

Mathematics (MEI)

Advanced GCE A2 7895-8

Advanced Subsidiary GCE AS 3895-8

Mark Schemes for the Units

June 2008

3895-8/7895-8/MS/R/08

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2008

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552310E-mail:publications@ocr.org.uk

CONTENTS

Advanced GCE Further Mathematics (MEI) (7896) Advanced GCE Further Mathematics (Additional) (MEI) (7897) Advanced GCE Mathematics (MEI) (7895) Advanced GCE Pure Mathematics (MEI) (7898)

Advanced Subsidiary GCE Further Mathematics (MEI) (3896) Advanced Subsidiary GCE Further Mathematics (Additional) (MEI) (3897) Advanced Subsidiary GCE Mathematics (MEI) (3895) Advanced Subsidiary GCE Pure Mathematics (MEI) (3898)

MARK SCHEME FOR THE UNITS

Unit/Content	Page
4751 (C1) Introduction to Advanced Mathematics	1
4752 (C2) Concepts for Advanced Mathematics	6
4753 (C3) Methods for Advanced Mathematics	8
4754 (C4) Applications of Advanced Mathematics	12
4755 (FP1) Further Concepts for Advanced Mathematics	19
4756 (FP2) Further Methods for Advanced Mathematics	25
4757 (FP3) Further Applications of Advanced Mathematics	31
4758 Differential Equations	38
4761 Mechanics 1	42
4762 Mechanics 2	47
4763 Mechanics 3	51
4764 Mechanics 4	57
4766 Statistics 1	60
4767 Statistics 2	67
4768 Statistics 3	71
4769 Statistics 4	77
4771 Decision Mathematics 1	83
4772 Decision Mathematics 2	88
4773 Decision Mathematics Computation	93
4776 Numerical Methods	98
4777 Numerical Computation	101
Grade Thresholds	105

18

4751 (C1) Introduction to Advanced Mathematics

Sec	tion A			
1	<i>x</i> > 6/4 o.e. isw	2	M1 for $4x > 6$ or for $6/4$ o.e. found or for their final ans ft their $4x > k$ or $kx > 6$	2
2	(i) (0, 4) and (6, 0)	2	1 each; allow $x = 0$, $y = 4$ etc; condone x = 6, $y = 4$ isw but 0 for (6, 4) with no working	
	(ii) −4/6 o.e. or ft their (i) isw	2	1 for $-\frac{4}{6}x$ or 4/–6 or 4/6 o.e. or ft	
			(accept 0.67 or better) 0 for just rearranging to $y = -\frac{2}{3}x + 4$	4
3	(i) 0 or −3/2 o.e.	2	1 each	
	(ii) <i>k</i> < −9/8 o.e. www	3	M2 for 3^2 (-)(-8 <i>k</i>) < 0 o.e. or -9/8 found or M1 for attempted use of $b^2 - 4ac$ (may be in quadratic formula); SC: allow M1 for 9 - 8 <i>k</i> < 0 and M1 ft for <i>k</i> > 9/8	5
4	(i) T (ii) E	3	3 for all correct, 2 for 3 correct. 1 for 2	
	(iii) T		Conect	
	(iv) F			3
5	y(x-2) = (x+3)	M1	for multiplying by <i>x</i> − 2; condone missing brackets	
	xy - 2y = x + 3 or ft [ft from earlier errors if of comparable difficulty – no ft if there are no xy terms]	M1	for expanding bracket and being at stage ready to collect <i>x</i> terms	
	xy - x = 2y + 3 or ft	M1	for collecting <i>x</i> and 'other' terms on opposite sides of eqn	
	$[x =]\frac{2y+3}{y-1}$ o.e. or ft	M1	for factorising and division	
	alt method:		for either method: award 4 marks only if fully correct	
	$y = 1 + \frac{5}{x - 2}$	M1		
	$v - 1 = \frac{5}{5}$	M1		
	x-2	M1		
	$x-2=\frac{3}{v-1}$			
	$x = 2 + \frac{5}{y - 1}$	M1		4

1

6	(i) 5 www	2	allow 2 for ± 5 ; M1 for $25^{1/2}$ seen or for 1/5 seen or for using $25^{1/2} = 5$ with another error (ie M1 for coping correctly with fraction and negative index or with square root)		
	(ii) $8x^{10}y^{13}z^4$ or $2^3x^{10}y^{13}z^4$	3	mark final answer; B2 for 3 elements correct, B1 for 2 elements correct; condone multn signs included, but -1 from total earned if addn signs	5	
7	(i) $\frac{5-\sqrt{3}}{22}$ or $\frac{5+(-1)\sqrt{3}}{22}$ or $\frac{5-1\sqrt{3}}{22}$	2	or $a = 5$, $b = -1$, $c = 22$; M1 for attempt to multiply numerator and denominator by $5 - \sqrt{3}$		
	(ii) 37 – 12√ 7 isw www	3	2 for 37 and 1 for $-12\sqrt{7}$ or M1 for 3 correct terms from $9 - 6\sqrt{7} - 6\sqrt{7} + 28$ or $9 - 3\sqrt{28} - 3\sqrt{28} + 28$ or $9 - \sqrt{252} - \sqrt{252} + 28$ o.e. eg using $2\sqrt{63}$ or M2 for $9 - 12\sqrt{7} + 28$ or $9 - 6\sqrt{28} + 28$ or $9 - 2\sqrt{252} + 28$ or $9 - \sqrt{1008} + 28$ o.e.; 3 for $37 - \sqrt{1008}$ but not other equivs	5	
8	-2000 www	4	M3 for $10 \times 5^2 \times (-2[x])^3$ o.e. or M2 for two of these elements or M1 for 10 or $(5\times4\times3)/(3\times2\times1)$ o.e. used [5C_3 is not sufficient] or for 1 5 10 10 5 1 seen; or B3 for 2000; condone x^3 in ans; equivs: M3 for e.g $5^5 \times 10 \times \left(-\frac{2}{5}[x]\right)^3$ o.e. [5^5 may be outside a bracket for whole expansion of all terms], M2 for two of these elements etc similarly for factor of 2 taken out at start	4	
9	(y-3)(y-4) = 0 y = 3 or 4 cao	M1 A1	for factors giving two terms correct or attempt at quadratic formula or completing square or B2 (both roots needed)		
	$x = \pm \sqrt{3}$ or ± 2 cao	B2	B1 for 2 roots correct or ft their y (condone $\sqrt{3}$ and $\sqrt{4}$ for B1)	4	

Section B

10	i	$(x-3)^2 - 7$	3	mark final answer; 1 for $a = 3$, 2 for $b = 7$ or M1 for $-3^2 + 2$; bod 3 for $(x - 3) - 7$	3
	ii	(3, −7) or ft from (i)	1+1		2
	iii	sketch of quadratic correct way up and through (0, 2)	G1	accept (0, 2) o.e. seen in this part [eg in table] if 2 not marked as intercept on graph	
		t.p. correct or ft from (ii)	G1	accept 3 and -7 marked on axes level with turning pt., or better; no ft for (0, 2) as min	2
	iv	$x^2 - 6x + 2 = 2x - 14$ o.e.	M1	or their (i) = $2x - 14$	
		<i>x</i> ² - 8 <i>x</i> + 16 [= 0]	M1	dep on first M1; condone one error	
		$(x-4)^2 = 0$	M1	or correct use of formula, giving equal roots; allow $(x + 4)^2$ o.e. ft $x^2 + 8x + 16$	
		x = 4, y = -6	A1	if M0M0M0, allow SC2 for showing (4, −6) is on both graphs (need to go on to show line is tgt to earn more)	
		equal/repeated roots [implies tgt] - must be explicitly stated; condone 'only one root [so tgt]' or 'line meets curve only once, so tgt' or 'line touches curve only once' etc]	A1	or for use of calculus to show grad of line and curve are same when $x = 4$	5
					Ũ

Mark Scheme

12

11	i	f(-4) used	M1		
		-128 + 112 + 28 - 12 [= 0]	A1	or B2 for $(x + 4)(2x^2 - x - 3)$ here; or correct division with no remainder	2
	ii	division of $f(x)$ by $(x + 4)$	M1	as far as $2x^3 + 8x^2$ in working, or two terms of $2x^2 - x - 3$ obtained by inspection etc (may be earned in (i)), or f(-1) = 0 found	
		$2x^2 - x - 3$	A1	$2x^2 - x - 3$ seen implies M1A1	
		(x + 1)(2x - 3)	A1		
		[f(x) =] (x + 4) (x + 1)(2x - 3)	A1	or B4; allow final A1 ft their factors if M1A1A0 earned	4
	iii	sketch of cubic correct way up	G1	ignore any graph of $y = f(x - 4)$	
		through −12 shown on <i>y</i> axis	G1	or coords stated near graph	
		roots -4 , -1 , 1.5 or ft shown on x axis	G1	or coords stated near graph	
				if no curve drawn, but intercepts marked on axes, can earn max of G0G1G1	3
	iv	x (x - 3)(2[x - 4] - 3) o.e. or x $(x - 3)(x - 5.5)$ or ft their factors	M1	or $2(x - 4)^3 + 7(x - 4)^2 - 7(x - 4) - 12$ or stating roots are 0, 3 and 5.5 or ft; condone one error eg 2x - 7 not 2x - 11	
		correct expansion of one pair of brackets ft from their factors	M1	or for correct expn of $(x - 4)^3$ [allow unsimplified]; or for showing g(0) = g(3) = g(5.5) = 0 in given ans g(x)	
		correct completion to given answer	M1	allow M2 for working backwards from given answer to $x(x - 3)(2x - 11)$ and M1 for full completion with factors or roots	
					3

12

12	i	grad AB = $\frac{9-1}{2}$ or 2	M1			
		31 y - 9 = 2(x - 3) or y - 1 = 2(x + 1)	M1	ft their <i>m</i> , or subst coords of A or B in $y = $ their <i>m</i> $x + c$		
		<i>y</i> = 2 <i>x</i> + 3 o.e.	A1	or B3	3	
	ii	mid pt of AB = (1, 5)	M1	condone not stated explicitly, but		
		grad perp = −1/grad AB	M1	soi by use eg in eqn		1
		$y - 5 = -\frac{1}{2} (x - 1)$ o.e. or ft [no ft for just grad AB used]	M1	ft their grad and/or midpt, but M0 if their midpt not used; allow M1 for $y = -\frac{1}{2}x + c$ and then their midpt subst		
		at least one correct interim step towards given answer $2y + x =$ 11, and correct completion NB ans $2y + x =$ 11 given	M1	no ft; correct eqn only		1
		alt method working back from ans:		mark one method or the other, to benefit of cand, not a mixture		
		$y = \frac{11 - x}{2}$ o.e.	M1			1
		grad perp = −1/grad AB and showing/stating same as given	M1	eg stating $-\frac{1}{2} \times 2 = -1$		1
		finding intn of their $y = 2x + 3$ and $2y + x = 11$ [= (1, 5)]	M1	or showing that (1, 5) is on $2y + x$ = 11, having found (1, 5) first	4	1
		showing midpt of AB is (1, 5)	M1	[for both methods: for M4 must be fully correct]		1
	iii	showing $(-1 - 5)^2 + (1 - 3)^2 = 40$	M1	at least one interim step needed for		
		showing B to centre = $\sqrt{40}$ or verifying that (3, 9) fits given circle	M1	with no other evidence such as a first line of working or a diagram; condone marks earned in reverse	2	1
	iv	$(x-5)^2 + 3^2 = 40$	M1	for subst $y = 0$ in circle eqn		
		$(x - 5)^2 = 31$	M1	condone slip on rhs; or for rearrangement to zero (condone one error) <u>and</u> attempt at quad. formula [allow M1 M0 for $(x - 5)^2 = 40$ or for $(x - 5)^2 + 3^2 = 0$]		1
		$x = 5 \pm \sqrt{31}$ or $\frac{10 \pm \sqrt{124}}{2}$ isw	A1	or $5 \pm \frac{\sqrt{124}}{2}$	3	

4752 (C2) Concepts for Advanced Mathematics

Sec	tion A				
1	210 c.a.o.	2	1 for π rads = 180° soi	2	
2	(i) 5.4 × 10 ⁻³ , 0.0054 or $\frac{27}{5000}$	1			
	(ii) 6 www	2	M1 for S = 5.4 / (1 – 0.1)	3	
3	stretch, parallel to the y axis, sf 3	2	1 for stretch plus one other element correct	2	-
4	$[f'(x) =] 12 - 3x^{2}$ their f'(x) > 0 or = 0 soi -2 < x < 2	B1 M1 A1	condone $-2 \le x \le 2$ or "between -2 and 2"	3	-
5	(i) grad of chord = $(2^{3.1} - 2^3)/0.1$ o.e. = 5.74 c a o	M1 A1			
	(ii) correct use of A and C where for C, $2.9 < x < 3.1$ answer in range (5.36, 5.74)	M1 A1	or chord with ends $x = 3 \pm h$, where $0 < h \le 0.1$ s.c.1 for consistent use of reciprocal of gradient formula in parts (i) and (ii)	4	
6	$[y =] kx^{3/2} [+ c]$ k = 4 subst of (9, 105) in their eqn with c	M1 A1 M1	may appear at any stage must have <i>c</i> ; must have attempted integration	4	18
7	sector area = 28.8 or $\frac{144}{5}$ [cm ²]	2 M1	M1 for $\frac{1}{2} \times 6^2 \times 1.6$		-
	c.a.o. area of triangle = $\frac{1}{2} \times 6^2 \times \sin 1.6$ o.e. their sector – their triangle s.o.i. 10.8 to 10.81 [cm ²]	M1 A1	must both be areas leading to a positive answer	5	
8	a + 10d = 1 or 121 = 5.5(2a+10d) 5(2a + 9d) = 120 o.e. a = 21 s.o.i. www and $d = -2 \text{ s.o.i. www}$ 4th term is 15	M1 M1 A1 A1 A1	or 121 = 5.5(a + 1) gets M2 eg 2a + 9d = 24	5	
9	$x \log 5 = \log 235 \text{ or } x = \frac{\log 235}{\log 5}$	M1 A2	or $x = \log_5 235$ A1 for 3.4 or versions of 3.392	3	
10	2 ($1 - \cos^2 \theta$) = cos θ + 2 - 2 cos ² θ = cos θ s.o.i. valid attempt at solving their quadratic in cos θ cos θ = - ½ www θ = 90, 270, 120, 240	M1 A1 DM1 A1 A1	for 1 - $\cos^2 \theta = \sin^2 \theta$ substituted graphic calc method: allow M3 for intersection of $y = 2 \sin^2 \theta$ and $y = \cos \theta + 2$ and A2 for all four roots. All four answers correct but unsupported scores B2. 120 and 240 only: B1	5	18

Section B

Seci	tion E	5			
11	i	(x + 5)(x - 2)(x + 2)	2	M1 for $a (x + 5)(x - 2)(x + 2)$	2
	ii	$[(x + 2)](x^2 + 3x - 10)$	M1	for correct expansion of one pair of	
		$x^3 + 3x^2 - 10x + 2x^2 + 6x - 20$ o.e.	M1	for clear expansion of correct factors – accept given answer from $(x + 5)(x^2 - 4)$ as first step	2
	iii	$y' = 3x^{2} + 10x - 4$ their $3x^{2} + 10x - 4 = 0$ s.o.i. x = 0.36 from formula o.e.	M2 M1 A1 B1+1	M1 if one error or M1 for substitution of 0.4 if trying to obtain 0, and A1 for correct demonstration of sign change	
	iv	(-1.8, 12.6)	B1+1	accept (−1.9, 12.6) or f.t.(½ their max x, their max y)	6 2
12	i	Area = (-)0.136 seen [m ²] www	4	M3 for $0.1/2 \times (0.14 + 0.16 + 20.22)$	
	-	Volume = 0.34 $[m^3]$ or ft from their area × 2.5	1	+ 0.31 + 0.36 + 0.32]) M2 for one slip; M1 for two slips must be positive	5
	II	$2x^4 - x^3 - 0.25 x^2 - 0.15x$ o.e. value at 0.5 [- value at 0] = -0.1375 area of cross section (of trough) or area between curve and x-axis 0.34375 r.o.t. to 3 or more sf [m ³] m ³ seen in (i) or (ii)	M2 M1 A1 E1 B1 U1	M1 for 2 terms correct dep on integral attempted must have neg sign	7
13	i	log $P = \log a + b \log t$ www comparison with $y = mx + c$ intercept = $\log_{10} a$	1 1 1	must be with correct equation condone omission of base	3
	ii	log t 0 0.78 1.15 1.18 1.20 log <i>P</i> 1.49 1.64 1.75 1.74 1.76 plots f.t. ruled line of best fit	1 1 1 1	accept to 2 or more dp	4
	iii	gradient rounding to 0.22 or 0.23 $a = 10^{1.49}$ s.o.i. $P = 31t^{m}$ allow the form $P = 10^{0.22logt}$	2 1 1	M1 for y step / x-step accept1.47 – 1.50 for intercept accept answers that round to 30 – 32 , their positive m	4
	iv	answer rounds in range 60 to 63	1		1

4753 (C3) Methods for Advanced Mathematics

Section A

$ \begin{array}{c} 1 \\ \Rightarrow \\ \Rightarrow \\ or \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \end{array} $	$ 2x-1 \le 3$ -3 \le 2x - 1 \le 3 -2 \le 2x \le 4 -1 \le x \le 2 $(2x-1)^2 \le 9$ $4x^2 - 4x - 8 \le 0$ $(4)(x+1)(x-2) \le 0$ -1 \le x \le 2	M1 A1 M1 A1 M1 A1 A1 A1 A1 [4]	$2x - 1 \le 3 \text{ (or =)}$ $x \le 2$ $2x - 1 \ge -3 \text{ (or =)}$ $x \ge -1$ squaring and forming quadratic = 0 (or \le) factorising or solving to get $x = -1, 2$ $x \ge -1$ $x \le -1$ $x \le 2 \text{ (www)}$
2 ⇒	Let $u = x$, $dv/dx = e^{3x} \implies v = e^{3x}/3$ $\int x e^{3x} dx = \frac{1}{3} x e^{3x} - \int \frac{1}{3} e^{3x} \cdot 1 \cdot dx$ $= \frac{1}{3} x e^{3x} - \frac{1}{9} e^{3x} + c$	M1 A1 A1 B1 [4]	parts with $u = x$, $dv/dx = e^{3x} \Rightarrow v$ = $\frac{1}{3}xe^{3x} - \frac{1}{9}e^{3x}$ + c
3 (i)	f(-x) = f(x) Symmetrical about <i>Oy</i> .	B1 B1 [2]	
(ii)	 (A) even (B) neither (C) odd 	B1 B1 B1 [3]	
4	Let $u = x^2 + 2 \Rightarrow du = 2x dx$ $\int_{1}^{4} \frac{x}{x^2 + 2} dx = \int_{3}^{18} \frac{1/2}{u} du$ $= \frac{1}{2} [\ln u]_{3}^{18}$ $= \frac{1}{2} (\ln 18 - \ln 3)$ $= \frac{1}{2} \ln(18/3)$ $= \frac{1}{2} \ln 6^{*}$	M1 A1 M1 E1 [4]	$\int \frac{1/2}{u} du \text{ or } k \ln (x^2 + 1)$ ¹ / ₂ ln <i>u</i> or ¹ / ₂ ln(x ² + 2) substituting correct limits (<i>u</i> or <i>x</i>) must show working for ln 6
$5 \\ \Rightarrow \\ \frac{dy/dx}{\Rightarrow} \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \end{cases}$	$y = x^{2} \ln x$ $\frac{dy}{dx} = x^{2} \cdot \frac{1}{x} + 2x \ln x$ $= x + 2x \ln x$ $= 0 \text{ when } x + 2x \ln x = 0$ $x(1 + 2\ln x) = 0$ $\ln x = -\frac{1}{2}$ $x = e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}} *$	M1 B1 A1 M1 E1 [6]	product rule $d/dx (\ln x) = 1/x$ soi oe their deriv = 0 or attempt to verify $\ln x = -\frac{1}{2} \Longrightarrow x = e^{-\frac{1}{2}}$ or $\ln (1/\sqrt{e}) = -\frac{1}{2}$

6(i) Initial mass = $20 + 30 e^0 = 50$ grams Long term mass = 20 grams	M1A1 B1 [3]	
(ii) $30 = 20 + 30 e^{-0.1t}$ $\Rightarrow e^{-0.1t} = 1/3$ $\Rightarrow -0.1t = \ln (1/3) = -1.0986$ $\Rightarrow t = 11.0 \text{ mins}$	M1 M1 A1 [3]	anti-logging correctly 11, 11.0, 10.99, 10.986 (not more than 3 d.p)
(iii) m_{50} 20 t	B1 B1 [2]	correct shape through $(0, 50)$ – ignore negative values of t $\rightarrow 20$ as $t \rightarrow \infty$
7 $x^{2} + xy + y^{2} = 12$ $\Rightarrow 2x + x\frac{dy}{dx} + y + 2y\frac{dy}{dx} = 0$ $\Rightarrow (x + 2y)\frac{dy}{dx} = -2x - y$ $\Rightarrow \frac{dy}{dx} = -\frac{2x + y}{(x + 2y)}$	M1 B1 A1 M1 A1 [5]	Implicit differentiation $x \frac{dy}{dx} + y$ correct equation collecting terms in dy/dx and factorising oe cao

Section B

8(i) $y = 1/(1 + \cos \pi/3) = 2/3.$	B1 [1]	or 0.67 or better
(ii) $f'(x) = -1(1 + \cos x)^{-2} - \sin x$ $= \frac{\sin x}{(1 + \cos x)^2}$ When $x = \pi/3$, $f'(x) = \frac{\sin(\pi/3)}{(1 + \cos(\pi/3))^2}$ $= \frac{\sqrt{3}/2}{(1\frac{1}{2})^2} = \frac{\sqrt{3}}{2} \times \frac{4}{9} = \frac{2\sqrt{3}}{9}$	M1 B1 A1 M1 A1 [5]	chain rule or quotient rule $d/dx (\cos x) = -\sin x \text{ soi}$ correct expression substituting $x = \pi/3$ oe or 0.38 or better. (0.385, 0.3849)
(iii) deriv = $\frac{(1 + \cos x)\cos x - \sin x.(-\sin x)}{(1 + \cos x)^2}$ = $\frac{\cos x + \cos^2 x + \sin^2 x}{(1 + \cos^2 x)^2}$	M1	Quotient or product rule – condone uv' – u'v for M1 correct expression
$=\frac{(1+\cos x)^2}{(1+\cos x)^2}$	M1dep	$\cos^2 x + \sin^2 x = 1$ used dep M1
$=\frac{1}{1+\cos x} *$	E1	www
Area = $\int_{0}^{\pi/3} \frac{1}{1 + \cos x} dx$ $= \left[\frac{\sin x}{1 + \cos x} \right]_{0}^{\pi/3}$	B1	
$= \frac{\sin \pi / 3}{1 + \cos \pi / 3} (-0)$	M1	substituting limits
$=\frac{\sqrt{3}}{2}\times\frac{2}{3}=\frac{\sqrt{3}}{3}$	A1 cao [7]	or $1/\sqrt{3}$ - must be exact
(iv) $y = 1/(1 + \cos x)$ $x \leftrightarrow y$ $x = 1/(1 + \cos y)$	M1	attempt to invert equation
$ \Rightarrow 1 + \cos y = 1/x \Rightarrow \cos y = 1/x - 1 \Rightarrow y = \arccos(1/x - 1) * $	A1 E1	www
Domain is $\frac{1}{2} \le x \le 1$	B1	
	B1	reasonable reflection in $y = x$
	[5]	

