a}{x} \mathrm{~d} x=[a \ln x]_{1}^{3} \\ & =\frac{3}{2} \ln 3 \end{aligned}$	M1 B1 FT A1 FT 3	Attempt $\int x \mathrm{f}_{X}(x) \mathrm{d} x$, limits 1,3 at some stage Correct indefinite integral, FT on a Answer, any exact equivalent or a.r.t 1.65 , FT on a, or $a \ln 3$
	(iv)	T is equally likely to take any value between 1 and 3	B1 1	Must be "values taken by T " (or "of T ") or clear equivalent Any hint that they think T is an event gets B0. α "Same chance of occurring anywhere between 1 and 3 ": 0 β "For values of T between 1 and $3, T$ is equally likely": 0 γ "Each value of T is equally likely to occur": 1
8	(i)	$\begin{aligned} & \mathrm{B}(40,0.225) \\ & \approx \mathrm{N}(9,6.975) \\ & \frac{5.5-9}{\sqrt{6.975}}=-1.325 \\ & \\ & n p=9>5 \text { or } n \text { large; and } \\ & n q=31>5 \text { or } p \text { close to } 0.5 \end{aligned}$	M1 M1 A1 M1 A1 A1 B2 8	$\mathrm{B}(40,0.225)$ stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with $n p$ and $\sqrt{ } n p q$, allow $n p q$, no or wrong cc CC and $\sqrt{ } n p q$ correct, allow from $\mathrm{N}(3600,0.225)$ Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq, allow from e.g. $n=3600$
	(ii)	Number list sequentially and select using random numbers If \# > 3600, ignore (etc)	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 3 \end{array}$	Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of \# > 3600, or "ignore repeats" α "Randomly pick numbers from 0 to 3599 ": (B1) B0 B1
9	(i)	$\mathrm{B}(14,0.7)$ CR is $\geq \mathbf{1 3}$ with probability 0.0475	M1 A1 A1 3	$\mathrm{B}(14,0.7)$ stated or implied, e.g. $\mathrm{N}(9.8,2.94)$, can be recovered CV 13, or >12 or $\{13,14\}$, allow $=$ but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen
	(ii)	$\begin{aligned} & \mathrm{H}_{0}: p=0.7, \mathrm{H}_{1}: p>0.7 \\ & 12<13 \end{aligned}$ Do not reject H_{0}. Insufficient evidence that proportion who show improvement is greater than 0.7	B2 B1 M1 A1 FT 5	Both, B2. Allow π. One error, B1, but r, x etc: B0 Compare CV from correct tail and inequality with 12, or $\mathrm{P}(\geq 12)=0.1608$ and >0.05 or $\mathrm{P}(<12)=0.8392$ and <0.95 Correct method \& conclusion, requires like-with-like; CV method needs ≥ 13 or $<12 ; p$ method needs ≥ 12 or <12 Withhold if inconsistent Contextualised, acknowledge uncertainty [SR: Normal or Po: (i) M1, (ii) B2 maximum] [0.9932 or 0.0068 probably B2 maximum]
	(iii)	$\begin{aligned} & \mathrm{B}(14,0.8) \\ & \mathrm{P}(\leq 12) \text { from } \mathrm{B}(14,0.8) \\ & \mathbf{0 . 8 0 2 1} \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{3} \\ \hline \end{array}$	$\mathrm{B}(14,0.8)$ stated or implied, allow from $\mathrm{B}(14,0.75)$ Attempt prob of acceptance region, e.g. $0.8990, \sqrt{ }$ on (i) Answer 0.802 or a.r.t. 0.8021

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