9 (i) $y = \sqrt{4 - x^2}$ $\Rightarrow y^2 = 4 - x^2$ $\Rightarrow x^2 + y^2 = 4$ which is equation of a circle centre O radius 2 Square root does not give negative values, so this is only a semi-circle.	M1 A1 B1 [3]	squaring $x^2 + y^2 = 4 + \text{comment (correct)}$ oe, e.g. f is a function and therefore single valued
(ii) (A) Grad of OP = b/a \Rightarrow grad of tangent = $-\frac{a}{b}$	M1 A1	
(B) $f'(x) = \frac{1}{2}(4-x^2)^{-1/2}.(-2x)$ = $-\frac{x}{\sqrt{x}}$	M1 A1	chain rule or implicit differentiation
$ \begin{array}{c} \sqrt{4-x^2} \\ \Rightarrow & f'(a) = -\frac{a}{\sqrt{4-a^2}} \\ (C) \ b = \sqrt{(4-a^2)} \end{array} \end{array} $	B1	substituting <i>a</i> into their $f'(x)$
so $f'(a) = -\frac{a}{b}$ as before	E1 [6]	
(iii) Translation through $\begin{pmatrix} 2\\ 0 \end{pmatrix}$ followed by	M1 A1	Translation in x-direction through $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ or 2 to right ('shift', 'move' M1 A0)
stretch scale factor 3 in y-direction $ \begin{array}{c} 6 \\ - \\ 4 \end{array} $	M1 A1 M1 A1 [6]	$\begin{pmatrix} 2\\0 \end{pmatrix}$ alone is SC1 stretch in <i>y</i> -direction (condone <i>y</i> 'axis') (scale) factor 3 elliptical (or circular) shape through (0, 0) and (4, 0) and (2, 6) (soi) -1 if whole ellipse shown
(iv) $y = 3f(x-2)$ $= 3\sqrt{(4-(x-2)^2)}$ $= 3\sqrt{(4-x^2+4x-4)}$ $= 3\sqrt{(4x-x^2)}$ $\Rightarrow y^2 = 9(4x-x^2)$ $\Rightarrow 9x^2 + y^2 = 36x *$	M1 A1 E1 [3]	or substituting $3\sqrt{(4 - (x - 2)^2)}$ oe for y in $9x^2 + y^2$ $4x - x^2$ www

4754 (C4) Applications of Advanced Mathematics

Section A

$1 \qquad \frac{x}{x^2 - 4} + \frac{2}{x + 2} = \frac{x}{(x - 2)(x + 2)} + \frac{2}{x + 2}$ $= \frac{x + 2(x - 2)}{(x + 2)(x - 2)}$ $= \frac{3x - 4}{(x + 2)(x - 2)}$	M1 M1 A1 [3]	combining fractions correctly factorising and cancelling (may be $3x^2+2x-8$)
2 $V = \int_0^1 \pi y^2 dx = \int_0^1 \pi (1 + e^{2x}) dx$ = $\pi \left[x + \frac{1}{2} e^{2x} \right]_0^1$ = $\pi (1 + \frac{1}{2} e^2 - \frac{1}{2})$	M1 B1	must be π x their y^2 in terms of x $\left[x + \frac{1}{2}e^{2x}\right]$ only
$= \frac{1}{2}\pi(1+e^2)^*$	M1 E1 [4]	substituting both x limits in a function of x www
3 $\cos 2\theta = \sin \theta$ $\Rightarrow 1 - 2\sin^2 \theta = \sin \theta$ $\Rightarrow 1 - \sin \theta - 2\sin^2 \theta = 0$ $\Rightarrow (1 - 2\sin \theta)(1 + \sin \theta) = 0$ $\Rightarrow \sin \theta = \frac{1}{2} \text{ or } -1$ $\Rightarrow \theta = \pi/6, 5\pi/6, 3\pi/2$	M1 M1 A1 M1 A1 A2,1,0 [7]	$\cos 2\theta = 1 - 2\sin^2 \theta$ oe substituted forming quadratic(in one variable) =0 correct quadratic www factorising or solving quadratic $\frac{1}{2}$, -1 oe www cao penalise extra solutions in the range
4 $\sec \theta = x/2$, $\tan \theta = y/3$ $\sec^2 \theta = 1 + \tan^2 \theta$ $\Rightarrow x^2/4 = 1 + y^2/9$ $\Rightarrow x^2/4 - y^2/9 = 1 *$ OR $x^2/4 - y^2/9 = 4\sec^2 \theta/4 - 9\tan^2 \theta/9$	M1 M1 E1	$\sec^2 \theta = 1 + \tan^2 \theta$ used (oe, e.g. converting to sines and cosines and using $\cos^2 \theta + \sin^2 \theta = 1$) eliminating θ (or x and y) www
$=\sec^2\theta - \tan^2\theta = 1$	[3]	
5(i) $dx/du = 2u$, $dy/du = 6u^2$ $\Rightarrow \frac{dy}{dx} = \frac{dy/du}{dx/du} = \frac{6u^2}{2u}$	B1 M1 A1	both $2u$ and $6u^2$
OR $y=2(x-1)^{3/2}$, $dy/dx=3(x-1)^{1/2}=3u$	[3]	B1($y=f(x)$), M1 differentiation, A1
(ii) At (5, 16), $u = 2$ $\Rightarrow dy/dx = 6$	M1 A1 [2]	сао

$6(i) (1+4x^2)^{-\frac{1}{2}} = 1 - \frac{1}{2} \cdot 4x^2 + \frac{(-\frac{1}{2}) \cdot (-\frac{3}{2})}{2!} (4x^2)^2 + \dots$ = 1 - 2x^2 + 6x^4 + \dots Valid for -1 < 4x^2 < 1 \Rightarrow - \frac{1}{2} < x < \frac{1}{2}	M1 A1 A1 M1A1 [5]	binomial expansion with $p = -1/2$ $1 - 2x^2 \dots$ $+ 6x^4$
(ii) $\frac{1-x^2}{\sqrt{1+4x^2}} = (1-x^2)(1-2x^2+6x^4+)$ $= 1-2x^2+6x^4-x^2+2x^4+$ $= 1-3x^2+8x^4+$	M1 A1 A1 [3]	substituting their $1 - 2x^2 + 6x^4 +$ and expanding ft their expansion (of three terms) cao
7 $\sqrt{3} \sin x - \cos x = R \sin(x - \alpha)$ $= R(\sin x \cos \alpha - \cos x \sin \alpha)$ $\Rightarrow \sqrt{3} = R \cos \alpha, 1 = R \sin \alpha$ $\Rightarrow R^2 = 3 + 1 = 4 \Rightarrow R = 2$ $\tan \alpha = 1/\sqrt{3}$ $\Rightarrow \alpha = \pi/6$ $\Rightarrow y = 2 \sin(x - \pi/6)$	M1 B1 M1 A1	correct pairs soi R = 2 ft cao www
Max when $x - \pi/6 = \pi/2 \Rightarrow x = \pi/6 + \pi/2 = 2\pi/3$ max value $y = 2$ So maximum is $(2\pi/3, 2)$	B1 B1 [6]	cao ft their R SC B1 (2, $2\pi/3$) no working

Section **B**

8(i) At A: $3 \times 0 + 2 \times 0 + 20 \times (-15) + 300 = 0$ At B: $3 \times 100 + 2 \times 0 + 20 \times (-30) + 300 = 0$ At C: $3 \times 0 + 2 \times 100 + 20 \times (-25) + 300 = 0$ So ABC has equation $3x + 2y + 20z + 300 = 0$	M1 A2,1,0 [3]	substituting co-ords into equation of plane for ABC OR using two vectors in the plane form vector product M1A1 then 3x + 2y + 20z = c = -300 A1 OR using vector equation of plane M1,elim both parameters M1, A1
(ii) $\overrightarrow{DE} = \begin{pmatrix} 100\\0\\-10 \end{pmatrix}$ $\overrightarrow{DF} = \begin{pmatrix} 0\\100\\5 \end{pmatrix}$	B1B1	
$ \begin{pmatrix} 100\\0\\-10 \end{pmatrix} \begin{pmatrix} 2\\-1\\20 \end{pmatrix} = 100 \times 2 + 0 \times -1 + -10 \times 20 = 200 - 200 = 0 $	B1	need evaluation
$\begin{pmatrix} 0 \\ 100 \\ 5 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \\ 20 \end{pmatrix} = 0 \times 2 + 100 \times -1 + 5 \times 20 = -100 + 100 = 0$	B1	need evaluation
Equation of plane is $2x - y + 20z = c$ At D (say) $c = 20 \times -40 = -800$ So equation is $2x - y + 20z + 800 = 0$	M1 A1 [6]	
(iii) Angle is θ , where $\begin{pmatrix} 2 \\ -1 \\ 20 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 20 \end{pmatrix}$ $\cos \theta = \frac{404}{\sqrt{2^2 + (-1)^2 + 20^2}\sqrt{3^2 + 2^2 + 20^2}} = \frac{404}{\sqrt{405}\sqrt{413}}$ $\Rightarrow \theta = 8.95^{\circ}$	M1 A1 A1 A1cao [4]	formula with correct vectors top bottom (or 0.156 radians)
(iv) RS: $\mathbf{r} = \begin{pmatrix} 15 \\ 34 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 2 \\ 20 \end{pmatrix}$	B1	$ \begin{pmatrix} 15\\34\\0 \end{pmatrix} + \dots $ (3)
$= \begin{pmatrix} 15+3\lambda \\ 34+2\lambda \\ 20\lambda \end{pmatrix}$	B1	$\dots + \lambda \begin{bmatrix} 2 \\ 2 \\ 20 \end{bmatrix}$
$\Rightarrow 3(15+3\lambda) + 2(34+2\lambda) + 20.20\lambda + 300 = 0$ $\Rightarrow 45 + 9\lambda + 68 + 4\lambda + 400 \lambda + 300 = 0$ $\Rightarrow 413 + 413\lambda = 0$	M1	solving with plane $\lambda = -1$
$\Rightarrow \lambda = -1 \\ \text{so S is (12, 32, -20)}$	A1 [5]	cao

-

	1	
9(i) $v = \int 10e^{-\frac{1}{2}t} dt$ $= -20e^{-\frac{1}{2}t} + c$ when $t = 0, v = 0$ $\Rightarrow 0 = -20 + c$ $\Rightarrow c = 20$ so $v = 20 - 20e^{-\frac{1}{2}t}$	M1 A1 M1 A1 [4]	separate variables and intend to integrate $-20e^{-\frac{1}{2}t}$ finding c cao
(ii) As $t \to \infty$ $e^{-1/2t} \to 0$ $\Rightarrow v \to 20$ So long term speed is 20 m s ⁻¹	M1 A1 [2]	ft (for their $c>0$, found)
(iii) $\frac{1}{(w-4)(w+5)} = \frac{A}{w-4} + \frac{B}{w+5}$ $= \frac{A(w+5) + B(w-4)}{(w-4)(w+5)}$ $\Rightarrow 1 \equiv A(w+5) + B(w-4)$ $w = 4: 1 = 9A \Rightarrow A = 1/9$ $w = -5: 1 = -9B \Rightarrow B = -1/9$ $\Rightarrow \frac{1}{(w-4)(w+5)} = \frac{1/9}{w-4} - \frac{1/9}{w+5}$ $= \frac{1}{9(w-4)} - \frac{1}{9(w+5)}$	M1 M1 A1 A1 [4]	cover up, substitution or equating coeffs 1/9 -1/9
$(iv) \frac{dw}{dt} = -\frac{1}{2}(w-4)(w+5)$ $\Rightarrow \int \frac{dw}{(w-4)(w+5)} = \int -\frac{1}{2}dt$ $\Rightarrow \int [\frac{1}{9(w-4)} - \frac{1}{9(w+5)}]dw = \int -\frac{1}{2}dt$ $\Rightarrow \frac{1}{9}\ln(w-4) - \frac{1}{9}\ln(w+5) = -\frac{1}{2}t + c$ $\Rightarrow \frac{1}{9}\ln\frac{w-4}{w+5} = -\frac{1}{2}t + c$ When $t = 0, w = 10 \Rightarrow c = \frac{1}{9}\ln\frac{6}{15} = \frac{1}{9}\ln\frac{2}{5}$ $\Rightarrow \ln\frac{w-4}{w+5} = -\frac{9}{2}t + \ln\frac{2}{5}$ $\Rightarrow \frac{w-4}{w+5} = e^{\frac{9}{2}t+\ln\frac{2}{5}} = \frac{2}{5}e^{-\frac{9}{2}t} = 0.4e^{-4.5t} *$	M1 M1 A1ft M1 M1 E1 [6]	separating variables substituting their partial fractions integrating correctly (condone absence of <i>c</i>) correctly evaluating <i>c</i> (at any stage) combining lns (at any stage) www
(v) As $t \to \infty e^{-4.5 t} \to 0$ $\Rightarrow w - 4 \to 0$ So long term speed is 4 m s ⁻¹ .	M1 A1 [2]	

Comprehension

1. (i)

2	1	3
3	2	1
1	3	2

(ii)

3.

2	3	1	
3	1	2	
1	2	3	

B1 cao

B1 cao

2. Dividing the grid up into four 2 x 2 blocks gives

1	2	3	4
3	1	4	2
2	4	1	3
4	3	2	1

- Lines drawn on diagram or reference to 2 x 2 blocks. M1
- One (or more) block does not contain all 4 of the symbols 1, 2, 3 and 4. oe. E1

1	2	3	4
4	3	1	2
2	1	4	3
3	4	2	1

Many possible answers

B1 Rest correct B1

Row 2 correct

Or

B2

M1

E1

4. Either

4	2	3	1
		2	4
		4	2
2	4	1	3

4	2	3	1
		2	4
		4	2
2	4	1	3

5. In the top row there are 9 ways of allocating a symbol to the left cell, then 8 for the next, 7 for the next and so on down to 1 for the right cell, giving

$$9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 9!$$
 ways.

So there must be 9!× the number of ways of completing the rest of the puzzle.

6.

(i)

Block side length,	Sudoku,	М
b	$S \times S$	
1	1 × 1	-
2	4 × 4	12
3	9 × 9	77
4	16 × 16	252
5	25 × 25	621

25 × 25 B1

77, 252 and 621 B1

(ii)	$M = b^4 - 4$
	m = 0

- *b*⁴ **B1**
- ⁻⁴ B1

7.						
(i)	There are neither 3s nor 5s among the givens.	M1				
	So they are interchangeable and therefore there is no unique solution	E1				
(ii)	The missing symbols form a 3 $ imes$ 3 embedded Latin square.					
	There is not a unique arrangement of the numbers 1, 2 and 3 in this square.	E1				
		[18]				

Qu	Answer	Mark	Comment			
Section A						
1(i)	$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	B1				
1(ii)	$\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$	B1				
1(iii)	$ \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -3 & 0 \\ 0 & 3 \end{pmatrix} $	M1 A1 [4]	Multiplication, or other valid method (may be implied) c.a.o.			
2	Im	B3	Circle, B1; centre $-3+2j$, B1; radius = 2, B1			
	~ · · · · · ·	В3	Line parallel to real axis, B1; through (0, 2), B1; correct half line, B1			
	-3 Re	B1 [7]	Points $-1+2j$ and $-5+2j$ indicated c.a.o.			
3	$\begin{pmatrix} -1 & -1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$ $\Rightarrow -x - y = x, \ 2x + 2y = y$	M1 M1	$\operatorname{For} \begin{pmatrix} -1 & -1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$			
	$\Rightarrow y = -2x$	[3]				
4	$3x^{3} - x^{2} + 2 \equiv A(x-1)^{3} + (x^{3} + Bx^{2} + Cx + D)$					
	$\equiv Ax^{3} - 3Ax^{2} + 3Ax - A + x^{3} + Bx^{2} + Cx + D$ $\equiv (A+1)x^{3} + (B-3A)x^{2} + (3A+C)x + (D-A)$	M1	Attempt to compare coefficients			
	$\Rightarrow A = 2, B = 5, C = -6, D = 4$	B4 [5]	One for each correct value			
L		L				

4755 (FP1) Further Concepts for Advanced Mathematics

5(1)	$\mathbf{AB} = \begin{pmatrix} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{pmatrix}$	ВЗ [3]	Minus 1 each error to minimum of 0
5(ii)	$\mathbf{A}^{-1} = \frac{1}{7} \begin{pmatrix} -1 & 0 & 2\\ 14 & -14 & 7\\ -5 & 7 & -4 \end{pmatrix}$	M1 A1 [2]	Use of B c.a.o.
6	$w = 2x \Rightarrow x = \frac{w}{2}$ $\Rightarrow 2\left(\frac{w}{2}\right)^3 + \left(\frac{w}{2}\right)^2 - 3\left(\frac{w}{2}\right) + 1 = 0$	B1 M1 A1	Substitution. For substitution $x = 2w$ give B0 but then follow through for a maximum of 3 marks Substitute into cubic Correct substitution
	$\Rightarrow w^3 + w^2 - 6w + 4 = 0$	A2	Minus 1 for each error (including '= 0' missing), to a minimum of 0 Give full credit for integer multiple of equation
		191	
6	OR $\alpha + \beta + \gamma = -\frac{1}{2}$ $\alpha\beta + \alpha\gamma + \beta\gamma = -\frac{3}{2}$ $\alpha\beta\gamma = -\frac{1}{2}$	B1	All three
6	OR $\alpha + \beta + \gamma = -\frac{1}{2}$ $\alpha\beta + \alpha\gamma + \beta\gamma = -\frac{3}{2}$ $\alpha\beta\gamma = -\frac{1}{2}$ Let new roots be <i>k</i> , <i>l</i> , <i>m</i> then $k + l + m = 2(\alpha + \beta + \gamma) = -1 = \frac{-B}{A}$ C	B1	All three Attempt to use sums and products of roots of original equation to find sums and products of roots in related equation
6	OR $\alpha + \beta + \gamma = -\frac{1}{2}$ $\alpha\beta + \alpha\gamma + \beta\gamma = -\frac{3}{2}$ $\alpha\beta\gamma = -\frac{1}{2}$ Let new roots be <i>k</i> , <i>l</i> , <i>m</i> then $k + l + m = 2(\alpha + \beta + \gamma) = -1 = \frac{-B}{A}$ $kl + km + lm = 4(\alpha\beta + \alpha\gamma + \beta\gamma) = -6 = \frac{C}{A}$ $klm = 8\alpha\beta\gamma = -4 = \frac{-D}{A}$	B1 M1 A1	All three Attempt to use sums and products of roots of original equation to find sums and products of roots in related equation Sums and products all correct

7(i)	$\frac{1}{3r-1} - \frac{1}{3r+2} \equiv \frac{3r+2-(3r-1)}{(3r-1)(3r+2)}$	M1	Attempt at correct method		
	$\equiv \frac{3}{\left(3r-1\right)\left(3r+2\right)}$	A1	Correct, without fudging		
		[2]			
7(ii)	$\sum_{r=1}^{n} \frac{1}{(3r-1)(3r+2)} = \frac{1}{3} \sum_{r=1}^{n} \left[\frac{1}{3r-1} - \frac{1}{3r+2} \right]$	M1	Attempt to use identity		
	$= \frac{1}{3} \left[\left(\frac{1}{2} - \frac{1}{5} \right) + \left(\frac{1}{5} - \frac{1}{8} \right) + \dots + \left(\frac{1}{3n-1} - \frac{1}{3n+2} \right) \right]$	A1 M1	Terms in full (at least two) Attempt at cancelling		
	$=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+2}\right]$	A2	A1 if factor of $\frac{1}{3}$ missing,		
		[5]	A1 max if answer not in terms of <i>n</i>		
	Section A Total: 36				

-

Section	on B		
8(i)	x = 3, $x = -2$, $y = 2$	B1 B1 B1 [3]	
8(ii)	Large positive x, $y \rightarrow 2^+$ (e.g. consider $x = 100$) Large negative x, $y \rightarrow 2^-$	M1 B1 B1	Evidence of method required
8(iii)	(e.g. consider $x = -100$)	[3]	
	Curve Central and RH branches correct Asymptotes correct and labelled LH branch correct, with clear minimum y = 2	B1 B1 [3]	
8(iv)	-2 < r < 3	B2	B2 max if any inclusive
		B1	inequalities appear
	$x \neq 0$	[3]	B3 for $-2 < x < 0$ and $0 < x < 3$,

9(i)	2+2j and $-1-j$	B2	1 mark for each
9(ii)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[2] B2 [2]	1 mark for each correct pair
9(iii)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 B2	Attempt to use factor theorem Correct factors, minus 1 each
	$= (x^2 - 4x + 8)(x^2 + 2x + 2)$	A1	error B1 if only errors are sign errors One correct quadratic with real coefficients (may be implied)
	$= x^{4} + 2x^{3} + 2x^{2} - 4x^{3} - 8x^{2} - 8x + 8x^{2} + 16x + 16$ $= x^{4} - 2x^{3} + 2x^{2} + 8x + 16$	M1	Expanding
	$\Rightarrow A = -2, B = 2, C = 8, D = 16$ OR	A2 [7]	Minus 1 each error, A1 if only errors are sign errors
	$\sum_{\alpha\beta\gamma\delta=16} \alpha\beta^{\alpha} = \alpha\alpha^{\alpha} + \alpha\beta + \alpha\beta^{\alpha} + \beta\beta^{\alpha} + \beta\alpha^{\alpha} + \beta^{\alpha}\alpha^{\alpha}$ $\sum_{\alpha\beta\gamma=\alpha\alpha^{\alpha}\beta + \alpha\alpha^{\alpha}\beta^{\alpha} + \alpha\beta\beta^{\alpha} + \alpha^{\alpha}\beta\beta^{\alpha} + \alpha^{\alpha}\beta\beta^{\alpha}$ $\sum_{\alpha\beta=2} \alpha\beta\gamma = -8$ $A = -2, B = 2, C = 8, D = 16$ OR Attempt to substitute in one root Attempt to substitute in a second root Equating real and imaginary parts to 0 Attempt to solve simultaneous equations $A = -2, B = 2, C = 8, D = 16$	B1 B1 M1 M1 A1 A2 [7] M1 M1 A1 M1 M1 A2 [7]	Both correct Minus 1 each error, A1 if only errors are sign errors Both correct Minus 1 each error. A1 if only
			Minus 1 each error, A1 if only errors are sign errors

Mark Scheme

Qu	Answer	Mark	Comment
Sectior	B (continued)		
10(i)	$\sum_{r=1}^{n} r^{2} (r+1) = \sum_{r=1}^{n} r^{3} + \sum_{r=1}^{n} r^{2}$	M1	Separation of sums (may be implied)
	$= \frac{1}{4}n^{2}(n+1)^{2} + \frac{1}{6}n(n+1)(2n+1)$ $= \frac{1}{12}n(n+1)[3n(n+1)+2(2n+1)]$	B1 M1	One mark for both parts Attempt to factorise (at least two linear algebraic factors)
	$= \frac{1}{12} n (n+1) (3n^2 + 7n + 2)$	A1	Correct
	$= \frac{1}{12} n (n+1) (n+2) (3n+1)$	E1	Complete, convincing argument
		[5]	
10(ii)	$\sum_{r=1}^{n} r^{2} (r+1) = \frac{1}{12} n (n+1) (n+2) (3n+1)$		
	<i>n</i> = 1, LHS = RHS = 2	B1	2 must be seen
	Assume true for $n = k$	E1	Assuming true for <i>k</i>
	$\sum_{r=1}^{k} r^{2} (r+1) = \frac{1}{12} k (k+1) (k+2) (3k+1)$		
	$\sum_{r=1}^{k+1} r^2 (r+1)$	R1	
	$= \frac{1}{12}k(k+1)(k+2)(3k+1) + (k+1)^{2}(k+2)$	M1 A1	(<i>k</i> + 1)th term Attempt to factorise Correct
	$= \frac{1}{12} (k+1)(k+2)[k(3k+1)+12(k+1)]$ = $\frac{1}{12} (k+1)(k+2)(3k^2+13k+12)$	A1	Complete convincing argument
	$= \frac{1}{12}(k+1)(k+2)(k+3)(3k+4)$		
	$= \frac{1}{12}(k+1)((k+1)+1)((k+1)+2)(3(k+1)+1)$ But this is the given result with $k+1$ replacing	E1	Dependent on previous A1 and
	<i>k</i> . Therefore if it is true for <i>k</i> it is true for $k + 1$	E1	Dependent on first B1 and
	1. Since it is true for $k = 1$, it is true for $k = 1$, 2, 3 and so true for all positive integers.	[8]	previous E1
			Section B Total: 36
Total: 72			

4756 (FP2) Further Methods for Advanced Mathematics

1(a)(i)	$x = r\cos\theta, \ y = r\sin\theta$	M1		(M0 for $x = \cos \theta$, $y = \sin \theta$)
	$(r^2 \cos^2 \theta + r^2 \sin^2 \theta)^2 = 3(r \cos \theta)(r \sin \theta)^2$	A1		
	$r^4 = 3r^3\cos\theta\sin^2\theta$			
	$r = 3\cos\theta\sin^2\theta$	A1 ag		
		_	3	
(ii)		B1		Loop in 1st quadrant
	$ \rightarrow $	B1		Loop in 4th quadrant
	\sum	B1	3	Fully correct curve <i>Curve may be drawn using</i> <i>continuous or broken lines in</i> <i>any combination</i>
(b)	$\begin{bmatrix} 1 & 1 & \begin{bmatrix} 1 & \sqrt{3} \\ 2 & \sqrt{3} \end{bmatrix}^{1}$	M1		For arcsin
	$\int_{0}^{1} \frac{1}{\sqrt{4-3x^2}} dx = \left[\frac{1}{\sqrt{3}} \arcsin \frac{\sqrt{3x}}{2} \right]_{0}$	A1A1		For $\frac{1}{\sqrt{3}}$ and $\frac{\sqrt{3}x}{2}$
	$=\frac{1}{\sqrt{3}} \arcsin \frac{\sqrt{3}}{2}$	M1		Exact numerical value
	$=\frac{\pi}{3\sqrt{3}}$	A1	5	(M1A0 for $60/\sqrt{3}$)
	OR _ M1			Any sine substitution
	Put $\sqrt{3} x = 2\sin\theta$ A1			
	$\int_{0}^{1} \frac{1}{\sqrt{4-3x^{2}}} \mathrm{d}x = \int_{0}^{\frac{\pi}{3}} \frac{1}{\sqrt{3}} \mathrm{d}\theta \qquad \qquad A1$			For $\int \frac{1}{\sqrt{3}} d\theta$
	$=\frac{\pi}{3\sqrt{3}}$ M1A1			M1 dependent on first M1
(c)(i)	$\ln(1+x) = x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3} - \frac{1}{4}x^{4} + \frac{1}{5}x^{5} - \dots$	B1		
	$\ln(1-x) = -x - \frac{1}{2}x^2 - \frac{1}{3}x^3 - \frac{1}{4}x^4 - \frac{1}{5}x^5 - \dots$	B1	2	Accept unsimplified forms
(ii)	$\ln\left(\frac{1+x}{1-x}\right) = \ln(1+x) - \ln(1-x)$	M1		
	$=2x+\frac{2}{3}x^{3}+\frac{2}{5}x^{5}+$	A1	2	Obtained from two correct series <i>Terms need not be added</i> If M0, then B1 for $2x + \frac{2}{3}x^3 + \frac{2}{5}x^5$

4756

(iii)	$\sum_{n=1}^{\infty} \frac{1}{(2n+1)A^{n}} = 1 + \frac{1}{2nA} + \frac{1}{5nA^{2}} + \dots$	B1		Terms need not be added
	$ = 2 \times \frac{1}{2} + \frac{2}{3} \times (\frac{1}{2})^3 + \frac{2}{5} \times (\frac{1}{2})^5 + \dots $	B1		For $x = \frac{1}{2}$ seen or implied
	$= \ln\left(\frac{1+\frac{1}{2}}{1+\frac{1}{2}}\right) = \ln 3$			
	$(1-\frac{1}{2})$	B1 ag	3	Satisfactory completion
2 (i)	$ z =8$, arg $z=\frac{1}{4}\pi$	B1B1		Must be given separately
				exponential or $r cjs \theta$ form
	$ z^* = 8$, arg $z^* = -\frac{1}{4}\pi$	B1 ft		(B0 for $\frac{7}{4}\pi$)
	$ zw = 8 \times 8 = 64$	B1 ft		
	$\arg(z w) = \frac{1}{4} \pi + \frac{7}{12} \pi = \frac{5}{6} \pi$	B1 ft		
	$\left \frac{z}{w}\right = \frac{8}{8} = 1$	B1 ft		(B0 if left as 8/8)
	$\arg(\frac{z}{w}) = \frac{1}{4}\pi - \frac{7}{12}\pi = -\frac{1}{3}\pi$	B1 ft		
			7	
(ii)	$\frac{z}{w} = \cos(-\frac{1}{3}\pi) + j\sin(-\frac{1}{3}\pi)$	M1		
	$=\frac{1}{\sqrt{3}}-\frac{\sqrt{3}}{\sqrt{3}}$ i	Δ1		If M0, then B1B1 for
			2	$\frac{1}{2}$ and $-\frac{\sqrt{3}}{2}$
	$a = \frac{1}{2}, b = -\frac{1}{2}\sqrt{3}$			
(111)	$r = \sqrt[3]{8} = 2$	B1 ft		Accept ³ √8
	$\theta = \frac{1}{12}\pi$ $\pi - 2k\pi$	B1		
	$\theta = \frac{\pi}{12} + \frac{2\pi\pi}{3}$	M1		Implied by one further correct
	$ heta = -rac{7}{12} \pi \ , \ \ rac{3}{4} \pi$	A1		Ignore values outside the
<i>(</i> ,)			4	required range
(1V)	$w^* = 8 e^{-\frac{1}{12}\pi j}$, so $2 e^{-\frac{1}{12}\pi j} = \frac{1}{4} w^*$	B1 ft		argument $-\frac{7}{12}\pi$ and $k_1 = \frac{1}{4}$ or ft
				ft is $\frac{r}{8}$
	$z^* = 8 e^{-\frac{1}{4}\pi j} = -8 e^{\frac{3}{4}\pi j}$	M1		Matching z^* to a cube root with argument $\frac{3}{4}\pi$ May be implied
	So $2e^{\frac{3}{4}\pi j} = -\frac{1}{4}z^*$	A1 ft		ft is $-\frac{r}{ z^* }$
	$k_2 = -\frac{1}{4}$			
		M1		Matching jw to a cube root with argument $\frac{1}{12}\pi$ May be implied
	$(\frac{1}{2}\pi + \frac{7}{12}\pi)$ $(\frac{13}{2}\pi + \frac{13}{12}\pi)$			OR M1 for $\arg(jw) = \frac{1}{2}\pi + \arg w$
	$Jw = 8e^{-2} - \frac{12}{2} = 8e^{12}$			(implied by $\frac{13}{12}\pi$ or $-\frac{11}{12}\pi$)
	$=-8e^{12^{n}j}$, SO $2e^{12^{n}j} = -\frac{1}{4}jw$	A 1 4		ft is $-\frac{7}{8}$
	$k_3 = -\frac{1}{4}$	ATI	5	

3 (i)	$\mathbf{Q}^{-1} = \frac{1}{k-3} \begin{pmatrix} -1 & k+2 & -1\\ 1 & 4-3k & k-2\\ 1 & -5 & 1 \end{pmatrix}$ When $k = 4$, $\mathbf{Q}^{-1} = \begin{pmatrix} -1 & 6 & -1\\ 1 & -8 & 2\\ 1 & -5 & 1 \end{pmatrix}$	M1 A1 A1 M1 A1 A1 6	Evaluation of determinant (must involve k) For $(k-3)$ Finding at least four cofactors (including one involving k) Six signed cofactors correct (including one involving k) Transposing and dividing by det Dependent on previous M1M1 Q^{-1} correct (in terms of k) and result for $k = 4$ stated After 0, SC1 for Q^{-1} when $k = 4$ obtained correctly with some working
(ii)	$\mathbf{P} = \begin{pmatrix} 2 & -1 & 4 \\ 1 & 0 & 1 \\ 3 & 1 & 2 \end{pmatrix}, \mathbf{D} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$	B1B1	For B2, order must be consistent
	$\mathbf{M} = \mathbf{P} \mathbf{D} \mathbf{P}^{-1}$ $= \begin{pmatrix} 2 & -1 & 4 \\ 1 & 0 & 1 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} -1 & 6 & -1 \\ 1 & -8 & 2 \\ 1 & -5 & 1 \end{pmatrix}$ $= \begin{pmatrix} 2 & 1 & 12 \\ 1 & 0 & 3 \\ 3 & -1 & 6 \end{pmatrix} \begin{pmatrix} -1 & 6 & -1 \\ 1 & -8 & 2 \\ 1 & -5 & 1 \end{pmatrix}$ $= \begin{pmatrix} 11 & -56 & 12 \\ 2 & -9 & 2 \\ 2 & -4 & 1 \end{pmatrix}$	B2 M1 A2 7	Give B1 for $\mathbf{M} = \mathbf{P}^{-1} \mathbf{D} \mathbf{P}$ or $\begin{pmatrix} 2 & -1 & 4 \\ 1 & 0 & 1 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} -1 & 6 & -1 \\ -1 & 8 & -2 \\ 3 & -15 & 3 \end{pmatrix}$ Good attempt at multiplying two matrices (no more than 3 errors), leaving third matrix in correct position Give A1 for five elements correct Correct M implies B2M1A2 5-8 elements correct implies B2M1A1
(iii)	Characteristic equation is $(\lambda - 1)(\lambda + 1)(\lambda - 3) = 0$	B1	In any correct form (Condone omission of =0)
	$\lambda^3 - 3\lambda^2 - \lambda + 3 = 0$	M1 A1	M satisfies the characteristic equation Correct expanded form
	$W_1 = 5W_1 + W_1 - 51$		(Condone omission of I)
	$M' = 3M^{2} + M^{2} - 3M$ = 3(3M ² + M - 31) + M ² - 3M	M1	
	$= 10 \mathbf{M}^2 - 9\mathbf{I}$	5	
	a = 10, b = 0, c = -9		

4 (i)	$\cosh^2 x = \left[\frac{1}{2}(e^x + e^{-x})\right]^2 = \frac{1}{4}(e^{2x} + 2 + e^{-2x})$	B1	
	$\sinh^2 x = \left[\frac{1}{2}(e^x - e^{-x})\right]^2 = \frac{1}{4}(e^{2x} - 2 + e^{-2x})$	B1	
	$\cosh^2 x - \sinh^2 x = \frac{1}{4}(2+2) = 1$	B1 ag 3	For completion
	OR		
	$\cosh x + \sinh x = \frac{1}{2}(e^x + e^{-x}) + \frac{1}{2}(e^x - e^{-x}) = e^x$ B1		
	$\cosh x - \sinh x = \frac{1}{2}(e^x + e^{-x}) - \frac{1}{2}(e^x - e^{-x}) = e^{-x}$ B1		
	$\cosh^2 x - \sinh^2 x = e^x \times e^{-x} = 1$ B1		Completion
(ii)	$4(1+\sinh^2 x)+9\sinh x=13$	M1	(M0 for $1-\sinh^2 x$)
	$4\sinh^2 x + 9\sinh x - 9 = 0$	M1	Obtaining a value for $\sinh x$
	$\sinh x = \frac{3}{4}, -3$	A1A1	
	$x = \ln 2$, $\ln(-3 + \sqrt{10})$	A1A1 ft	Exact logarithmic form <i>Dep on</i> M1M1
		0	Max A1 if any extra values given
	$OR \ 2e^{4x} + 9e^{3x} - 22e^{2x} - 9e^{x} + 2 = 0$		
	$(2e^{2x}-3e^x-2)(e^{2x}+6e^x-1)=0$ M1		Quadratic and / or linear factors
	M1		Obtaining a value for e ^x
	$x = \ln 2$, $\ln(-3 + \sqrt{10})$ A1A1 ft		Dependent on M1M1
			Max A1 if any extra values given
			Just $x = \ln 2$ earns MOM1A1A0A0A0
	dy a literation l	B1	Any correct form
(iii)	$\frac{1}{dx} = 8\cosh x \sinh x + 9\cosh x$		or $y = (2\sinh x + \frac{9}{4})^2 + \dots (-\frac{17}{16})$
	$= \cosh x (8 \sinh x + 9)$		Correctly showing there is only
	$= 0^{\circ}$ only when $\sin x = -\frac{1}{8}$ $\cosh^2 x = 1 + (-\frac{9}{2})^2 = \frac{145}{145}$	B1	one solution Exact evaluation of x or $asch2 r$
	$\frac{145}{145} = 9 = 17$	M1	Or $\cosh 2x$
	$y = 4 \times \frac{110}{64} + 9 \times (-\frac{5}{8}) = -\frac{17}{16}$	A1	Give B2 (replacing M1A1) for
		4	-1.06 Of Deller
(iv)	$\int_{0}^{\ln 2} (2+2\cosh 2x+9\sinh x) dx$	M1	Expressing in integrable form
(,	J_0		
	$= \left[2x + \sinh 2x + 9\cosh x \right]_0$	A2	Give A1 for two terms correct
	$=\left\{2\ln 2 + \frac{1}{2}\left(4 - \frac{1}{4}\right) + \frac{9}{2}\left(2 + \frac{1}{2}\right)\right\} - 9$	M1	$\sinh(2\ln 2) = \frac{1}{2}(4 - \frac{1}{4})$
	21 + 2 + 33		Must see both terms for M1 Must also see $\operatorname{pack}(\ln 2) = \frac{1}{2}(2 + 1)$
	$= 2 \ln 2 + \frac{1}{8}$	A1 ag	for A1
		_	

	OR $\int_{0}^{\ln 2} (e^{2x} + 2 + e^{-2x} + \frac{9}{2}(e^{x} - e^{-x})) dx$ M1			Expanded exponential form (M0 if the 2 is omitted)
	$= \left[\frac{1}{2} e^{2x} + 2x - \frac{1}{2} e^{-2x} + \frac{9}{2} e^{x} + \frac{9}{2} e^{-x} \right]_{0}^{\ln 2} $ A2			Give A1 for three terms correct
	$= \left(2 + 2\ln 2 - \frac{1}{8} + 9 + \frac{9}{4}\right) - \left(\frac{1}{2} - \frac{1}{2} + \frac{9}{2} + \frac{9}{2}\right) \text{ M1}$			$e^{2\ln 2} = 4$ and $e^{-2\ln 2} = \frac{1}{4}$ both seen
	$= 2 \ln 2 + \frac{33}{8}$ A1 ag			Must also see $e^{\ln 2} = 2$ and $e^{-\ln 2} = \frac{1}{2}$
E (i)	1 05 1 2 1 5			for A1
5 (1)	$\chi = 0.5$ $\chi = 5$ $\chi = 5$	B1B1B ²	1 3	
(ii)	Ellipse	B1	1	
(iii)	$y = \sqrt{2}\cos(\theta - \frac{1}{4}\pi)$	M1		or $\sqrt{2}\sin(\theta + \frac{1}{4}\pi)$
	Maximum $y = \sqrt{2}$ when $\theta = \frac{1}{4}\pi$	A1 ag	•	
			2	
	OR $\frac{dy}{d\theta} = -\sin\theta + \cos\theta = 0$ when $\theta = \frac{1}{4}\pi$ M1			
	$y = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \sqrt{2}$ A1			
(iv)	$x^{2} + y^{2} = \lambda^{2} \cos^{2} \theta - 2 \cos \theta \sin \theta + \frac{1}{\lambda^{2}} \sin^{2} \theta$			
	$+\cos^2\theta + 2\cos\theta\sin\theta + \sin^2\theta$	M1		
	$= (\lambda^2 + 1)(1 - \sin^2 \theta) + (\frac{1}{\lambda^2} + 1)\sin^2 \theta$	M1		Using $\cos^2 \theta = 1 - \sin^2 \theta$
	$=1+\lambda^2+(\frac{1}{\lambda^2}-\lambda^2)\sin^2\theta$	A1 ag		
	When $\sin^2 \theta = 0$, $x^2 + y^2 = 1 + \lambda^2$	M1		
	When $\sin^2 \theta = 1$, $x^2 + y^2 = 1 + \frac{1}{\lambda^2}$	N/1		
	Since $0 \le \sin^2 \theta \le 1$, distance from O,			
	$\sqrt{x^2 + y^2}$, is between $\sqrt{1 + \frac{1}{\lambda^2}}$ and $\sqrt{1 + \lambda^2}$	A1 ag	6	
(v)	When $\lambda = 1$, $x^2 + y^2 = 2$	M1		
	Curve is a circle (centre O) with radius $\sqrt{2}$	A1	2	

4757 (FP3) Further Applications of Advanced Mathematics

1 (i)	$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{pmatrix} 6\\8\\5 \end{pmatrix} \times \begin{pmatrix} 10\\-5\\1 \end{pmatrix} = \begin{pmatrix} 33\\44\\-110 \end{pmatrix}$	B2	<i>Ignore subsequent working</i> Give B1 for one element correct SC1 for minus the correct vector
	ABC is $3x + 4y - 10z = -9 + 20 - 20$	M1	For $3x + 4y - 10z$
	3x + 4y - 10z + 9 = 0	A1	Accept $33x + 44y - 110z = -99$ etc
		4	• •
(ii)	Distance is $\frac{3 \times 5 + 4 \times 4 - 10 \times 8 + 9}{\sqrt{3^2 + 4^2 + 10^2}}$	M1 A1 ft	Using distance formula (or other complete method)
	$=(-) \frac{40}{\sqrt{125}} (=\frac{8}{\sqrt{5}})$	A1 3	Condone negative answer Accept a.r.t. 3.58
(iii)	$\overrightarrow{AB} \times \overrightarrow{CD} = \begin{pmatrix} 6\\8\\5 \end{pmatrix} \times \begin{pmatrix} -2\\4\\5 \end{pmatrix} = \begin{pmatrix} 20\\-40\\40 \end{pmatrix} \begin{bmatrix} = 20 \begin{pmatrix} 1\\-2\\2 \end{bmatrix}$	M1	Evaluating $\overrightarrow{AB} \times \overrightarrow{CD}$ or method for finding end-points of common perp PQ
	$ \begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 40 \end{pmatrix} \begin{pmatrix} 1 \\ -5 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix} $	A1	or $P(\frac{3}{2}, 11, \frac{23}{4})$ &
	Distance is $\overline{AC} \cdot \hat{\mathbf{n}} = \frac{\left(1\right)\left(2\right)}{\sqrt{1^2 + 2^2 + 2^2}}$	M1	$Or \ \overline{PQ} = (\frac{22}{9}, -\frac{44}{9}, \frac{44}{9})$
	$=\frac{22}{3}$	A1 4	
(iv)		M1	Scalar triple product
	Volume is $\frac{1}{6}(\overrightarrow{AB} \times \overrightarrow{AC}) \cdot \overrightarrow{AD}$	A1	
	$=\frac{1}{6} \begin{pmatrix} 33\\44\\-110 \end{pmatrix} \cdot \begin{pmatrix} 8\\-1\\6 \end{pmatrix}$	M1	
	$=(-)\frac{220}{3}$	A1 4	Accept a.r.t. 73.3
(v)	E is $(-3+10\lambda, 5-5\lambda, 2+\lambda)$		
	$3(-3+10\lambda) - 2(2+\lambda) + 5 = 0$	M1	
	$\lambda = \frac{2}{7}$	A1	
	F is $(-3+8\mu, 5-\mu, 2+6\mu)$		
	$3(-3+8\mu)-2(2+6\mu)+5=0$	M1	
	$\mu = \frac{2}{3}$ Since $0 < \lambda < 1$. E is between A and C	A1	
	Since $0 < \mu < 1$, F is between A and D	B1 5	

(vi)	$V_{\text{ABEF}} = \frac{1}{6} (\overrightarrow{\text{AB}} \times \overrightarrow{\text{AE}}) \cdot \overrightarrow{\text{AF}}$	M1	
	$=\frac{1}{6}\lambda\mu(\overrightarrow{AB}\times\overrightarrow{AC})\cdot\overrightarrow{AD}$		
	$= \lambda \mu V_{ABCD}$	A1	$(13\frac{61}{63})$ ft if numerical
	$=\frac{4}{21}V_{ABCD}$		
	Ratio of volumes is $\frac{4}{24}$: $\frac{17}{24}$		
	21 21	M1	Finding ratio of volumes of two parts
	= 4 . 17	A1 ag	SC1 for 4 : 17 deduced from 4/
			without working
2 (i)	$\frac{\partial g}{\partial x} = 6z - 2(x + 2y + 3z) = -2x - 4y$	M1 A1	Partial differentiation Any correct form, ISW
	$\frac{\partial g}{\partial y} = -4(x+2y+3z)$	A1	
	$\frac{\partial g}{\partial z} = 6x - 6(x + 2y + 3z) = -12y - 18z$	A1	
(;;)		4 M1	Evaluating partial derivatives at
(1)	At P, $\frac{\partial g}{\partial x} = 16$, $\frac{\partial g}{\partial y} = -4$, $\frac{\partial g}{\partial z} = 36$	A1	P
	$\begin{pmatrix} 7 \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix}$		All correct
	Normal line is $\mathbf{r} = \begin{vmatrix} -7.5 \\ +\lambda \end{vmatrix} - 1$	A1 ft	
		3	Condone omission of ' r = '
(iii)	$\delta g \approx 16 \delta x - 4 \delta y + 36 \delta z$	M1	Alternative:
	$\left \int \overline{PO} - 4 \right = 1$	M1	$\frac{1}{1}$
	$\left[\begin{array}{c} 1 & 1 \\ 2 & -\lambda \\ 9 \end{array} \right]$,		into $g = 125 + h$ and neglecting
	$\delta g \approx 16(4\lambda) - 4(-\lambda) + 36(9\lambda) (= 392\lambda)$	A1 ft	λ^2
	$h = \delta g$, so $h \approx 392\lambda$	M1	λ and h
	$\left \frac{1}{\overline{PO}} \sim h \begin{pmatrix} 4 \\ 1 \end{pmatrix} \right \approx n - 1 \begin{pmatrix} 4 \\ 1 \end{pmatrix}$		A1 for n correct
	$\left[1 \sqrt{2} \approx \frac{1}{392} \left(\frac{-1}{9}\right)\right]$, so $\left[1 - \frac{1}{392} \left(\frac{-1}{9}\right)\right]$	A1	
		5	
(iv)	Require $\frac{\partial g}{\partial x} = \frac{\partial g}{\partial x} = 0$	M1	
	$\partial x \partial y = 0$ -2x - 4y = 0 and $x + 2y + 3z = 0$		
	x + 2y = 0 and $z = 0$	M1	Useful manipulation using both
	$g(x, y, z) = 0 - 0^2 = 0 \neq 125$	M1	eqns
	Hence there is no such point on <i>S</i>	A1	Showing there is no such point
		4	on S Fully correct proof
(v)			
	Require $\frac{z}{\partial z} = 0$	M1	
	and $\frac{\partial g}{\partial y} = 5 \frac{\partial g}{\partial x}$	M1	Implied by $\frac{\partial g}{\partial x} = \lambda$, $\frac{\partial g}{\partial y} = 5\lambda$
	-4x - 8y - 12z = 5(-2x - 4y)	M1	This M1 can be awarded for $-2x-4y=1$ and $-4x-8y-12z=5$

.

	$y = -\frac{3}{2}z$ and $x = 5z$	A1	Or $z = -\frac{2}{3}y$ and $x = -\frac{10}{3}y$
			Or $y = -\frac{3}{10}x$ and $z = \frac{1}{5}x$
			or $x = -\frac{5}{4}\lambda$, $y = \frac{3}{8}\lambda$, $z = -\frac{1}{4}\lambda$
			or $x: y: z = 10: -3: 2$
	$6(5z)z - (5z)^2 = 125$	М1	Substituting into $g(x, y, z) = 125$
	$z = \pm 5$	M1	Obtaining one value of <i>x</i> , <i>y</i> , <i>z</i> or
	Points are (25, -7.5, 5)	Δ1	^{<i>A</i>} Dependent on previous M1
	and (-25, 7.5, -5)	A1 ft	ft is minus the other point
		8	provided all M marks have been
			earned
3 (i)	$\dot{x}^2 + \dot{y}^2 = (24t^2)^2 + (18t - 8t^3)^2$	B1	
	$= 576t^4 + 324t^2 - 288t^4 + 64t^6$		
	$= 324t^2 + 288t^4 + 64t^6$	М1	
	$=(18t+8t^3)^2$	A1 aq	
	Arc length is $\int_{-1}^{2} (18t + 8t^3) dt$, in all	
	$\int_{0}^{1} (10t + 0t) dt$	M1	
	$=\left[9t^2+2t^4\right]_0^2$	A 1	Note
	= 68	AI	\int_{1}^{2}
		A1	$\left \int_{0}^{0} (18 + 8t^{3}) dt \right = \left 18t + 2t^{4} \right _{0} = 68$
			earns M1A0A0
(ii)	Curved surface area is $\int 2\pi y ds$	M1	
	$\int_{-\infty}^{2} dx = \frac{1}{2} + \frac{1}{2} $	M1	Using $ds = (18t + 8t^3) dt$
	$= \int_{0}^{2\pi} (9t^2 - 2t^4)(18t + 8t^3) dt$	A1	Correct integral expression
	$\int_{-\infty}^{2} (224)^3 - 72(5 - 22)^7 + 1$		including limits (may be implied by later work)
	$= \int_{0}^{\pi} \pi (324t^{2} + 72t^{2} - 32t^{2}) dt$	M1	
	$=\pi \left[81t^{4} + 12t^{6} - 4t^{8} \right]_{0}^{2}$	M1	
	$=1040\pi$ (≈ 3267)	A 4	
		6	
(iii)	$\ddot{r}\ddot{v} - \ddot{r}\ddot{v}$ (24 t^2)(18 - 24 t^2) - (48 t)(18 t - 8 t^3)	M1	Using formula for κ (or ρ)
	$\kappa = \frac{x_y - x_y}{(\dot{y}^2 + \dot{y}^2)^{\frac{3}{2}}} = \frac{(2\pi i / (10 - 2\pi i) (10 i / (10 - 0t)))}{(18t + 8t^3)^3}$	A1A1	For numerator and denominator
	(x + y) $A8t^2(9 - 12t^2 - 18 + 8t^2) = -A8t^2(9 + 4t^2)$		
	$=\frac{-46t}{8t^{3}(9+4t^{2})^{3}}=\frac{-46t}{8t^{3}(9+4t^{2})^{3}}=\frac{-46t}{8t^{3}(9+4t^{2})^{3}}$	M1	Simplifying the numerator
	-6		
	$=\frac{1}{t(4t^2+9)^2}$	A1 ag	
		5	
(iv)	When $t = 1$, $x = 8$, $y = 7$, $\kappa = -\frac{6}{169}$		
------------------	---	----------	---
	$\rho = (-)\frac{169}{6}$	B1	
	$\frac{dy}{dx} = \frac{\dot{y}}{\dot{x}} = \frac{18t - 8t^3}{24t^2} = \frac{10}{24}$	M1	Finding gradient (or tangent
	$\hat{\mathbf{n}} = \begin{pmatrix} 9_{13} \\ -12_{13} \end{pmatrix}$	M1 A1	Finding direction of the normal
	$\mathbf{c} = \begin{pmatrix} 8\\7 \end{pmatrix} + \frac{169}{6} \begin{pmatrix} 2/13\\-12/13 \end{pmatrix}$	M1	direction)
	Centre of curvature is $(18\frac{5}{6}, -19)$	A1A1	7
4 (i)	Commutative: $x * y = y * x$ (for all x, y) Associative: $(x * y) * z = x * (y * z)$	B1 B2	Accept e.g. 'Order does not matter'
	(for all <i>x, y, z</i>)	3	 Give B1 for a partial explanation, e.g. 'Position of brackets does not matter'
(ii)	$2(x + \frac{1}{2})(y + \frac{1}{2}) - \frac{1}{2} = 2xy + x + y + \frac{1}{2} - \frac{1}{2}$ $= 2xy + x + y = x * y$	B1 ag	Intermediate step required
(iii) (A)	If $x, y \in S$ then $x > -\frac{1}{2}$ and $y > -\frac{1}{2}$	M1	
	$x + \frac{1}{2} > 0$ and $y + \frac{1}{2} > 0$, so $2(x + \frac{1}{2})(y + \frac{1}{2}) > 0$	A1	
	$2(x+\frac{1}{2})(y+\frac{1}{2})-\frac{1}{2}>-\frac{1}{2}$, SO $x * y \in S$	A1	3
(<i>B</i>)	0 is the identity since $0 * x = 0 + x + 0 = x$	B1 B1	
	If $x \in S$ and $x * y = 0$ then 2xy + x + y = 0	M1	or $2(x+\frac{1}{2})(y+\frac{1}{2})-\frac{1}{2}=0$
	$y = \frac{-x}{2x+1}$	A1	or $y + \frac{1}{2} = \frac{1}{4(x + \frac{1}{2})}$
	$y + \frac{1}{2} = \frac{1}{2(2x+1)} > 0$ (since $x > -\frac{1}{2}$)	M1	
	SO $y \in S$	A1	Dependent on M1A1M1
	<i>S</i> is closed and associative; there is an identity; and every element of <i>S</i> has an inverse in <i>S</i>	6	5
(iv)	If $x * x = 0$, $2x^2 + x + x = 0$ x = 0 or -1	M1	
	0 is the identity (and has order 1) -1 is not in S	A1 A1	3

(v)	4 * 6 = 48 +	*6 = 48 + 4 + 6 = 58							B1	
	= 56 +	2 = 7	/×8	+2						
	So $4 \circ 6 = 2$								B1 ag	
										2
(vi)	Element	0	1	2	4	5	6			
	Order	1	6	6	3	3	2		B3	Give B2 for 4 correct B1 for 2 correct
(vii)	$\{0\}, G$								B1	Condone omission of G
	$\{0, 6\}$								B1	
	$\{0, 4, 5\}$								B1	If more than 2 non-trivial
										mark (from final B1B1) for each non-trivial subgroup in excess of 2

Pre-multiplication by transition matrix

5 (i) (ii)	$\mathbf{P} = \begin{pmatrix} 0.1 & 0.7 & 0.1 \\ 0.4 & 0.2 & 0.6 \\ 0.5 & 0.1 & 0.3 \end{pmatrix}$ $\mathbf{P}_{0}^{6} \begin{pmatrix} \frac{1}{3} \\ 1 \end{pmatrix} \begin{pmatrix} 0.328864 \\ 0.281526 \end{pmatrix}$	B2 2	Give B1 for two columns correct Using P^6 (or P^7)
	$\mathbf{P} = \frac{1}{23} = 0.381536$	M1	For matrix of initial probabilities
	$(\gamma_3) = (0.2890)$	M1	
(iii)	$0.328864 \times 0.1 + 0.381536 \times 0.2 + 0.2896 \times 0.3$ $= 0.1961$	M1 M1 A1	Using diagonal elements from P Correct method <i>Accept a.r.t. 0.196</i>
(iv)	(0.352 0.328 0.304)		
	$\mathbf{P}^3 = \begin{bmatrix} 0.364 & 0.404 & 0.372 \end{bmatrix}$	M1	For evaluating \mathbf{P}^3
	$(0.284 \ 0.268 \ 0.324)$	M1	Using diagonal elements from
	0.328864×0.352+0.381536×0.404+0.2896×0.324	M1	\mathbf{P}^3
	= 0.3637	A1	Correct method Accept a.r.t. 0.364
(v)	(0.3289 0.3289 0.3289)	B1	Deduct 1 if not given as a (3×3)
	$\mathbf{Q} = \begin{bmatrix} 0.3816 & 0.3816 & 0.3816 \end{bmatrix}$	B1	matrix
	$(0.2895 \ \ 0.2895 \ \ 0.2895)$	B1	Deduct 1 II not 4 dp
	0.3289, 0.3816, 0.2895 are the long-run probabilities for the routes <i>A, B, C</i>	B1	Accept 'equilibrium probabilities'
(vi)	$ \begin{pmatrix} 0.1 & 0.7 & a \\ 0.4 & 0.2 & b \\ 0.5 & 0.1 & c \end{pmatrix} \begin{pmatrix} 0.4 \\ 0.2 \\ 0.4 \end{pmatrix} = \begin{pmatrix} 0.4 \\ 0.2 \\ 0.4 \end{pmatrix} $	M1	
	0.04 + 0.14 + 0.4a = 0.4, so $a = 0.55$	M1	Obtaining a value for <i>a, b</i> or <i>c</i>
	0.16 + 0.04 + 0.4b = 0.2, so $b = 0$		
	0.2 + 0.02 + 0.4C = 0.4, so $c = 0.45$	A2	Give A1 for one correct
	After C, routes <i>A, B, C</i> will be used with probabilities 0.55, 0, 0.45	2	
(vii)	$0.4 \times 0.1 + 0.2 \times 0.2 + 0.4 \times 0.45$ = 0.26	M1 M1 A1	Using long-run probs 0.4, 0.2, 0.4 Using diag elements from new matrix

Post-multiplication by transition matrix

5 (i)	$\mathbf{P} = \begin{pmatrix} 0.1 & 0.4 & 0.5 \\ 0.7 & 0.2 & 0.1 \\ 0.1 & 0.6 & 0.3 \end{pmatrix}$	B2 2	Give B1 for two rows correct
(ii)	$(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) \mathbf{P}^{6} = (0.328864, 0.381536, 0.2896)$ P(<i>B</i> used on 7th day) = 0.3815	M1 M1 M1 A1 4	Using P^6 (or P^7) For matrix of initial probabilities For evaluating matrix product Accept 0.381 to 0.382
(iii)	$0.328864 \times 0.1 + 0.381536 \times 0.2 + 0.2896 \times 0.3$ $= 0.1961$	M1 M1 A1 3	Using diagonal elements from P Correct method <i>Accept a.r.t. 0.196</i>
(iv)	$\mathbf{P}^{3} = \begin{pmatrix} 0.352 & 0.364 & 0.284 \\ 0.328 & 0.404 & 0.268 \\ 0.304 & 0.372 & 0.324 \end{pmatrix}$ $0.328864 \times 0.352 + 0.381536 \times 0.404 + 0.2896 \times 0.324$ $= 0.3637$	M1 M1 M1 A1 4	For evaluating P ³ Using diagonal elements from P ³ Correct method <i>Accept a.r.t. 0.364</i>
(v)	$\mathbf{Q} = \begin{pmatrix} 0.3289 & 0.3816 & 0.2895 \\ 0.3289 & 0.3816 & 0.2895 \\ 0.3289 & 0.3816 & 0.2895 \end{pmatrix}$	B1B1B1	Deduct 1 if not given as a (3×3) matrix Deduct 1 if not 4 dp
	0.3289, 0.3816, 0.2895 are the long-run probabilities for the routes <i>A, B, C</i>	B1 4	Accept 'equilibrium probabilities'
(vi)	$ (0.4 0.2 0.4) \begin{pmatrix} 0.1 & 0.4 & 0.5 \\ 0.7 & 0.2 & 0.1 \\ a & b & c \end{pmatrix} = (0.4 0.2 0.4) $	M1	
	0.04 + 0.14 + 0.4a = 0.4, so $a = 0.550.16 + 0.04 + 0.4b = 0.2$, so $b = 0$	M1	Obtaining a value for <i>a, b</i> or <i>c</i>
	0.2 + 0.02 + 0.4c = 0.4, so $c = 0.45After C, routes A, B, C will be used with$	A2 4	Give A1 for one correct
	probabilities 0.55, 0, 0.45		
(vii)	$0.4 \times 0.1 + 0.2 \times 0.2 + 0.4 \times 0.45 = 0.26$	M1 M1 A1 3	Using long-run probs 0.4, 0.2, 0.4 Using diag elements from new matrix

4758 Differential Equations

1 (i)	$2\ddot{x} = 2g - 8(x + 0.25g) - 2kv$	M1	N2L equation with all forces using given expressions for tension and resistance	
(1)	Weight positive as down, tension negative as	B1		
	up. Resistance negative as opposes motion	R1		
	$\Rightarrow \ddot{x} + k\dot{x} + 4x = 0$	E1	Must follow correct N2L equation	
			•	4
(ii)	$x = A\cos 2t + B\sin 2t$	B1		
	$t = 0, x = 0.1 \Longrightarrow A = 0.1$	M1	Find the coefficient of cos	
	$\dot{x} = -2A\sin 2t + 2B\cos 2t$ so $t = 0, \dot{x} = 0 \Longrightarrow B = 0$	M1	Find the coefficient of sin	
	$x = 0.1 \cos 2t$	A1	сао	— ——
(;;;)	2		A 111 (1	4
(111)	$\alpha^2 + 2\alpha + 4 = 0$	M1	Auxiliary equation	
	$\alpha = -1 \pm \sqrt{3} j$	A1		
		M1	CF for complex roots	
	$x = e^{-t} \left(C \cos \sqrt{3} t + D \sin \sqrt{3} t \right)$	F1	CF for their roots	
	$t = 0, x = 0.1 \Longrightarrow C = 0.1$	M1	Condition on <i>x</i>	
	$\dot{x} = -e^{-t} \left(C \cos \sqrt{3} t + D \sin \sqrt{3} t \right)$			
	$+e^{-t}\left(-\frac{1}{2}C_{\text{prime}}\left(2t\right)+\frac{1}{2}D_{\text{prime}}\left(2t\right)\right)$	M1	Differentiate (product rule)	
	$+ e^{-\sqrt{3}C\sin\sqrt{3}t + \sqrt{3}D\cos\sqrt{3}t}$			
	$0 = -C + \sqrt{3} D$	M1	Condition on \dot{x}	
	$D = \frac{0.1}{\overline{\Box}}$			
	$\sqrt{3}$			
	$x = 0.1 e^{-t} \left(\cos \sqrt{3} t + \frac{1}{5} \sin \sqrt{3} t \right)$	A1	сао	
	($\sqrt{3}$)			
	0.1 \sum_{x}^{x}	B1	Curve through (0.0.1) with zero gradient	
		B1	Oscillating	
		B1	Asymptote $x = 0$	
	1			
				11
(iv)	$k^2 - 4 \cdot 1 \cdot 4 > 0$	M1	Use of discriminant	
		A1	Correct inequality	
	(As k is positive) $k > 4$	A1	Accept $k < -4$ in addition (but not $k > -4$)	
		B1	Curve through (0,0.1)	
	0.1	R1	Decays without oscillating (at most one	
		וט	intercept with positive <i>t</i> axis)	
				5
L				, Ŭ

2 (i)	$x = A e^{-2t}$	M1	Any valid method	
(')	$t = 0, x = 8 \Longrightarrow A = 8$	M1	Condition on x	
	$x = 8 e^{-2t}$	A1		
(;;)				3
(11)	$\dot{y} + y = 16e^{-2t}$	M1	Substitute for <i>x</i>	
	$\alpha + 1 = 0 \Longrightarrow \alpha = -1$	M1	Auxiliary equation	
	$CF y = Be^{-1}$	A1		
	$PI y = a e^{-2t}$	B1		
	$-2ae^{-2t} + ae^{-2t} = 16e^{-2t}$	M1	Differentiate and substitute	
	a = -10		cao Their PI + CF (with one arbitrary	
	93 y = -100 + B0	F1	constant)	
	$t = 0, y = 0 \Longrightarrow B = 16$	M1	Condition on <i>y</i>	
	$y = 16(e^{-t} - e^{-2t})$	F1	Follow a non-trivial GS	
	Alternative mark scheme for first 7 marks:			
	$I = e^{t}$	M1 M1	Substitute for x	
	7-6	A1	IF correct	
	$d(y e^{t})/dt = 16e^{-t}$	B1		
	$v e^{t} = -16e^{-t} + B$	M1 A1	Integrate cao	
	$y = -16e^{-2t} + Be^{-t}$	F1	Divide by their I (must divide constant)	
				9
(111)	$y = 16 e^{-t} (1 - e^{-t})$	M1	justifying)	
	$16e^{-t} > 0$ and $t > 0 \Longrightarrow e^{-t} < 1$ hence $y > 0$	E1	Complete argument	
) V	B1	Starts at origin	
	\frown	B1	General shape consistent with their solution and $v > 0$	
		B1	Tends to zero	
	Ť			5
(iv) d			5
	$\frac{d}{dt}(x+y+z) = (-2x) + (2x-y) + (y) = 0$	M1	Consider sum of DE's	
	$\Rightarrow x + y + z = c$	E1		
	Hence initial conditions $\Rightarrow x + y + z = 8$	E1		
	z = 8 - x - y	M1	Substitute for <i>x</i> and <i>y</i> and find <i>z</i>	
	$z = 8(1 - 2e^{-t} + e^{-2t}) = 8(1 - e^{-t})^2$	E1	Convincingly shown (<i>x</i> , <i>y</i> must be correct)	
	· · · · ·			5
(v)	$0.99 \times 8 = 8(1 - e^{-t})^2$	B1	Correct equation (any form)	
	t = -0.690638 or 5.29581			
	99% is Z after 5.30 hours	B1	Accept value in [5.29, 5.3]	
1				2

3 (i)	$\dot{y} + \frac{k}{t}y = 1$	M1	Divide by t (condone LHS only)	
	$I = \exp\left(\int \frac{k}{t} \mathrm{d}t\right) = \exp\left(k \ln t\right) = t^k$	M1	Attempt integrating factor	
		A1	Integrating factor	
	$t^{\kappa}\dot{y} + kt^{\kappa-1}y = t^{\kappa}$	F1	Multiply DE by their /	
	$\frac{\mathrm{d}}{\mathrm{d}t}\left(yt^{k}\right) = t^{k}$	M1	LHS	
	$yt^k = \int t^k dt$	M1	Integrate	
	$=\frac{1}{k+1}t^{k+1}+A$	A1	cao (including constant)	
	$y = \frac{1}{k+1}t + At^{-k}$	F1	Divide by their I (must divide constant)	
	$t = 1, y = 0 \Longrightarrow 0 = \frac{1}{k+1} + A \Longrightarrow A = -\frac{1}{k+1}$	M1	Use condition	
	$y = \frac{1}{k+1} \left(t - t^{-k} \right)$	F1	Follow a non-trivial GS	
(::)				10
(11)	$y = \frac{1}{3} \left(t - t^{-2} \right)$			
	y v	B1 B1	Shape consistent with their solution for $t \ge 1$ Passes through $(1, 0)$	
		B1	Behaviour for large t	
	t			
	1			
(iii)	-1 (-1 ,		-	3
()	$yt = \int t dt$	M1	Follow their (i)	
	$= \inf t + B$ $v = t(\ln t + B)$	F1	Cao Divide by their / (must divide constant)	
	$t = 1, y = 0 \Rightarrow B = 0 \Rightarrow y = t \ln t$	A1	cao	
				4
(iv)	$\frac{dy}{dt} = 1 + t^{-1} \sin y$	M1	Rearrange DE (may be implied)	
	t y dy/dt			
	1 0 1 11 01 10908	M1 Δ1	Use algorithm	
	1.2 0.2091	A1	y(1.2)	
(v)	0.2138 as smaller step size	B1	Must give reason	4
	Decreasing step length has increased			
	accurate, decreasing step length further will	M1	Identify effect of decreasing step length	
	increase estimate further, so true value			
	Hence underestimates.	A1	Convincing argument	
	Alternative mark scheme for last 2 marks			
	dy/dt seems to be increasing, hence Euler's	М1	Identify derivative increasing	
	method will underestimate true value + sketch (or			
	explanation).	A1	Convincing argument	
				3

4	$\ddot{x} = 4\dot{x} - 6\dot{y} - 9\cos t$	М1	Differentiate first equation	
(i)				
	$=4x-6(3x-5y-7\sin t)-9\cos t$	M1	Substitute for y	
	$y = \frac{1}{6} \left(4x - \dot{x} - 9\sin t \right)$	M1	y in terms of x, \dot{x}	
	$\ddot{x} = 4\dot{x} - 18x + 5(4x - \dot{x} - 9\sin t) + 42\sin t - 9\cos t$	M1	Substitute for y	
	$\ddot{x} + \dot{x} - 2x = -3\sin t - 9\cos t$	E1	LHS	
		E1	RHS	-
(::)			• ···	6
(11)	$\alpha^2 + \alpha - 2 = 0$	M1	Auxiliary equation	
	$\alpha = 1 \text{ or } -2$	A1		
	$CF x = Ae' + Be^{-2i}$	F1	CF for their roots	
	$PI x = a\cos t + b\sin t$	B1		
	(-ac-bs)+(-as+bc)-2(ac+bs)=-3s-9c	M1	Differentiate twice and substitute	
	-a+b-2a=-9	M1	Compare coefficients (2	
	-b - a - 2b = -3	M1	Solve (2 equations)	
	$\Rightarrow a = 3, b = 0$	A1		
	$x = 3\cos t + Ae^t + Be^{-2t}$	F1	Their PI + CF (with two arbitrary constants)	
				9
(iii)	$y = \frac{1}{6} \left(4x - \dot{x} - 9\sin t \right)$	M1	y in terms of x, \dot{x}	
	$= \frac{1}{6} \Big(12\cos t + 4Ae^{t} + 4Be^{-2t} + 3\sin t - Ae^{t} + 2Be^{-2t} - 9\sin t \Big)$	M1	Differentiate x and substitute	
	$y = 2\cos t - \sin t + \frac{1}{2}Ae^{t} + Be^{-2t}$	A1	Constants must correspond with	
			those in x	3
(iv)	x bounded $\Rightarrow A = 0$	M1	Identify coefficient of exponentially	
	\Rightarrow <i>v</i> bounded	F1	Complete argument	
				2
(v)	$t = 0, y = 0 \Longrightarrow 0 = B + 2 \Longrightarrow B = -2$	M1	Condition on y	
	$x = 3\cos t - 2e^{-2t}$, $y = 2\cos t - \sin t - 2e^{-2t}$	F1	Follow their (non-trivial) general	
	$x = 3\cos t$	A1	Cao	
	$y = 2\cos t - \sin t$	A1	сао	
				4

. . .

Q 1		mark	comment	sub
(i)	N2L \uparrow 1000-100 × 9.8 = 100 <i>a</i> <i>a</i> = 0.2 so 0.2 m s ⁻² upwards	M1 B1 A1	N2L. Accept $F = mga$ and no weight Weight correct (including sign). Allow if seen. Accept ± 0.2 . Ignore units and direction	3
(ii)	$T_{\rm BA} - 980 = 100 \times 0.8$ so tension is 1060 N	M1 A1	N2L. <i>F</i> = <i>ma</i> . Weight present, no extras. Accept sign errors.	
				2
(iii)	$T_{\rm BA} \cos 30 = 1060$	M1	Attempt to resolve their (ii). Do not award for their 1060 resolved unless all forces present and all resolutions needed are attempted. If start again allow no weight. Allow $\sin \leftrightarrow \cos$. No extra forces. Condone sign errors	
		A1	FT their 1060 only	
	$T_{\rm BA} = 1223.98$ so 1220 N (3 s. f.)	A1	сао	3
		8		

0.0				aula
QZ		mark	comment	SUD
(i)		B1	Sketch. O, i , j and r (only require correct quadrant.) Vectors must have arrows. Need not label r .	1
(ii)	$\sqrt{4^2 + (-5)^2}$ = $\sqrt{41}$ or 6.4031 so 6.40 (3 s. f.) Need 180 - arctan ($\frac{4}{2}$)	M1 A1 M1	Accept $\sqrt{4^2 - 5^2}$ Or equivalent. Award for $\arctan(\pm \frac{4}{3})$ or $\arctan(\pm \frac{5}{3})$	
	141.340 so 141°	A1	or equivalent seen without 180 or 90. cao	4
(iii)	12i – 15j or $\begin{pmatrix} 12\\ -15 \end{pmatrix}$	B1	Do not award for magnitude given as the answer. Penalise spurious notation by 1 mark at most once in paper	1
		6		
		0		

Q 3		mark	comment	sub
			Penalise spurious notation by 1 mark at most once in paper	
(i)	$\mathbf{F} = 5 \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} -5 \\ 10 \end{pmatrix} \text{ so } \begin{pmatrix} -5 \\ 10 \end{pmatrix} \text{ N}$	M1	Use of N2L in vector form	
		A1	Ignore units. [Award 2 for answer seen]	
			[SC1 for $\sqrt{125}$ or equiv seen]	2
(;;)				
(11)	$\mathbf{s} = \begin{pmatrix} -2\\3 \end{pmatrix} + 4 \begin{pmatrix} 4\\5 \end{pmatrix} + \frac{1}{2} \times 4^2 \times \begin{pmatrix} -1\\2 \end{pmatrix}$	M1	Use of $\mathbf{s} = t\mathbf{u} + 0.5t^2\mathbf{a}$ or integration of a . Allow \mathbf{s}_0	
		A1	omitted. If integrated need to consider v when $t = 0$ Correctly evaluated; accept s ₀ omitted.	
	$\mathbf{s} = \begin{pmatrix} 6\\ 39 \end{pmatrix}$ so $\begin{pmatrix} 6\\ 39 \end{pmatrix}$ m	B1	Correctly adding \mathbf{s}_0 to a vector (FT). Ignore units.	
			$\left[NB \begin{pmatrix} 8 \\ 36 \end{pmatrix} \right]$ seen scores M1 A1]	
				3
		5		

Q 4		mark	comment	sub
(i)	The distance travelled by P is $0.5 \times 0.5 \times t^2$ The distance travelled by Q is 10 <i>t</i>	B1 B1	Accept 10 <i>t</i> + 125 if used correctly below.	2
(ii)	Meet when $0.25t^2 = 125 + 10t$ so $t^2 - 40t - 500 = 0$ Solving t = 50 (or -10) Distance is $0.25 \times 50^2 = 625 \text{ m}$	M1 F1 M1 A1 A1	Allow their wrong expressions for P and Q distances Allow ± 125 or 125 omitted Award for their expressions as long as one is quadratic and one linear. Must have 125 with correct sign. Accept any method that yields (smaller) + ve root of their 3 term quadratic cao Allow –ve root not mentioned cao [SC2 400 m seen]	5
		7		

Q 5		mark	comment	
	either Overall, N2L \rightarrow 135 - 9 = (5 +4)a	M1	Use of N21 Allow $E = mag but no extra forces$	
	$a = 14 \text{ so } 14 \text{ m s}^{-2}$	A1	Allow 9 omitted.	
	For A, N2L \rightarrow $7-9 = 4 \times 14$ so 65 N	M1 A1	N2L on A or B with correct mass. <i>F</i> = <i>ma</i> . All relevant forces and no extras. cao	
	135 – T = 5a	M1	* 1 equation in <i>T</i> and <i>a</i> . Allow sign errors. Allow <i>F</i> = <i>m</i> ga	
	T-9=4a	A1	Both equations correct and consistent	
	Solving T = 65 so 65 N	M1 A1	Dependent on M [*] solving for <i>T</i> .	
				4
		4		

Q 6		mark	comment	sub
(i)	$40 \times 0.6t - 5t^2$ $= 24t - 5t^2$	M1 A1	Use of $s = ut + 0.5at^2$ with $a = \pm 9.8, \pm 10$. Accept 40 or 40×0.8 for ' <i>u</i> '. Any form	
				2
(ii)	either Need zero vertical distance so $24t - 5t^2 = 0$ so $t = 0$ or $t = 4.8$ or Time to highest point, T $0 = 40 \times 0.6 - 10T$ so $T = 2.4$ and time of flight is 4.8 range is $40 \times 0.8 \times 4.8 = 153.6$ so $154 \text{ m} (3 \text{ s. f.})$	M1 A1 M1 A1 M1 A1	Equate their <i>y</i> to zero. With fresh start must have correct <i>y</i> . Accept no reference to $t = 0$ and the other root in any form. FT their <i>y</i> if gives $t > 0$ Allow use of $u = 40$ and 40×0.8 . Award even if half range found. May be awarded for doubling half range later. Horiz cpt. Accept 0.6 instead of 0.8 only if consistent with expression in (i). FT their <i>t</i> .	2
	SO 154 m (3 S. I.)	6	[NB Use of half range or half time to get 76.8 (g = 10) or 78.36 (g = 9.8) scores 2] [If range formula used: M1 sensible attempt at substitution; allow sin2 α wrong B1 sin2 α correct A1 all correct A1 cao]	4

Q 7		mark	comment	
(i)	Continuous string: smooth ring: light string	E1 E1	One reason Another reason	2
(ii)	Resolve \leftarrow : $60 \cos \alpha - 60 \cos \beta = 0$ (so $\cos \alpha = \cos \beta$) and so $\alpha = \beta$	M1 E1	[(ii) and (iii) may be argued using Lami or triangle of forces] Resolution and an equation or equivalent. Accept $s \leftrightarrow c$. Accept a <i>correct</i> equation seen without method stated. Accept the use of ' <i>T</i> ' instead of '60'. Shown. Must have stated method (allow \rightarrow seen).	2
(iii)	Resolve \uparrow 2×60×sin α -8g = 0	M1 B1 B1	Resolution and an equation. Accept $s \leftrightarrow c$. Do not award for resolution that cannot give solution (e.g. horizontal) Both strings used (accept use of half weight), seen in an equation $\sin \alpha$ or equivalent seen in an equation	
	so <i>α</i> = 40.7933 so 40.8° (3 s. f.)	A1 A1	All correct	5
(iv)	Resolve → $10 + T_{QC} \cos 25 - T_{PC} \cos 45 = 0$ Resolve ↑ $T_{PC} \sin 45 + T_{QC} \sin 25 - 8g = 0$ Solving $T_{CQ} = 51.4701$ so 51.5 N (3 s. f.) $T_{CP} = 80.1120$ so 80.1 N (3 s. f.)	M1 M1 A1 M1 A1 A1 F1	Recognise strings have different tensions.Resolution and an equation. Accept $s \leftrightarrow c$. No extraforces.All forces present. Allow sign errors.Correct. Any form.Resolution and an equation. Accept $s \leftrightarrow c$. No extraforces.All forces present. Allow sign errors.Correct. Any form.* A method that leads to at least one solution of apair of simultaneous equations.cao either tensionother tension. Allow FT only if M1* awarded[Scale drawing: 1 st M1 then A1, A1 for answerscorrectto 2 s.f.]	8
		17		0

Q 8		mark	comment	
(i)	10	B1		1
(ii)	$v = 36 + 6t - 6t^2$	M1 A1	Attempt at differentiation	2
(iii)	a = 6 - 12t	M1 F1	Attempt at differentiation	2
(iv)	Take $a = 0$ so $t = 0.5$ and $v = 37.5$ so 37.5 m s ⁻¹	M1 A1 A1	Allow table if maximum indicated or implied FT their <i>a</i> cao Accept no justification given that this is maximum	3
(v)	either Solving $36+6t-6t^2 = 0$ so $t = -2$ or $t = 3$ or Sub the values in the expression for v Both shown to be zero A quadratic so the only roots then x(-2) = -34 x(3) = 91	M1 B1 E1 M1 E1 B1 B1 B1	A method for two roots using their <i>v</i> Factorization or formula or of their expression Shown Allow just 1 substitution shown Both shown Must be a clear argument cao cao	5
(vi)	x(3) - x(0) + x(4) - x(3) = 91-10 + 74-91 = 98 so 98 m	M1 A1 A1	Considering two parts Either correct cao [SC 1 for $s(4) - s(0) = 64$]	3
(vii)	At the SP of v x(-2) = -34 i.e. < 0 and x(3) = 91 i.e. > 0 Also $x(-4) = 42 > 0$ and x(6) = -98 < 0	M1 B1	 Or any other valid argument e.g find all the zeros, sketch, consider sign changes. Must have some working. If only a sketch, must have correct shape Doing appropriate calculations e.g. find all 3 zeros sketch cubic reasonably (showing 3 roots); sign changes in range 	
	so three times	B1 19	3 times seen	3

Q 1		mark	comment	
(a) (i)	In i direction: $6u - 12 = 18$ so $u = 5$ i.e. 5i m s ⁻¹ either In i direction: $0.5v + 12 = 0.5 \times 11$ v = -13 so -13 i m s ⁻¹ or $6 \times 5 + 0.5$ $v = 6 \times 3 + 0.5 \times 11$ v = -13 so -13 i m s ⁻¹	M1 E1 M1 B1 A1 M1 A1 A1	 Use of I-M Accept 6u -12 = 18 as total working. Accept 5 instead of 5i. Use of I-M Use of + 12i or equivalent Accept direction indicated by any means PCLM Allow only sign errors Accept direction indicated by any means 	
(ii)	Using NEL: $\frac{11-3}{-13-5} = -e$	M1 F1	Use of NEL. Condone sign errors but not reciprocal expression FT only their –13 (even if +ve)	
	$e = \frac{4}{9} (0.\dot{4})$	F1	FT only their -13 and only if -ve (allow 1 s.f. accuracy)	3
(iii)	In i direction: $-2 \times 7 = 0.5v - 0.5 \times 11$ v = -17 so -17 i m s ⁻¹ or -2 i = 0.5 a so $a = -4$ i m s ⁻² $v = 11i - 4i \times 7$ v = -17 so -17 i m s ⁻¹	M1 A1 A1 M1 A1 M1 A1	Use of $I = Ft$ Use of $I = m(v - u)$ For ± 17 cao. Direction (indicated by any means) Use of $F = ma$ For ± 4 Use of uvas t cao. Direction (indicated by any means)	4
(b)	$u \mathbf{i} + ev \mathbf{j}$ $\tan \alpha = \frac{v}{u}, \ \tan \beta = \frac{ev}{u}$ $\tan \beta = e\left(\frac{v}{u}\right) = e \tan \alpha$	B1 B1 M1 B1 E1	For <i>u</i> For <i>ev</i> Use of tan. Accept reciprocal argument. Accept use of their components Both correct. Ignore signs. Shown. Accept signs not clearly dealt with.	5
		17		

Q 2		mark	comment	sub
(i)	$(2+3\times6)\begin{pmatrix}\overline{x}\\\overline{y}\end{pmatrix} = 6\begin{pmatrix}3\\0\end{pmatrix} + 6\begin{pmatrix}6\\3\end{pmatrix} + 6\begin{pmatrix}3\\6\end{pmatrix} + 2\begin{pmatrix}0\\7\end{pmatrix}$ $20\begin{pmatrix}\overline{x}\\\overline{y}\end{pmatrix} = \begin{pmatrix}18+36+18\\18+36+14\end{pmatrix} = \begin{pmatrix}72\\68\end{pmatrix}$ $\overline{x} = 3.6$ $\overline{y} = 3.4$	M1 B1 B1 E1 A1	Method for c.m. Total mass correct For any of the 1^{st} 3 RHS terms For the 4^{th} RHS term cao [If separate cpts, award the 2^{nd} B1 for 2 <i>x</i> - terms correct and 3^{rd} B1 for 2×7 in <i>y</i> term]	6
(ii)	$\operatorname{arctan}\left(\frac{3.6}{2+(6-3.4)}\right) = \operatorname{arctan}\left(\frac{3.6}{4.6}\right)$ so 38.047 so 38.0° (3 s. f.)	B1 B1 M1 B1 A1	Diagram showing G vertically below D 3.6 and their 3.4 correctly placed (may be implied) Use of arctan on their lengths. Allow reciprocal of argument. Some attempt to calculate correct lengths needed 2 + (6 – their 3.4) seen cao	5
(iii)	moments about D $5 \times 3.6 = 6 \times T_{BP}$ so tension in BP is 3 N Resolve vert: $3 + T_{DQ} = 5$ so tension in DQ is 2 N	M1 F1 M1 F1	moments about D. No extra forces FT their values if calc 2nd Resolve vertically or moments about B. FT their values if calc 2nd	4
(iv)	We require x-cpt of c.m. to be zero either $(20+L)\overline{x} = 20 \times 3.6 - \frac{1}{2}L^2$ or $2 \times 6 \times (0.5 \times 6) + 6 \times 6 - 0.5 \times L^2 = 0$ L = 12	M1 B1 A1 A1	A method to achieve this with all cpts For the $0.5 \times L^2$ All correct	4
		19		

$ \begin{array}{ c c } \hline (a) \\ (b) \\ (c) $	Q 3		mark	comment	sub
	(a) (i)	$\begin{array}{c} & & & \\ & & & \\ & & & \\ A \\ & & & \\$	B1 B1	Internal forces all present and labelled All forces correct with labels and arrows (Allow the internal forces set as tensions, thrusts or a mixture)	2
(b)Leg QR with frictional force $F \leftarrow$ moments c.w. about R $U \times 2l \sin 60 - Wl \cos 60 = 0$ Accept only 1 leg considered (and without comment)M1Suitable moments equation. Allow 1 force omitted a.c. moments c.w. momentsHoriz equilibrium for QR $F = U$ M1Horiz equilibrium for QR $F = U$ M1A second correct equation for horizontal or vertical equilibrium to eliminate a force (U or reaction at foot) [Award if correct moments equation containing only W and F]Hence $\frac{1}{2}W = \sqrt{3}F$ and so $F = \frac{\sqrt{3}}{6}W$ E1* This second equation explicitly derived Correct use of 2^{nd} equation with the moments equationE1Shown. CWO but do not penalise * again.	(ii)	A \uparrow $T_{AD} \sin 30 - L = 0$ so $T_{AD} = 2L$ so $2L$ N (T) A $\rightarrow T_{AB} + T_{AD} \cos 30 = 0$ so $T_{AB} = -\sqrt{3}L$ so $\sqrt{3}L$ N (C) B $\uparrow T_{BD} \sin 60 - 3L = 0$ so $T_{BD} = 2\sqrt{3}L$ so $2\sqrt{3}L$ N (T) B \rightarrow $T_{BC} + T_{BD} \cos 60 - T_{AB} = 0$ so $T_{BC} = -2\sqrt{3}L$ so $2\sqrt{3}L$ N (C)	M1 A1 F1 M1 A1 A1 F1 E1	Equilibrium equation at a pin-joint attempted 1 st ans. Accept + or –. Second equation attempted 2 nd ans. FT any previous answer(s) used. Third equation attempted 3 rd ans. FT any previous answer(s) used. Fourth equation attempted 4 th ans. FT any previous answer(s) used. All T/C consistent [SC 1 all T/C correct WWW]	9
	(b)	Leg QR with frictional force $F \leftarrow$ moments c.w. about R $U \times 2l \sin 60 - Wl \cos 60 = 0$ Horiz equilibrium for QR F = U Hence $\frac{1}{2}W = \sqrt{3}F$ and so $F = \frac{\sqrt{3}}{6}W$	M1 A1 A1 M1 E1 E1	Accept only 1 leg considered (and without comment) Suitable moments equation. Allow 1 force omitted a.c. moments c.w. moments A second correct equation for horizontal or vertical equilibrium to eliminate a force (U or reaction at foot) [Award if correct moments equation containing only <i>W</i> and <i>F</i>] * This second equation explicitly derived Correct use of 2 nd equation with the moments equation Shown. CWO but do not penalise * again.	7

Q 4		mark	comment	sub
(a) (i)	Tension is perp to the motion of the sphere (so WD, $Fd\cos\theta = 0$)	E1		1
(ii)	Distance dropped is $2-2\cos 40 = 0.467911$ GPE is <i>mgh</i> so $0.15 \times 9.8 \times 0.467911 = 0.687829 J$	M1 E1 M1 B1	Attempt at distance with resolution used. Accept $sin \leftrightarrow cos$ Accept seeing $2-2cos40$ Any reasonable accuracy	4
(iii)	$0.5 \times 0.15 \times v^2 = 0.687829$ so $v = 3.02837$ so 3.03 m s ⁻¹ (3 s. f.)	M1 F1	Using KE + GPE constant FT their GPE	2
(iv)	$\frac{1}{2} \times 0.15 (v^2 - 2.5^2)$	M1 B1	Use of W-E equation (allow 1 KE term or GPE term omitted) KE terms correct	
	$= 0.687829 0.6 \times \frac{40}{360} \times 2\pi \times 2$	M1	WD against friction	
	<i>v</i> = 2.06178 so 2.06 m s ⁻¹ (3 s. f.)	A1 A1	WD against friction correct (allow sign error) cao	5
(b)	N2L down slope: $3g\sin 30 - F = 3 \times \frac{1}{8}g$	M1 A1	Must have attempt at weight component Allow sign errors.	
	so $F = \frac{9g}{8}$ (= 11.025)	A1		
	$R = 3g \times \frac{\sqrt{3}}{2}$ (= 25.4611)	B1		
	$\mu = \frac{F}{R} = \frac{\sqrt{3}}{4} (= 0.43301)$	M1	Use of $F = \mu R$	
		E1	Must be worked precisely	6
		18		

1(a)(i)	[Velocity] = LT^{-1}	B1	(Deduct 1 mark if kg, m, s are
	[Acceleration] = $L T^{-2}$	B1	consistently used instead of M,
	$[Force] = M L T^{-2}$	B1	L, 1)
		3	
(ii)	$[\lambda] = \frac{[Force]}{[v^2]} = \frac{MLT^{-2}}{(LT^{-1})^2}$	M1	
	$= M L^{-1}$	A1 cao 2	
(iii)	$\left[\frac{U^2}{2g}\right] = \frac{(\mathrm{L}\mathrm{T}^{-1})^2}{\mathrm{L}\mathrm{T}^{-2}} = \mathrm{L}$	B1 cao	(Condone constants left in)
	$\left[\frac{\lambda U^4}{4mg^2}\right] = \frac{(M L^{-1})(L T^{-1})^4}{M (L T^{-2})^2}$	M1	
	$= \frac{M L^{3} T^{-4}}{M L^{2} T^{-4}} = L$	A1 cao	
	[<i>H</i>] = L; all 3 terms have the same dimensions	E1 4	Dependent on B1M1A1
(iv)	$(M L^{-1})^2 (L T^{-1})^{\alpha} M^{\beta} (L T^{-2})^{\gamma} = L$		
	$\beta = -2$	B1 cao	
	$-2 + \alpha + \gamma = 1$ $-\alpha - 2\gamma = 0$	M1 A1	At least one equation in α , γ One equation correct
	$\alpha = 6$ $\gamma = -3$	A1 cao A1 cao 5	

(b)	EE is $\frac{1}{2} \times \frac{2060}{24} \times 6^2$ (=1545) (PE gained) = (EE lost) + (KE lost)	B1	
		M1	Equation involving PE, EE and KE Can be awarded from start to point where string becomes slack <i>or</i> any complete method (e.g. SHM) for finding v^2 at natural length If B0, give A1 for $v^2 = 88.2$ correctly obtained
	$50 \times 9.8 \times h = 1545 + \frac{1}{2} \times 50 \times 12^{2}$ $490h = 1545 + 3600$	F1	or $0 = 88.2 - 2 \times 9.8 \times s$ (s = 4.5)
	h = 10.5 OA = 30 - h = 19.5 m	A1 4	Notes $\frac{1}{2} \times \frac{2060}{24} \times 6$ used as EE can earn BOM1F1A0 $\frac{2060}{24} \times 6$ used as EE gets BOM0

2 (i)	$T\cos\alpha = mg$		
	$3.92\cos\alpha = 0.3 \times 9.8$	M1	Resolving vertically
	$\cos \alpha = 0.75$		(Condone sin / cos mix for M
	Angle is 41.4° (0.723 rad)	A1	marks throughout this question)
		2	
(ii)	$T \sin \alpha = m \frac{v^2}{r}$ 3.92 sin $\alpha = 0.3 \times \frac{v^2}{4.2 \sin \alpha}$ Speed is 4.9 m s ⁻¹	M1 B1 A1	Force and acceleration towards centre (condone $v^2/4.2$ or $4.2\omega^2$) For radius is $4.2\sin\alpha$ (= 2.778) Not awarded for equation in ω
		A1	unless $v = (4.2 \sin \alpha) \omega$ also
		4	appears
(iii)	$T - mg\cos\theta = m\frac{v^2}{a}$	M1	Forces and acceleration towards O
	$T - 0.3 \times 9.8 \times \cos 60^\circ = 0.3 \times \frac{8.4^2}{4.2}$	Δ1	
	4.2 Tension is 6.51 N		
		A1 3	
		5	
(1V)		IM1	For $(-)mg \times 4.2\cos\theta$ in PE
	$\frac{1}{2}mv^{2} - mg \times 4.2\cos\theta = \frac{1}{2}m \times 8.4^{2} - mg \times 4.2\cos60^{\circ}$	M1 A1	Equation involving $\frac{1}{2}mv^2$ and PE
	$v^{2} - 82.32 \cos \theta = 70.56 - 41.16$ $v^{2} = 29.4 + 82.32 \cos \theta$	E1 4	
())	2		
(*)	$(T) - mg\cos\theta = m\frac{v^2}{r}$	M1	Force and acceleration
	a 29.4+82.32 cos θ	M1	towards O
	$(T) - m \times 9.8 \cos \theta = m \times \frac{23.4 + 62.52 \cos \theta}{4.2}$	A1	Substituting for v^2
	String becomes slack when $T = 0$ -9.8 cos θ = 7 + 19.6 cos θ	M1	Dependent on first M1
	$\cos\theta = -\frac{7}{2}$		
	$\theta = 104^{\circ}$ (1.81 rad)	A1 5	No marks for $v = 0 \implies \theta = 111^{\circ}$

Mark Scheme

3 (i)	$T_{\rm PB} = 35(x-3.2) [= 35x-112]$		B1	
	$T_{\rm BO} = 5(6.5 - x - 1.8)$		M1	Finding extension of BQ
	= 5(4.7 - x) [= 23.5 - 5x]		A1	
				3
(ii)	T d^2x			
	$T_{\rm BQ} + mg - T_{\rm PB} = m \frac{1}{{\rm d}t^2}$		M1	Equation of motion (condone
	$5(4.7-x)+2.5\times9.8-35(x-3.2)=2.5\frac{d^2x}{d^2x}$			
	dt^2		A2	Give A1 for three terms correct
	$160 - 40x = 2.5 \frac{d^2 x}{dt^2}$			
	$\frac{d^2x}{d^2x} = 64 - 16x$			
	dt^2		E1	
				4
(111)	At the centre, $\frac{d^2x}{d^2x} = 0$		M1	
	dt^2		A1	
				2
(iv)	$\omega^2 = 16$		M1	Seen or implied (Allow M1 for
	Period is $\frac{2\pi}{\sqrt{2}} = \frac{1}{2}\pi = 1.57 \text{ s}$		A1	$\omega = 16$)
	$\sqrt{16}$,	2 Accept $\frac{1}{2}\pi$
(v)	Amplitude $A = 4.4 - 4 = 0.4 \text{ m}$		B1 ft	ft is 4.4-(iii)
	Maximum speed is Aw		M1	
	$= 0.4 \times 4 = 1.6 \text{ m s}^{-1}$		A1 cao	2
(, ;)				3
(VI)	$x = 4 + 0.4 \cos 4t$		M1	For $y = C \sin \omega t$ or $C \cos \omega t$
	$v = (-) 1.6 \sin 4t$		A1	This M1A1 can be earned in (v)
	When $v = 0.9$, $\sin 4t = -\frac{0.9}{2}$			
	1.6 $4t - \pi + 0.5974$		N / 1	Fully correct method for finding
	$\pi - \pi + 0.5777$			the required time
	Time is 0.935 s		• •	e.g. $\frac{1}{4} \arcsin \frac{0.9}{1.6} + \frac{1}{2}$ period
			A1 cao	4
	$OR 0.9^2 - 16(0.4^2 - y^2)$			
	y = -0.3307			
		M1		Using $v^{2} = \omega^{2} (A^{2} - y^{2})$
				and $y = A \cos \omega t$ or $A \sin \omega t$
	$y = 0.4 \cos 4t$	A1		For $y = (\pm) 0.331$ and
	$\cos 4t = -\frac{0.3307}{6}$			$y = 0.4 \cos 4t$
	0.4 $4t = \pi + 0.5974$	М1		
	Time is 0.935 s A1 c	cao		

4 (a)(i)	$V = \int \pi x^2 dy = \int_0^8 \pi \left(4 - \frac{1}{2}y\right) dy$	M1	π may be omitted throughout Limits not required for M marks throughout this question
	$=\pi \left[4y - \frac{1}{4}y^2 \right]_0^8 = 16\pi$	A1	
	$V \overline{y} = \int \pi y x^2 \mathrm{d}y$	M1	
	$= \int_{0}^{\infty} \pi y (4 - \frac{1}{2} y) \mathrm{d}y$	A1	
	$=\pi \left[2y^2 - \frac{1}{6}y^3 \right]_0^8 = \frac{128}{3}\pi$	A1	
	$\overline{y} = \frac{\frac{3}{16\pi}}{16\pi}$ $-\frac{8}{16\pi} (\approx 2.67)$	M1	Dependent on M1M1
	3 (~2.07)	A1 7	
(ii)	CM is vertically above lower corner	M1 M1	Trig in a triangle including θ
	$ \tan \theta = \frac{2}{\overline{y}} = \frac{2}{\frac{8}{3}} (=\frac{3}{4}) $	A1	Dependent on previous M1 Correct expression for $\tan \theta$ or $\tan(90 - \theta)$
	$\theta = 36.9^{\circ}$ (= 0.6435 rad)	A1 4	Notes $\tan \theta = \frac{2}{1000}$ implies M1M1A1
			$\tan \theta = \frac{\text{cand's } \overline{y}}{2} \text{ implies M1M1}$ $\tan \theta = \frac{\text{cand's } \overline{y}}{2} \text{ implies M1M1}$
			$ \tan \theta = \frac{1}{\operatorname{cand's} \overline{y}} $ without further
			evidence is M0M0

(b)			May use $0 \le x \le 2$ throughout
	$A = \int_{-2}^{2} (8 - 2x^2) \mathrm{d}x$	M1	or (2) $\int_0^8 \sqrt{4 - \frac{1}{2}y} \mathrm{d}y$
	$= \left[8x - \frac{2}{3}x^3 \right]_{-2}^2 = \frac{64}{3}$	A1	
	$A \overline{y} = \int_{-2}^{2} \frac{1}{2} (8 - 2x^2)^2 \mathrm{d}x$	M1	or (2) $\int_{0}^{8} y \sqrt{4 - \frac{1}{2}y} dy$
			(M0 if ½ is omitted)
	$=\left[32x - \frac{16}{3}x^3 + \frac{2}{5}x^5 \right]^2$	M1	For $32x - \frac{16}{3}x^3 + \frac{2}{5}x^3$ Allow one
			<i>error</i> 3 5
			Or $-\frac{8}{3}y(4-\frac{1}{2}y)^{\overline{2}}-\frac{32}{15}(4-\frac{1}{2}y)^{\overline{2}}$
	$=\frac{1024}{15}$		Or $-\frac{64}{3}(4-\frac{1}{2}y)^{\frac{3}{2}}+\frac{16}{5}(4-\frac{1}{2}y)^{\frac{5}{2}}$
	1024/_	A1	
	$\overline{y} = \frac{715}{64/3}$		
	$=\frac{16}{5}=3.2$	M1	Dependent on first two M1's
	-	A1	
		7	

1(i)	If δm is change in mass over time δt				
	PCLM $mv = (m + \delta m)(v + \delta v) + \delta m (v - u)$	[N.B.	М1	Change in momentum over time δt	
	$\delta m < 0$]			Change in momentum over time of	
	$(m + \delta m)\frac{\delta v}{\delta t} + u\frac{\delta m}{\delta t} = 0 \Longrightarrow m\frac{\mathrm{d}v}{\mathrm{d}t} = -u\frac{\mathrm{d}m}{\mathrm{d}t}$		M1 A1	Rearrange to produce DE Accept sign error	
	$\frac{\mathrm{d}m}{\mathrm{d}t} = -k \Longrightarrow m = m_0 - kt$		M1	Find <i>m</i> in terms of <i>t</i>	
	$\Rightarrow (m_0 - kt) \frac{\mathrm{d}v}{\mathrm{d}t} = uk$		E1	Convincingly shown	
					5
(ii)	$v = \int \frac{uk}{m_0 - kt} \mathrm{d}t$		M1	Separate and integrate	
	$= -u\ln(m_0 - kt) + c$		A1	cao (allow no constant)	
	$t = 0, v = 0 \Longrightarrow c = u \ln m_0$		M1	Use initial condition	
	$v = u \ln\left(\frac{m_0}{m_0 - kt}\right)$		A1	All correct	
					4
(iii)	$m = \frac{1}{3}m_0 \Longrightarrow m_0 - kt = \frac{1}{3}m_0$		M1	Find expression for mass or time	
			A1	Or $t = 2m_0 / 3k$	
	$\Rightarrow v = u \ln 3$		A1		
					3

2(i)	P = Fv	M1	Used, not just quoted	
	$= mv \frac{\mathrm{d}v}{\mathrm{d}x}v$	M1	Use N2L and expression for acceleration	
	$\Rightarrow mv^2 \frac{\mathrm{d}v}{\mathrm{d}x} = m\left(k^2 - v^2\right)$	A1	Correct DE	
	$\Rightarrow \frac{v^2}{k^2 - v^2} \frac{\mathrm{d}v}{\mathrm{d}x} = 1$	M1	Rearrange	
	$\Rightarrow \left(\frac{k^2}{k^2 - v^2} - 1\right) \frac{\mathrm{d}v}{\mathrm{d}x} = 1$	E1	Convincingly shown	
	$\int \left(\frac{k^2}{k^2 - v^2} - 1\right) \mathrm{d}v = \int \mathrm{d}x$	M1	Separate and integrate	
	$\frac{1}{2}k\ln\left(\frac{k+v}{k-v}\right) - v = x + c$	A1	LHS	
	$x = 0, v = 0 \Longrightarrow c = 0$	M1	Use condition	
	$x = \frac{1}{2}k\ln\left(\frac{k+\nu}{k-\nu}\right) - \nu$	A1	сао	
				9
(ii)	Terminal velocity when acceleration zero $\Rightarrow v = k$	M1 A1		
	$v = 0.9k \Rightarrow x = \frac{1}{2}k \ln\left(\frac{1.9}{0.1}\right) - 0.9k = \left(\frac{1}{2}\ln 19 - 0.9\right)k \approx$	F1	Follow their solution to (i)	
	0.572 <i>k</i>			
				3

3(i)	$M = \int_0^a k(a+r) 2\pi r \mathrm{d}r$ $= 2k\pi \left[\frac{1}{2}ar^2 + \frac{1}{3}r^3\right]_0^a$ $= \frac{5}{3}k\pi a^3$	M1 M1 A1 E1	Use circular elements (for <i>M</i> or <i>I</i>) Integral for mass Integrate (for <i>M</i> or <i>I</i>) For []	
	$I = \int_0^a k(a+r) 2\pi r \cdot r^2 \mathrm{d}r$	M1	Integral for I	
	$=2k\pi \left[\frac{1}{4}ar^{4}+\frac{1}{5}r^{5}\right]_{0}^{a}$	A1	For []	
	$=\frac{9}{10}k\pi a^5$	A1	сао	
	$=\frac{27}{50}Ma^2$	E1	Complete argument (including mass)	
(ii)	I = 13.5 $0.625 \times 50 = I\omega$ $\Rightarrow \omega \approx 2.31$	B1 M1 M1 A1	Seen or used (here or later) Use angular momentum Use moment of impulse cao	4
(iii)	$\ddot{\theta} = \frac{30 - 2.31}{20} \approx 1.38$	M1	Find angular acceleration	
	Couple = $I\ddot{\theta} \approx 18.7$	M1 F1	Use equation of motion Follow their ω and /	3
(iv)	$I\ddot{ heta} = -3\dot{ heta}$	B1	Allow sign error and follow their <i>I</i> (but not <i>M</i>)	0
	$I\frac{\mathrm{d}\dot{\theta}}{\mathrm{d}t} = -3\dot{\theta}$	M1	Set up DE for $\dot{ heta}$ (first order)	
	$\int \frac{\mathrm{d}\dot{\theta}}{\dot{\theta}} = \int -\frac{3}{I} \mathrm{d}t$	M1	Separate and integrate	
	$\ln\left \dot{\theta}\right = -\frac{t}{4.5} + c$	B1	$\ln(\text{multiple of }\dot{ heta})$ seen	
	$\dot{\theta} = A \mathrm{e}^{-t/4.5}$	M1	Rearrange, dealing properly with constant	
	$t = 0, \dot{\theta} = 30 \Longrightarrow A = 30$	M1	Use condition on $\dot{ heta}$	
	$\dot{\theta} = 30 \mathrm{e}^{-t/4.5}$	A1		7
(v)	Model predicts $\dot{\theta}$ never zero in finite time.	B1		1
L				

4(i)	$V = \frac{1}{2} \left(\frac{mg}{10a} \right) (a\theta)^2 + mga \cos \theta $ (relative to centre	M1	EPE term	
	of pulley)	B1 M1 A1	Extension $= a\theta$ GPE relative to any zero level (± constant)	
	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = \frac{1}{2} \left(\frac{mg}{10a}\right) \cdot 2a^2\theta - mga\sin\theta$	M1	Differentiate	
	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = mga\left(\frac{1}{10}\theta - \sin\theta\right)$	E1		6
(ii)	$\theta = 0 \Rightarrow \frac{\mathrm{d}V}{\mathrm{d}\theta} = mga\left(\frac{1}{10}(0) - \sin 0\right) = 0$	M1	Consider value of $\frac{dV}{d\theta}$	
	hence equilibrium $\frac{d^2V}{d^2r^2} = mga(\frac{1}{10} - \cos\theta)$	E1 M1	Differentiate again	
	$d\theta^2 = -0.9mga < 0$	M1	Consider sign of V''	
			V must be correct	6
(iii)	If the pulley is smooth, then the tension in the	B1		
	string is constant. Hence the EPE term is valid	B1		
		DI		2
(iv)	Equilibrium positions at $\theta = 2.8$, $\theta = 7.1$ and $\theta = 8.4$	B1 B1	One correct All three correct, no extras Accept answers in [2.7,3.0), [7,7.2], [8,3,8,5]	
	From graph, $V''(2.8) = mgaf'(2.8) > 0$	M1	Consider sign of V'' or f'	
	hence stable at $\theta = 2.8$	A1	Accept no reference to V'' for one	
	$V''(7.1) = mgaf'(7.1) < 0 \Rightarrow$ unstable at $\theta = 7.1$	A1	conclusion but other two must relate	
	$V''(8.4) = mgaf'(8.4) > 0 \Rightarrow$ stable at $\theta = 8.4$	A1	to sign of V'' , not just f' .	
				6
(V)		B1	P in approximately correct place	
		5.		
	P B	B1	B in approximately correct place	2
(vi)	If $\theta < 0$ then expression for EPE not valid	M1		
	nence not necessarily an equilibrium position.	AT		2
L				

4766 Statistics 1

Q1 (i)	Mean = 7.35 (or better)	B2cao $\sum fx = 323.5$	
(1)	Standard deviation: 3.69 – 3.70 (awfw)	B2cao $\sum fx^2$ = 2964.25	
	Allow $s^2 = 13.62$ to 13.68	(B1) for variance s.o.i.o	
	Allow rmsd = 3.64 – 3.66 (awfw)	(B1) for rmsd	
	After B0, B0 scored then if at least 4 correct mid-points seen or used.{1.5, 4, 6, 8.5, 15}	(B1) mid-points	
	Attempt of their mean = $\frac{\sum fx}{44}$, with 301 \leq fx \leq 346 and fx	(B1) $6.84 \le$ mean ≤ 7.86	4
	strictly from mid-points not class widths or top/lower boundaries.		
(ii)	Upper limit = $7.35 + 2 \times 3.69 = 14.73$ or (their consider means) + $2 \times 3.69 = 14.73$ or	M1 (with s.d. < mean)	
	So there could be one or more outliers	E1 dep on B2, B2 earned and comment	2
		τοται	6
Q2 (i)	P(W) × P(C) = $0.20 \times 0.17 = 0.034$ P(W∩C) = 0.06 (given in the question) Not equal so not independent (Allow $0.20 \times 0.17 \neq 0.06$ or ≠ p (W ∩ C) so not independent).	M1 for multiplying or 0.034 seen A1 (numerical justification needed)	2
(ii)	$W \underbrace{0.1 \\ 0.69} \underbrace{0.69} \\ The last two G marks are independent of the labels$	G1 for two overlapping circles labelled G1 for 0.06 and either 0.14 or 0.11 in the correct places G1 for all 4 correct probs in the correct places (including the 0.69) NB No credit for Karnaugh maps here	3
(iii)	$P(W C) = \frac{P(W \cap C)}{P(C)} = \frac{0.06}{0.17} = \frac{6}{17} = 0.353 \text{ (awrt 0.35)}$	M1 for 0.06 / 0.17 A1 cao	2

4766

(iv)	Children are more likely than adults to be able to speak	E1FT Once the correct	1
	Welsh or 'proportionally more children speak Welsh than	idea is seen, apply ISW	
	adults'		
	Do not accept: 'more Welsh children speak Welsh than		
	adults'		
		TOTAL	8
Q3	(A) $0.5 + 0.35 + n + a = 1$		
(i)	$s_0 p + q = 0.15$	B1 p + q in a correct	1
	$(B) \qquad 0 \times 0.5 + 1 \times 0.35 + 2n + 3a = 0.67$	equation before they reach $p + q = 0.15$	
	$(D) = 0 \times 0.5 + 1 \times 0.55 + 2p + 5q = 0.07$ so $2p + 3q = 0.32$	1each p · q =0.15	
	(C) from above $2n + 2a = 0.30$	D1 2n + 2g in a correct	
	(c) non above $2p + 2q = 0.50$	equation before they	1
	50 q = 0.02, p = 0.13	reach 2p + 3q = 0.32	
		(B1) for any 1 correct	
		answer	2
		B2 for both correct	
(ii)		M1 $\Sigma x^2 p$ (at least 2	
()	$E(X^2) = 0 \times 0.5 + 1 \times 0.35 + 4 \times 0.13 + 9 \times 0.02 = 1.05$	non zero terms correct)	
	$V(ar(X) = 0.67^2 = 0.6011 (aurt 0.6)$	M1dep for (-0.67^2) ,	
	Var(X) = their 1.05 - 0.67 = 0.6011 (awit 0.6)	A1 cao (No n or n-1	3
	(M1, M1 can be earned with their p^+ and q^+ but not A mark)	divisors)	
04	$X \sim B(8, 0.05)$	TOTAL	7
(i)	(A) $P(X = 0) = 0.95^8 = 0.6634$ 0.663 or better	M1 0.05 ⁸ A1 CAO	
		Or B2 (tables)	2
	<i>Or</i> using tables $P(X = 0) = 0.6634$		
	$(\mathbf{P}) = \mathbf{P}(\mathbf{V} = 1) = \binom{8}{2} \times 0.05 \times 0.05^7 = 0.2702$	M1 for $P(X = 1)$ (allow	
	$ (B) \mathbf{F}(\mathbf{X} - 1) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{\times 0.05 \times 0.95} = 0.2795 $	0.28 or better) M1 for $1 - P(X \le 1)$	3
	P(X > 1) = 1 - (0.6634 + 0.2793) = 0.0573	must have both	
		probabilities A1cao (0.0572 –	
		0.0573)	
	Or using tables $P(X > 1) = 1 - 0.9428 = 0.0572$	M4 for $D(X < 1) = 0.000$	
		M1 for $1 - P(X \le 1) = 0.9428$ M1 for $1 - P(X \le 1)$	
		A1 cao (must end	
<i>(</i> ii)		ın2)	
(")	Expected number of days = $250 \times 0.0572 = 14.3$ awrt	M1 for 250 x prob(B)	2
		A1 FT but no rounding at	
		TOTAL	7

Q5 (i)	Let p = probability of remembering or naming all items (for population) (whilst listening to music.) H ₀ : p = 0.35 H ₁ : p > 0.35	B1 for definition of p B1 for H ₀ B1 for H ₁	
	H ₁ has this form since the student believes that the probability will be increased/ improved/ got better /gone up.	E1dep on p>0.35 in H_0 In words not just because p > 0.35	4
(ii)	Let $X \sim B(15, 0.35)$ <i>Either</i> : $P(X \ge 8) = 1 - 0.8868 = 0.1132 > 5\%$ Or 0.8868 < 95% So not enough evidence to reject H ₀ (Accept H _o)	<i>Either:</i> M1 for probability (0.1132) M1 dep for comparison A1 dep	
	Conclude that there is not enough evidence to indicate that the probability of remembering all of the items is improved / improved/ got better /gone up. (when listening to music.)	E1 dep on all previous marks for conclusion in context	
	 Or:	Or:	
	Critical region for the test is {9,10,11,12,13,14,15} 8 does not lie in the critical region. So not enough evidence to reject H ₀	M1 for correct CR(no omissions or additions) M1 dep for 8 does not lie in CR A1 dep	
	Conclude that there is not enough evidence to indicate that the probability of remembering all of the items is improved / improved/ got better /gone up. (when listening to music.)	E1dep on all previous marks for conclusion in context	
	Or:	Or:	
	The smallest critical region that 8 could fall into is {8, 9, 10, 11, 12, 13, 14, and 15}. The size of this region is 0.1132	M1 for CR{8,9,15} and size = 0.1132 M1 dep for comparison	
	0.1132 > 5%	Adden	
	So not enough evidence to reject H_0	Атаер	
	Conclude that there is not enough evidence to indicate that the probability of remembering all of the items is improved (when listening to music)	E1dep on all previous marks for conclusion in context	
			_
		TOTAL	4 8

	Section B		
Q6 (i)	(<i>A</i>) P(both rest of UK) = 0.20 × 0.20 = 0.04	M1 for multiplying A1cao	2
	(B) Either: All 5 case P(at least one England) = $(0.79 \times 0.20) + (0.79 \times 0.01) + (0.20 \times 0.79) + (0.01 \times 0.79) +$ (0.79×0.79) = 0.158 + 0.0079 + 0.158 + 0.0079 + 0.6241 = 0.9559 Or P(at least one England) = 1 - P(neither England) = 1 - (0.21 × 0.21) = 1 - 0.0441 = 0.9559 or listing all = 1 -{(0.2 × 0.2) + (0.2 × 0.01) + (0.01 × 0.20) + (0.01x 0.01)} = 1 - {0.04 + 0.002 + 0.002 + 0.0001)} = 1 - 0.0441 = 0.9559	M1 for any correct term (3case or 5case) M1 for correct sum of all 3 (or of all 5) with no extras A1cao (condone 0.96 www) Or M1 for 0.21 × 0.21 or for (**) fully enumerated or 0.0441 seen M1 dep for 1 – (1 st part) A1cao	
	Or: All 3 case P(at least one England) = = $0.79 \times 0.21 + 0.21 \times 0.79 + 0.79^{2}$ = $0.1659 + 0.1659 + 0.6241$ = 0.9559	See above for 3 case	3
	$\overline{(C)Either}$ 0.79 x 0.79 + 0.79 x 0.2 + 0.2 x 0.79 + 0.2 x 0.2 = 0.9801 Or 0.99 × 0.99 = 0.9801 Or 1 - { 0.79 x 0.01 + 0.2 x 0.01 + 0.01 x 0.79 + 0.01 x 0.02 + 0.01 ² } = 1 - 0.0199 = 0.9801	M1 for sight of all 4 correct terms summed A1 cao (condone 0.98 www)orM1 for 0.99 x 0.99 A1caoOrM1 for everything $1 - {}$ A1cao	2
(ii)	P(both the rest of the UK neither overseas) $= \frac{P(\text{the rest of the UK and neither overseas})}{P(\text{neither overseas})}$ $= \frac{0.04}{0.9801} = 0.0408$ {Watch for: $\frac{answer(A)}{answer(C)}$ as evidence of method (p <1)}	M1 for numerator of 0.04 or 'their answer to (i)(A)' M1 for denominator of 0.9801 or 'their answer to (i) (C)' A1 FT ($0) 0.041 atleast$	3

(iii)			
	(A) Probability = $1 - 0.79^5$ = $1 - 0.3077$ = 0.6923 (accept awrt 0.69) see additional notes for alternative solution	M1 for 0.79 ⁵ or 0.3077 M1 for 1 – 0.79 ⁵ dep A1 CAO	
	(B) $1 - 0.79^n > 0.9$ EITHER: $1 - 0.79^n > 0.9 \text{ or } 0.79^n < 0.1$ (condone = and \geq throughout) but not reverse inequality $n > \frac{\log 0.1}{\log 0.79}$, so $n > 9.768$ Minimum $n = 10$ Accept $n \geq 10$	M1 for equation/inequality in n (accept either statement opposite) M1(indep) for process of using logs i.e. $\frac{\log a}{\log b}$ A1 CAO	3
	OR (using trial and improvement): Trial with 0.79^9 or 0.79^{10} $1 - 0.79^9 = 0.8801$ (< 0.9) or $0.79^9 = 0.1198$ (> 0.1) $1 - 0.79^{10} = 0.9053$ (> 0.9) or $0.79^{10} = 0.09468$ (< 0.1) Minimum $n = 10$ Accept $n \ge 10$	 M1(indep) for sight of 0.8801 or 0.1198 M1(indep) for sight of 0.9053 or 0.09468 A1 dep on both M 's cao	3
	NOTE: <i>n</i> = 10 unsupported scores SC1 only	 TOTAL	16

Q7 (i)	Positive	B1	1
(ii)	Number of people = 20 × 33 (000) + 5 × 58 (000) = 660 (000) + 290 (000) = 950 000	M1 first term M1(indep) second term A1 cao NB answer of 950 scores M2A0	3
(iii)	(A) $a = 1810 + 340 = 2150$ (B) Median = age of 1 385 (000 th) person or 1385.5 (000) Age 30, cf = 1 240 (000); age 40, cf = 1 810 (000) Estimate median = (30) + $\frac{145}{570} \times 10$	M1 for sum A1 cao 2150 or 2150 thousand but not 215000 B1 for 1 385 (000) or 1385.5 M1 for attempt to 145k	2
	Median = 32.5 years (32.54) If no working shown then 32.54 or better is needed to gain the M1A1. If 32.5 seen with no previous working allow SC1	interpolate $\frac{100}{570k} \times 10$ (2.54 or better suggests this) A1 cao min 1dp	
(iv)	Frequency densities: 56, 65, 77, 59, 45, 17 (accept 45.33 and 17.43 for 45 and 17)	B1 for any one correct B1 for all correct (soi by listing or from histogram)	
		Note: all G marks below <i>dep</i> on attempt at frequency density, NOT frequency	
		G1 Linear scales on both axes (no inequalities) G1 Heights FT their listed fds or all must be correct. Also widths. All blocks joined	
		G1 Appropriate label for vertical scale eg 'Frequency density (thousands)', 'frequency (thousands) per 10 years', 'thousands of people per 10 years'. (allow key). OR f.d.	5

(v)	Any two suitable comments such as: Outer London has a greater proportion (or %) of people under 20 (or almost equal proportion) The modal group in Inner London is 20-30 but in Outer London it is 30-40 Outer London has a greater proportion (14%) of aged 65+ <u>All</u> populations in <u>each</u> age group are higher in Outer London	E1 E1	
	Outer London has a more evenly spread distribution or balanced distribution (ages) o.e.		2
(vi)	Mean increase ↑ median unchanged (-) midrange increase ↑ standard deviation increase ↑ interquartile range unchanged. (-)	Any one correct B1 Any two correct B2 Any three correct B3 All five correct B4	4
		TOTAL	20

4767 Statistics 2

Question 1

Quot			
(i)	EITHER: $S_{xy} = \Sigma xy - \frac{1}{n} \Sigma x \Sigma y = 880.1 - \frac{1}{48} \times 781.3 \times 57.8$	M1 for method for S_{xy}	
	= -60.72	M1 for method for at least one of S_{xx} or S_{yy}	
	$S_{XX} = \Sigma x^2 - \frac{1}{n} (\Sigma x)^2 = 14055 - \frac{1}{48} \times 781.3^2 = 1337.7$	A1 for at least one of S_{xy} , S_{xx} , S_{yy} . correct	
	$S_{yy} = \Sigma y^{2} - \frac{1}{n} (\Sigma y) = 106.3 - \frac{1}{48} \times 57.8^{2} = 36.70$ S _m -60.72	M1 for structure of r A1 CAO	
	$r = \frac{xy}{\sqrt{S_{xx}S_{yy}}} = \frac{3000}{\sqrt{1337.7 \times 36.70}} = -0.274$ OR:	(-0.27 to -0.28) M1 for method for cov (x,y)	
	$\operatorname{cov}(x,y) = \frac{\sum xy}{n} - \frac{1}{xy} = 880.1/48 - 16.28 \times 1.204$ $= -1.265$	M1 for method for at least	
	rmsd(x) = $\sqrt{\frac{S_{xx}}{n}} = \sqrt{(1337.7/48)} = \sqrt{27.87} = 5.279$	A1 for at least one of cov/msd_correct	
	rmsd(y) = $\sqrt{\frac{S_{yy}}{n}} = \sqrt{(36.70/48)} = \sqrt{0.7646} = 0.8744$	A1 CAO (-0.27 to -0.28)	5
(ii)	$r = \frac{cov(x,y)}{rmsd(x)rmsd(y)} = \frac{-1.205}{5.279 \times 0.8744} = -0.274$	B1 for H ₂ H ₄ in symbols	
(")	$H_1: \rho < 0$ (one-tailed test)		
	where $ ho$ is the population correlation coefficient	B1 for defining ρ	
	For <i>n</i> = 48, 5% critical value = 0.2403	B1FT for critical value	
	Since $ - 0.274 > 0.2403$ we can reject H ₀ :	M1 for sensible comparison leading to a	6
	There is sufficient evidence at the 5% level to suggest that there is negative correlation between education spending and population growth.	conclusion A1 for result (FT r<0) E1 FT for conclusion in words	Ū
(iii)	Underlying distribution must be bivariate Normal. If the distribution is bivariate Normal then the scatter diagram will have an elliptical shape.	B1 CAO for bivariate Normal B1 indep for elliptical shape	2
(iv)	 Correlation does not imply causation There could be a third factor increased growth could cause lower spending. Allow any sensible alternatives, including example of 	E1 E1 E1	
	a possible third factor.	F 4	3
(v)	Advantage – less effort or cost Disadvantage – the test is less sensitive (ie is less		
	likely to detect any correlation which may exist)	E1	2
1			18

Question 2

(i)	(A) $P(X = 2) = e^{-0.37} \frac{0.37^2}{2!} = 0.0473$	M1 A1 (2 s.f.)	
	$(B) P(X \ge 2) = 1 - (e^{-0.37} \frac{0.37^2}{2!} + e^{-0.37} \frac{0.37^1}{1!} + e^{-0.37} \frac{0.37^0}{0!}) = 1 - (0.0473 + 0.2556 + 0.6907) = 0.0064$	M1 for $P(X = 1)$ and P(X = 0) M1 for complete method A1 NB Answer given	5
(ii)	P(At most one day more than 2) = $\binom{30}{1} \times 0.9936^{29} \times 0.0064 + 0.9936^{30} =$ = 0.1594 + 0.8248 = 0.9842	M1 for coefficient M1 for 0.9936 ²⁹ × 0.0064 M1 for 0.993630 A1 CAO (min 2sf)	4
(iii)	$\lambda = 0.37 \times 10 = 3.7$ P(X > 8) = 1 - 0.9863 = 0.0137	B1 for mean (SOI) M1 for probability A1 CAO	3
(iv)	Mean no. per 1000ml = 200 × 0.37 = 74 Using Normal approx. to the Poisson, $X \sim N(74, 74)$ $P(X > 90) = P\left(Z > \frac{90.5 - 74}{\sqrt{74}}\right)$ = $P(Z > 1.918) = 1 - \Phi(1.918)$ = $1 - 0.9724 = 0.0276$	 B1 for Normal approx. with correct parameters (SOI) B1 for continuity corr. M1 for probability using correct tail A1 CAO (min 2 s.f.), (but FT wrong or omitted CC) 	4
(v)	P(questionable) = 0.0064 × 0.0137 × 0.0276 = 2.42 × 10 ⁻⁶	M1 A1 CAO	2

Question 3

(i)	$X \sim N(27500,4000^2)$		
	P(X > 25000) = P(Z > 25000 - 27500)	M1 for standardising	
	1(x+25000) = 1(2 - 4000)		
	= P(Z > -0.625)	A1 for -0.625	
	$= \Phi(0.625) = 0.7340 (3 \text{ s.f.})$	A1CAO (must include use	4
		of differences)	-
(ii)	P(7 of 10 last more than 25000)		
	$= \begin{pmatrix} 10 \\ 10 \end{pmatrix} \times 0.7340^7 \times 0.2660^3 = 0.2592$	M1 for coefficient M1 for $0.7340^7 \times 0.2660^3$	
	(7)	A1 FT (min 2sf)	3
(iii)	From tables $\Phi^{-1}(0.99) = 2.326$		
	k - 27500 a care	B1 for 2.326 seen	
		negative z-value	
	$x = 27500 - 2.326 \times 4000 = 18200$		3
		A1 CAO for awrt 18200	
(iv)	$H_0: \mu = 27500; H_1: \mu > 27500$	B1 for use of 27500	
	Where μ denotes the mean lifetime of the new tyres.	B1 for both correct	
		B1 for definition of μ	3
(v)	Test statistic = $\frac{28630 - 27500}{1130}$	M1 must include $\sqrt{15}$	
	$\frac{1000}{4000} = \frac{1000}{1000} = \frac{1000}{1000}$	A1 FT	
	- 1.094	D4 for 4 C45	
	5% level 1 tailed critical value of $z = 1.645$	M1 dep for a sensible	
	1.094 < 1.645 so not significant.	comparison leading to	
		a conclusion	5
	There is insufficient evidence to conclude that the new tyres last longer.	A1 for conclusion in words in context	5
			18
~ 400			
-------	---	---	----
(i)	H_0 : no association between location and species. H_1 : some association between location and species.	B1 for both	1
(ii)	Expected frequency = $38/160 \times 42 = 9.975$ Contribution = $(3 - 9.975)^2 / 9.975$ = 4.8773	M1 A1 M1 for valid attempt at (O-E) ² /E A1 NB Answer given	4
(iii)	Refer to χ_4^2 Critical value at 5% level = 9.488 Test statistic X^2 = 32.85 Result is significant	 B1 for 4 deg of f(seen) B1 CAO for cv M1 Sensible comparison, using 32.85, leading to a conclusion A1 for correct conclusion (FT their c.v.) 	5
	There appears to be some association between location and species NB if $H_0 H_1$ reversed, or 'correlation' mentioned, do not award first B1or final E1	E1 conclusion in context	
(iv)	 Limpets appear to be distributed as expected throughout all locations. Mussels are much more frequent in exposed locations and much less in pools than expected. Other shellfish are less frequent in exposed locations and more frequent in pools than expected. 	E1 E1, E1 E1, E1	5
(v)	$\frac{24}{53} \times \frac{32}{65} \times \frac{16}{42} = 0.0849$	M1 for one fraction M1 for product of all 3 A1 CAO	3
			18
L			

4768 Statistics 3

Q1	$f(x) = k(20 - x)$ $0 \le x \le 20$			
(a) (i)	$\int_{0}^{20} k(20-x) dx = \left[k \left(20x - \frac{x^2}{2} \right) \right]_{0}^{20} = k \times 200 = 1$	M1	Integral of $f(x)$, including limits (which may appear later), set equal to 1. Accept a geometrical	
	$\therefore k = \frac{1}{200}$	A1	triangle.	
	Straight line graph with negative gradient, in the first guadrant.	G1		
	Intercept correctly labelled (20, 0), with nothing extending beyond these points.	G1		
	Sarah is more likely to have only a short time to wait for the bus.	E1		5
(ii)	Cdf F(x) = $\int_0^x f(t) dt$ = $\frac{1}{200} \left(20x - \frac{x^2}{2} \right)$ x x^2	M1	Definition of cdf, including limits (or use of "+c" and attempt to evaluate it), possibly implied later. Some valid method must be seen.	
	$=\frac{10}{10}-\frac{10}{400}$	A1	Or equivalent expression; condone absence of domain [0, 20].	
	P(X > 10) = 1 - F(10) = 1 - (1 - 1/4) = 1/4	M1 A1	Correct use of c's cdf. f.t. c's cdf. Accept geometrical method, e.g area = $\frac{1}{2}(20 - 10)f(10)$, or similarity.	4
(iii)	Median time, <i>m</i> , is given by $F(m) = \frac{1}{2}$.	M1	Definition of median used, leading to the formation of a quadratic equation.	
	$\therefore \frac{10}{10} \frac{400}{400} - \frac{1}{2}$ $\therefore m^2 - 40m + 200 = 0$ $\therefore m = 5.86$	M1 A1	Rearrange and attempt to solve the quadratic equation. Other solution is 34.14; no explicit reference to/rejection of it is required.	3

(b) (i)	A simple random sample is one where every sample of the required size has an equal chance of being chosen.	E2	S.C. Allow E1 for "Every member of the population has an equal chance of being chosen independently of every other member".	2
(ii)	Identify clusters which are capable of representing the population as a whole. Choose a random sample of clusters. Randomly sample or enumerate within the chosen clusters.	E1 E1 E1		3
(iii)	A random sample of the school population might involve having to interview single or small numbers of pupils from a large number of schools across the entire country. Therefore it would be more practical to use a cluster sample.	E1 E1	For "practical" accept e.g. convenient / efficient / economical.	2
				19

_

Q2	$A \sim N(100, \sigma = 1.9)$ $B \sim N(50, \sigma = 1.3)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	$P(A < 103) = P\left(Z < \frac{103 - 100}{1.9} = 1.5789\right)$	M1 A1	For standardising. Award once, here or elsewhere.	
	= 0.9429	A1	c.a.o.	3
(ii)	$A_1 + A_2 + A_3 \sim N(300,$	B1	Mean.	
	$\sigma^2 = 1.9^2 + 1.9^2 + 1.9^2 = 10.83)$	B1	Variance. Accept sd (= 3.291).	
	P(this > 306) =			
	$P\left(Z > \frac{306 - 300}{3 \cdot 291} = 1 \cdot 823\right) = 1 - 0 \cdot 9658 = 0.0342$	A1	c.a.o.	3
(iii)	$A + B \sim N(150,$	B1	Mean.	
	$\sigma^2 = 1.9^2 + 1.3^2 = 5.3$)	B1	Variance, Accept sd (= 2.302).	
	P(this > 147) = $P(Z > \frac{147 - 150}{2 \cdot 302} = -1.303)$			
	= 0.9037	A1	c.a.o.	3
(iv)	$B_1 + B_2 - A \sim N(0,$	B1	Mean. Or $A - (B_1 + B_2)$.	
	$1 \cdot 3^2 + 1 \cdot 3^2 + 1 \cdot 9^2 = 6 \cdot 99)$	B1	Variance. Accept sd (= 2.644).	
	P(−3< this < 3)	M1	Formulation of requirement	
	$= P\left(\frac{-3-0}{2.644} < Z < \frac{3-0}{2.644}\right) = P\left(-1.135 < Z < 1.135\right)$	A1	two sided.	
	$= 2 \times 0.8718 - 1 = 0.7436$	A1	c.a.o.	5
(v)	Given $\bar{x} = 302.3 s_{n-1} = 3.7$			
	Cl is given by $302.3 \pm 1.96 \times \frac{3.7}{\sqrt{1-1}}$	M1	Correct use of 302.3 and	
	√100		$3.7/\sqrt{100}$.	
	= 302.3 + 0.7252 = (301.57(48)	В1 Д1	FOR 1.96	
	- 302 3 ± 0 7232 - (301 37(40), 303·02(52))		interval.	
	The batch appears not to be as specified	E1		4
	since 300 is outside the confidence			
				18

Г

Q3				
(a) (i)	H ₀ : $\mu_D = 0$ (or $\mu_I = \mu_{II}$) H ₁ : $\mu_D \neq 0$ (or $\mu_{II} \neq \mu_I$) where μ_D is "mean for II – mean for I" Normality of <u>differences</u> is required.	B1 B1 B1	Both. Hypotheses in words only must include "population". For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\overline{X}_I = \overline{X}_I$ " or similar unless \overline{X} is clearly and explicitly stated to be a <u>population</u> mean.	3
(ii)	MUST be PAIRED COMPARISON <i>t</i> test.	İ		
	$\overline{d} = 11.6$ 10.0 26.8 42.7 2.4 $\overline{d} = 11.6$ $s_{n-1} = 17.707$ Test statistic is $\frac{11.6 - 0}{\frac{17.707}{\sqrt{8}}}$ $= 1.852(92).$	-14.9 B1 M1	-2.016.311.5 $s_n = 16.563$ but do NOT allow this here or in construction of test statistic, but FT from there.Allow c's \overline{d} and/or s_{n-1} .Allow alternative: 0 + (c's 2.365) $\times \frac{17.707}{\sqrt{8}}$ (= 14.806) forsubsequent comparison with \overline{d} . (Or \overline{d} - (c's 2.365) $\times \frac{17.707}{\sqrt{8}}$ (=-3.206) for comparison with 0.) c.a.o. but ft from here in any case if wrong. Use of 0 - \overline{d} scores M1A0, but ft.	
	Refer to <i>t</i> ₇ . Double-tailed 5% point is 2.365. Not significant. Seems there is no difference between the mean yields of the two types of plant.	M1 A1 A1 A1	No ft from here if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. Special case: (t_8 and 2.306) can score 1 of these last 2 marks if either form of conclusion is given.	7

												1 1
Diff	-5	4	-14	-3	6		1	-11	-8	-7	-9	
Rank of diff	4	3	10	2	5		1	9	7	6	8	
						M1	Fo	or diffe	rences	. ZERC	D in this	
							se	ection i	f differe	ences i	not used.	
						M1	F	or rank	s.			
						A1	F	T from	here if	ranks	wrong	
W ₊ = 1 +3 + 5	=9 (c	or <i>W</i> _ =	:			B1					·	
2+4+6+7+8+9-	+10 = 4	16)										
		,										
Refer to tables	of Wil	coxon	paired	(/single	e	M1	N	o ft froi	n here	if wror	ng.	
sample) statist	ic for <i>n</i>	= 10.	•								•	
Lower (or uppe	er if 46	used)	double	e-tailed		A1	i.e	e. a 2-ta	from here if			
5% point is 8 (or 47 if	46 us	ed).				w	rong.				
Result is not si	gnifica	nt.	,			A1	ft	only c'	s test s	statistic		
No evidence to suggest the tasters differ on					on	A1	ft	only c'	s test s	statistic		8
the whole.	00						,					
							1					18
	DiffRank of diff $W_+ = 1 + 3 + 5$ $2+4+6+7+8+9$ Refer to tablessample) statistLower (or upper5% point is 8 (inResult is not sinNo evidence to the whole.	Diff-5Rank of diff 4 $W_+ = 1 + 3 + 5 = 9$ (c $2+4+6+7+8+9+10 = 4$ Refer to tables of Wilesample) statistic for <i>n</i> Lower (or upper if 465% point is 8 (or 47 ifResult is not significaNo evidence to suggethe whole.	Diff-54Rank of diff 43 $W_+ = 1 + 3 + 5 = 9$ (or $W = 2+4+6+7+8+9+10 = 46$)Refer to tables of Wilcoxon sample) statistic for $n = 10$.Lower (or upper if 46 used)5% point is 8 (or 47 if 46 used)the whole.	Diff-54-14Rank of diff 4310 $W_+ = 1 + 3 + 5 = 9$ (or $W = 2+4+6+7+8+9+10 = 46$)Refer to tables of Wilcoxon paired sample) statistic for $n = 10$.Lower (or upper if 46 used) double5% point is 8 (or 47 if 46 used).Result is not significant.No evidence to suggest the tasters the whole.	Diff-54-14-3Rank of diff 43102 $W_+ = 1 + 3 + 5 = 9$ (or $W = 2+4+6+7+8+9+10 = 46$)Refer to tables of Wilcoxon paired (/single sample) statistic for $n = 10$.Lower (or upper if 46 used) double-tailed 5% point is 8 (or 47 if 46 used).Result is not significant.No evidence to suggest the tasters differ the whole.	Diff-54-14-36Rank of diff 431025 $W_+ = 1 + 3 + 5 = 9$ (or $W = 2 + 4 + 6 + 7 + 8 + 9 + 10 = 46$)Refer to tables of Wilcoxon paired (/single sample) statistic for $n = 10$.Lower (or upper if 46 used) double-tailed 5% point is 8 (or 47 if 46 used).Result is not significant.No evidence to suggest the tasters differ on the whole.	Diff-54-14-36Rank of diff 431025M1 $W_+ = 1 + 3 + 5 = 9$ (or $W =$ M1 $2+4+6+7+8+9+10 = 46$)B1Refer to tables of Wilcoxon paired (/single sample) statistic for $n = 10$. Lower (or upper if 46 used) double-tailed 5% point is 8 (or 47 if 46 used). Result is not significant.A1No evidence to suggest the tasters differ on the whole.A1	Diff-54-14-361Rank of diff 4310251M1ForM1ForM1For $W_+ = 1 + 3 + 5 = 9$ (or $W =$ B1M1For $2+4+6+7+8+9+10 = 46$)B1B1Refer to tables of Wilcoxon paired (/single sample) statistic for $n = 10$.M1NoLower (or upper if 46 used) double-tailed 5% point is 8 (or 47 if 46 used).A1i.eResult is not significant.A1ftNo evidence to suggest the tasters differ on the whole.A1ft	Diff-54-14-361-11Rank of diff 43102519M1For diffe section it M1For diffe section it M1 $W_+ = 1 + 3 + 5 = 9$ (or $W =$ $2+4+6+7+8+9+10 = 46$)M1For rank B1Refer to tables of Wilcoxon paired (/single sample) statistic for $n = 10$. Lower (or upper if 46 used) double-tailed 5% point is 8 (or 47 if 46 used). Result is not significant.M1No ft from wrong.Result is not significant. the whole.A1i.e. a 2-ta wrong.Tt only c's ft only c's	Diff-54-14-361-11-8Rank of diff 431025197Rank of diff 431025197M1For differences section if differences B1W+ = 1 + 3 + 5 = 9 2 + 4 + 6 + 7 + 8 + 9 + 10 = 46)M1For differences B1Refer to tables of Wilcoxon paired (/single sample) statistic for $n = 10$. Lower (or upper if 46 used) double-tailed 5% point is 8 (or 47 if 46 used). Result is not significant.M1No ft from here i.e. a 2-tail test. wrong.No evidence to suggest the tasters differ on the whole.A1ft only c's test s ft only c's test s	Diff -5 4 -14 -3 61 -11 -8 -7 Rank of diff 4310251976M1For differences. ZERC section if differences. ZERC B1W+ = 1 + 3 + 5 = 9 2+4+6+7+8+9+10 = 46)M1For ranks. B1Refer to tables of Wilcoxon paired (/single sample) statistic for $n = 10$. Lower (or upper if 46 used) double-tailed 5% point is 8 (or 47 if 46 used). Result is not significant. No evidence to suggest the tasters differ on the whole.M1No ft from here if wron vrong. A1No evidence to suggest the tasters differ on the whole.A1In only c's test statistic to only c's test statistic	Diff-54-14-361-11-8-7-9Rank of diff 43102519768M1For differences. ZERO in this section if differences not used. $W_+ = 1 + 3 + 5 = 9$ (or $W =$ A1A1For ranks. $2+4+6+7+8+9+10 = 46$)B1FT from here if ranks wrongRefer to tables of Wilcoxon paired (/single sample) statistic for $n = 10$.M1No ft from here if wrong.Lower (or upper if 46 used) double-tailedA1i.e. a 2-tail test. No ft from here if wrong.S% point is 8 (or 47 if 46 used).A1ft only c's test statistic.No evidence to suggest the tasters differ on the whole.A1A1

$\overline{x} = \frac{310}{100} = 3$	3.1				B1					
$s^{2} = \frac{1288 - 100 \times 3.1^{2}}{99} = \frac{327}{99} = 3.303$ Evidence could support Poisson since the variance is fairly close to the mean.										3
		1								
f _o	6	16	19	18	17 17 33	14	6	4	0	
Merged	2 18	22 .47	21.00	22.51	17.55	10.75	5.55	10 9.43	1.42	
					M1 A1 A1	Calculat frequenc Last cell All other	ion of ex cies. correct. s correc	pected t, but ft if	f wrong.	
					M1	Combining cells. (Condone if not combined as fully as shown above, but require top two cells combined as a minimum.)				
$X^2 = 0.67$	747 + 0.3 6 + 0.034	3244 + 0.3 45	8537 + 0	.0063 +	M1	Calculation of X^2 .				
= 2.87	76(2)	10			A1	(Condone wrong last cell.) Depends on both of the preceding M marks.				
Refer to χ e.g. Upper	ζ ² ₄ . r 10% pc	oint is 7.7	79.		M1	Allow co wrongly table, an	rrect df groupec d FT. O	(= cells – l or ungro therwise	- 2) from ouped , no FT if	
Not signifi	cant.	in a dal d	fit		A1	ft only c'	s test st	atistic.		
at any i	reasonat	ble level	of signific	cance.	A1 A1	Or other	sensible	e comme	ent.	10
CI is giver	1 by 1 465	i +			M1	If both 1	465 and	1 0 2 2 0 0 /	$\sqrt{10}$ are	
	1.100	- -			5.4	correct.	.405 and	1 0.3200/ ¹		
		2.262			В1 В1	lf <i>t</i> ₉ use	ed.			
			0 2200			95% 2-ta distribution previous	iil point f on (Inde mark).	for c's <i>t</i> pendent	of	
= 1.46	5 ± 0.23	× 52= (1.22	$\frac{40.3288}{\sqrt{10}}$ 298, 1.70)02)	A1	c.a.o. Mi interval.	ust be e	xpressec	l as an	4
	$\overline{x} = \frac{310}{100} = 3$ $s^{2} = \frac{1288 - 1}{1288 - 1}$ Evidence variance is $\frac{f_{o}}{f_{e}}$ Merged $X^{2} = 0.67$ 0.9820 $= 2.87$ Refer to χ e.g. Uppe Not signifi Suggests at any f CI is given $= 1.46$	$\overline{x} = \frac{310}{100} = 3.1$ $s^{2} = \frac{1288 - 100 \times 3.1^{2}}{99}$ Evidence could su variance is fairly cl $\frac{f_{o}}{6} = \frac{6}{f_{e}} = 4.50$ Merged 18 $X^{2} = 0.6747 + 0.3$ $0.9826 + 0.034$ $= 2.876(2)$ Refer to χ_{4}^{2} . e.g. Upper 10% pc Not significant. Suggests Poisson at any reasonal CI is given by 1.465	$\overline{x} = \frac{310}{100} = 3.1$ $s^{2} = \frac{1288 - 100 \times 3.1^{2}}{99} = \frac{327}{99} = 327$ Evidence could support Povariance is fairly close to the field of the field	$\bar{x} = \frac{310}{100} = 3.1$ $s^{2} = \frac{1288 - 100 \times 3.1^{2}}{99} = \frac{327}{99} = 3.303$ Evidence could support Poisson sinvariance is fairly close to the mean. $\frac{f_{0}}{f_{e}} = \frac{6}{4.50} = \frac{16}{13.97} = \frac{19}{21.65}$ Merged 22 Merged 22 Merged 18.47 $X^{2} = 0.6747 + 0.3244 + 0.8537 + 0.09826 + 0.0345 = 2.876(2)$ Refer to χ^{2}_{4} . e.g. Upper 10% point is 7.779. Not significant. Suggests Poisson model does fit at any reasonable level of significant. Cl is given by 1.465 ± 2.262 $\frac{0.3288}{\sqrt{10}} = 1.465 \pm 0.2352 = (1.2298, 1.70)$	$\overline{x} = \frac{310}{100} = 3.1$ $s^{2} = \frac{1288 - 100 \times 3.1^{2}}{99} = \frac{327}{99} = 3.303$ Evidence could support Poisson since the variance is fairly close to the mean. $\boxed{\frac{f_{o}}{6} \frac{6}{16} \frac{19}{13.97} \frac{18}{21.65} \frac{12}{22.37}}{Merged \frac{22}{18.47}}$ $X^{2} = 0.6747 + 0.3244 + 0.8537 + 0.0063 + 0.9826 + 0.0345 = 2.876(2)$ Refer to χ^{2}_{*} . e.g. Upper 10% point is 7.779. Not significant. Suggests Poisson model does fit at any reasonable level of significance. Cl is given by 1.465 ± 2.262 $\times \frac{0.3288}{\sqrt{10}}$ $= 1.465 \pm 0.2352 = (1.2298, 1.7002)$	$\bar{x} = \frac{310}{100} = 3.1$ B1 $s^2 = \frac{1288 - 100 \times 3.1^2}{99} = \frac{327}{99} = 3.303$ B1 Evidence could support Poisson since the variance is fairly close to the mean. E1 f_o 6 16 19 18 17 f_e 4.50 13.97 21.65 22.37 17.33 Merged 22 18.47 M1 A1 X^2 = 0.6747 + 0.3244 + 0.8537 + 0.0063 + 0.9826 + 0.0345 M1 A1 X^2 = 0.6747 + 0.3244 + 0.8537 + 0.0063 + 0.9826 + 0.0345 M1 A1 Refer to χ_4^2 . e.g. Upper 10% point is 7.779. M1 A1 Not significant. Suggests Poisson model does fit A1 at any reasonable level of significance. A1 Cl is given by 1.465 ± M1 2.262 B1 B1 B1 $\frac{\times \frac{0.3288}{\sqrt{10}}}{\sqrt{10}}$ A1	$\bar{x} = \frac{310}{100} = 3.1$ B1 $s^2 = \frac{1288 - 100 \times 3.1^2}{99} = \frac{327}{99} = 3.303$ B1 Evidence could support Poisson since the variance is fairly close to the mean. B1 $\frac{f_o}{e}$ 6 16 19 18 17 14 $\frac{f_o}{e}$ 4.50 13.97 21.65 22.37 17.33 10.75 Merged 22 22 18.47 M1 Calculati x^2 $= 0.6747 + 0.3244 + 0.8537 + 0.0063 + 0.9826 + 0.0345$ M1 Combine above, b como	$\overline{x} = \frac{310}{100} = 3.1$ B1 $s^2 = \frac{1288 - 100 \times 3.1^2}{99} = \frac{327}{99} = 3.303$ B1 Evidence could support Poisson since the variance is fairly close to the mean. B1 f_0 6 16 19 18 17 14 6 f_{θ} 4.50 13.97 21.65 22.37 17.33 10.75 5.55 Merged 22 18.47 1 Calculation of expression frequencies. Last cell correct. A1 others correct A1 M1 Calculation of X ² Last cell correct. X^2 = 0.6747 + 0.3244 + 0.8537 + 0.0063 + M1 Combined as full above, but requires. Last cell correct. X^2 = 0.6747 + 0.3244 + 0.8537 + 0.0063 + M1 Condone wrong Depends on both preceding M ma X^2 = 0.6747 + 0.3244 + 0.8537 + 0.0063 + M1 Condone wrong Depends on both preceding M ma Refer to χ_4^2 . M1 Condone wrong Depends on both preceding M ma Refer to χ_4^2 . A1 Allow correct of wrong! at any reasonable level of significance. A1 A1 C1 is given by 1.465 ±	$\bar{x} = \frac{310}{100} = 3.1$ B1 $s^2 = \frac{1288 - 100 \times 3.1^2}{99} = \frac{327}{99} = 3.303$ B1 Evidence could support Poisson since the variance is fairly close to the mean. B1 $\frac{f_0}{f_e}$ 6 16 19 18 17 14 6 4 $\frac{f_0}{f_e}$ 4.50 13.97 21.65 22.37 17.33 10.75 5.55 2.46 Merged 22 10 9.43 10 9.43 X ² = 0.6747 + 0.3244 + 0.8537 + 0.0063 + 0.0063 + 0.9826 + 0.0345 = 2.876(2) M1 Calculation of expected frequencies. Last cell correct. All others correct, but fi it 0.9826 + 0.0345 = 2.876(2) N1 Condone wrong last cell Depends on both of the preceding M marks. Refer to χ_i^2 . M1 Cloude or ungn table, and FT. Otherwise wrong. Not significant. A1 Allow correct df (= cells - wrongly grouped or ungn table, and FT. Otherwise wrong. Votisignificant. A1 ft only c's test statistic. Suggests Poisson model does fit A1 ft only c's test statistic. A1 both c's test statistic. A1 <	$\overline{x} = \frac{310}{100} = 3.1$ B1 $s^2 = \frac{1288 - 100 \times 3.1^2}{99} = \frac{327}{99} = 3.303$ B1 Evidence could support Poisson since the variance is fairly close to the mean. B1 Evidence could support Poisson since the variance is fairly close to the mean. B1 Evidence could support Poisson since the variance is fairly close to the mean. B1 Evidence could support Poisson since the variance is fairly close to the mean. B1 Evidence could support Poisson since the variance is fairly close to the mean. B1 Evidence could support Poisson since the variance is fairly close to the mean. B1 Evidence could support Poisson since the variance is fairly close to the mean. B1 Evidence could support Poisson since the variance is fairly close to the mean. B1 Marce Calculation of expected frequencies. A1 A1 Calculation of expected frequencies. A1 Combining cells. (Condone if not combined as fully as shown above, but require top two cells combined as fully as shown above, but require top two cells combined as fully as shown above, but require top two cells combined as fully as shown above, but require top two cells combined as fully as shown above, but require top two cells combined as fully as shown above, but require top two cells combined as fully as shown above, but require top two cells combined as fully as shown above, but require top two cells combined as fully as shown above, but require top two cells combi

4769 Statistics 4

Q1				
(i)				
	$1 - \frac{e^{-\theta}\theta^{x_1}}{e^{-\theta}\theta^{x_n}} \left[- \frac{e^{-n\theta}\theta^{\sum x_i}}{e^{-n\theta}\theta^{\sum x_i}} \right]$	M1	product form	
	$\begin{bmatrix} L & - & \dots & \\ & x_1! & \dots & x_n! & \begin{bmatrix} - & x_1! & x_2! & \dots & x_n! \end{bmatrix}$	A1	fully correct	
	$\ln L = \text{const} - n \theta + \sum x_i \ln \theta$	M1 A1		
	$\frac{d\ln \mathcal{L}}{d\theta} = -n + \frac{\sum x_i}{\theta} = 0$	M1 A1		
	$\Rightarrow \hat{\theta} = \frac{\sum x_i}{n} (= \bar{x})$	A1	CAO	
	Check this is a maximum	M1		
	e.g. $\frac{d^2 \ln L}{d\theta^2} = -\frac{\sum x_i}{\theta^2} < 0$	A1		9
(ii)	$\lambda = \mathbf{P}(X=0) = e^{-\theta}$	B1		1
(iii)	We have $R \sim \mathrm{B}(n, e^{- heta})$,	M1		
	so $E(R) = ne^{-\theta}$	B1		
	$\operatorname{Var}(R) = ne^{-\theta} \left(1 - e^{-\theta}\right)$	B1		
	$\widetilde{\lambda} = \frac{R}{n}$	M1		
	$\therefore \mathbf{E}(\widetilde{\lambda}) = e^{-\theta}$	A1 A1		
	$\operatorname{Var}(\widetilde{\lambda}) = \frac{e^{-\theta}(1 - e^{-\theta})}{n}$	A1	BEWARE PRINTED ANSWER	7

(iv)	Relative efficiency of $\tilde{\lambda}$ wrt ML est $= \frac{Var(ML Est)}{Var(\tilde{\lambda})}$ $= \frac{\theta e^{-2\theta}}{\theta e^{-2\theta}} \cdot \frac{n}{\theta} = \frac{\theta}{\theta}$	M1 M1	any attempt to compare variances if correct	
	$n e^{-\theta} (1 - e^{-\theta}) e^{\theta} - 1$ Eq:- Expression is $\frac{\theta}{-\theta}$	A1 M1	BEWARE PRINTED ANSWER	
	$\theta + \frac{\theta^2}{2!} + \dots$ always < 1	E1		
	and this is \approx 1 if θ is small \approx 0 if θ is large	E1 E1	Allow statement that $\frac{\theta}{e^{\theta}-1} \rightarrow 0 \text{ as } \theta \rightarrow \infty$	7

Q2				
(i)	$\mathbf{P}(X=x)=q^{x-1}p$	B1	FT into pgf only	
	Pgf $G(t) = E(t^{X}) = \sum_{x=1}^{\infty} pt^{x}q^{x-1}$	M1		
	$= pt(1 + qt + q^{2}t^{2} +)$	A1		
	$=\underline{pl(1-ql)}$	A1	BEWARE PRINTED ANSWER	
			not required]	
	$\mu = G'(1) \sigma^2 = G''(1) + \mu - \mu^2$	M1	for attempt to find G'(<i>t</i>) and/or G"(<i>t</i>)	
	$G'(t) = pt(-1)(1-qt)^{-2}(-q) + p(1-qt)^{-1}$			
	$= pqt(1-qt)^{-1} + p(1-qt)^{-1}$	A1		
	: G'(1) = $pq(1-q)^{-2} + p(1-q)^{-1} = \frac{q}{p} + 1 = \frac{1}{\underline{p}}$	A1	BEWARE PRINTED ANSWER	
	$G''(t) = pqt(-2)(1-qt)^{-3}(-q) + pq(1-qt)^{-2} + p(-1)(1-qt)^{-2}(-q)$	A1		
	$\therefore G''(1) = 2pq^2(1-q)^{-3} + pq(1-q)^{-2} + pq(1-q)^{-2}$			
	$=\frac{2q}{p^2}+\frac{2q}{p}$	A1		
	$\therefore \sigma^{2} = \frac{2q^{2}}{p^{2}} + \frac{2q}{p} + \frac{1}{p} - \frac{1}{p^{2}} = \frac{2q^{2} + 2pq + p - 1}{p^{2}}$	M1	For inserting their values	
	$= \frac{q}{p^{2}}(2q+2p-1) = \frac{q}{\frac{p^{2}}{2}}$	A1	BEWARE PRINTED ANSWER	
				11

(ii)	X_1 =number of trials to first success X_2 = """" next " X_2 + X_1 + X_2 +, X_n			
	= total no of trials	E1 E1		
	X _n = " " " " " " nth "			
	$\therefore \operatorname{pgf of} Y = (\operatorname{pgf of} X)^n = \underline{p^n t^n (1 - qt)^{-n}}$	1		
	$\mu_Y = n\mu_X = \frac{n}{p}$	1		
	$\vec{\sigma}_Y^2 = n\sigma_X^2 = \frac{nq}{2}$			
	<u>p</u>	1		5
(iii)	N(candidate's μ_{y} , candidate's σ_{y}^{2})	1		1
(iv)	Y = no of tickets to be sold ~ random variable as in (ii) with $n = 140$ and $p = 0.8$	E1		
	~ Approx N($\frac{140}{0.8} = 175$, $\frac{140 \times 0.2}{(0.8)^2} = 43.75$)	1		
	P(Y ≥ 160) ≈ P(N(175,43.75) > 159 $\frac{1}{2}$)	M1	Do not award if cty corr absent or wrong, but FT if 160 used \rightarrow	
	= P(N(0,1)>-2.343) = 0.9905	A1 A1	-2.268, 0.9884	
	For any sensible discussion in context (eg groups of passengers \Rightarrow not indep.)	E1 E1	CAO	7
Q3	X = amount of salt ~ N(μ [750], σ^2 [20 ²]) Sample of $n=9$			
(i)	Type I error: rejecting null hypothesis when it is true.	B1 B1	Allow B1 for P(rej H₀ when true)	
	Type II error: accepting null hypothesis when it is false.	B1 B1	Allow B1 for P(acc H₀ when false)	
	OC: P (accepting null hypothesis as a function of the parameter under investigation)	B1 B1	[P(type II error the true value of the parameter) scores B1+B1]	6
(ii)	Reject if $\overline{x} < 735 \text{ or } \overline{x} > 765$ $\alpha = P(\overline{X} < 735 \text{ or } \overline{X} > 765 \overline{X} \sim N(750, \frac{20^2}{2}))$	M1	Might be implicit	
	$= P(Z < \frac{(735 - 750)3}{20} = -2.25$	A1		
	or $Z > \frac{(765 - 750)3}{20} = 2.25)$	A1		
	= 2(1-0.9878) = 2 × 0.0122 = 0.0244	A1	CAO	
	This is the probability of rejecting good output and unnecessarily re-calibrating the machine – seems small [but not very small?]	E1 E1	Accept any sensible comments	6

(iii)	Accept if $735 < \bar{x} < 765$, and now $\mu = 725$.	M1	might be implicit	
	$\beta = P(735 < \overline{X} < 765 \overline{X} \sim N(725, \frac{20^2}{2}))$			
	= P(1.5	A1		
	< Z< 6)	A1		
	= 1 - 0.9332 = 0.0668	A1	CAO	
			If upper limit 765 not	
			these 4 marks. If $\Phi(6)$ not	
	This is the probability of accepting output and	F 4	considered, maximum 3	6
	carrying on when in fact μ has slipped to 725 –	F1	OUT OF 4.	Ŭ
	smail[-ish?]			
(iv)	$OC = P(735 < \overline{X} < 765 \mid \overline{X} \sim N(\mu, 20^2/9))$	M1		
	$= \Phi \left(\frac{(765 - \mu)^3}{20} \right) - \Phi \left(\frac{(735 - \mu)^3}{20} \right) $			
	" Φ – Φ"	M1		
		A1	both correct	
	μ =720: Φ (6.75) - Φ (2.25)=1- 0.9878 =0.0122 730: 5.25 0.75 =1- 0.7734 =0.2266			
	740: $3.75 - 0.75 = 1 - (1 - 0.7734) = 0.7734$		if any two correct	
		1		
	FT 1 · 0 9756	1		
	760, 770, 780 by symmetry	1		
	[F1]. 0.7734, 0.2200, 0.0122	-		
				6
Q4				Ŭ
(i)	$x_{ij} = \mu + \alpha_i + e_{ij}$	1		
	μ = population	1		
	grand mean for whole experiment	1		
	α_i = population	1		
	mean by which <i>i</i> th treatment differs from μ			
	<i>e</i> , are experimental errors	1	Allow "up correlated"	
	\sim ind N (0, σ^2)	3	1 for ind N: 1 for 0: 1 for	
			σ^2 .	9
(ii)	Totals are 240 246 254 264 196			
	each from sample of size 5			
	Grand total 936			
	"Correction factor" CF = $\frac{936^2}{2}$ = 43804.8			
	20			
	Total SS = 44544 - CF = 739.2			

	Between co $\frac{240^2}{5} + \dots +$ Residual SS	$\frac{196^2}{5}$ (by subt	rs SS = CF = 44 traction) =	4209.6 – C 739.2 – 4	M1 M1	For correct methods for any two, if each calculated SS is correct.		
						M1		
	Source of Variation	SS	df	MS	MS ratio	M1		
	Between		/			1		
	Contractors	404.8	3	134.93	6.456	A1		
	Residual	334.4	16	20.9				
	Total	739.2	19 🔪		1	CAO		
	Refer to F _{3,1}	16		•	I	1	NO FT IF WRONG	
	Upper 5% p	oint is 3	8.24			1	NO FT IF WRONG	
	Significant					1		
	Seems perfective	ormance	es of con	tractors a	1			
							12	
(iii)	Randomise	d blocks	6		B1			
	Description					E1 E1	Take the subject areas as "blocks", ensure each contractor is used at least once in each block	3

4771 Decision Mathematics 1

Solutions

2.					
(i)					
		Х	Y		
	5, 14, 153, 6, 24, 2, 14, 15	5, 14, 153	5, 2		
	5, 14, 6, 24, 14, 15	5, 14, 24	5		M1
	14, 6, 14, 15,	14, 15	14, 6		
	14, 14				
	Answer = 14			_	A1
	Comparisons = 30				A1
(ii)					
. ,		Х	Y]	
	5, 14, 153, 6, 24, 2, 14	5, 14, 153	5, 2		
	5, 14, 6, 24,14	5, 14, 24	5		M1
	14, 6, 14	14	14, 6		
	14				
	Answer = 14				A1
	Comparisons = 24				A1
(iii)	Median				B1
. ,					
(iv)	Time taken approximately pro	ength	B1		
	of list (or twice length takes for	our times the	e time, or		
	equivalent).				

3.			
(i)	$\begin{array}{ccc} T_1 \rightarrow T_2 & T_1 \rightarrow T_3 \rightarrow T_2 \\ T_1 \rightarrow T_3 & T_1 \rightarrow T_2 \rightarrow T_3 \\ T_1 \rightarrow T_2 \rightarrow T_3 \rightarrow T_4 & T_1 \rightarrow T_3 \rightarrow T_4 \end{array}$	M1 A1	
(ii)	$\begin{array}{cccc} T_4 \rightarrow T_3 \rightarrow T_2 \rightarrow T_1 & T_4 \rightarrow T_3 \rightarrow T_1 \\ T_4 \rightarrow T_3 \rightarrow T_1 \rightarrow T_2 & T_4 \rightarrow T_3 \rightarrow T_2 \\ T_4 \rightarrow T_3 \end{array}$	M1 A1	
(iii)	22	M1 A1	allow for 23
(iv)	11	M1 A1	halving (not 11.5)

4.										
(i)	e.g.	00–09-	→1							
	-	10–39-	→2						M1	
		40–79-	→3						A1	proportions OK
		80–89-	→4						A1	efficient
		90–99-	→5							
(ii)	e.g.	00–15-	→1						M1	some rejected
		16–47-	→2						A2	proportions OK
		48–55-	→3							(–1 each error)
		56–79-	→4						A1	efficient
		80–87-	→5							
		88–95-	→6							
		96, 97,	98, 99	reject						
•	<i></i> .									
(111) &	. (IV)									
Circ	0.000		- 4				Time to 45	1		
Sim	. Cars	arriving	aπer Jo)e –			Time to 15			
no.	umer	niervar	numbe				passengers			
1			10		2	1	(minutes)	-	M1	
	3 2				3	1	0	-		(1 each error)
2			14		5	<u> </u>	0	-	72	(-reachenor)
3	5 1			34	2	2	12	-		
4	40		4 1		2	3	4	-		
5 6		4 1	3 Z		2	2	0	-		
0	4 4	4 2	2 1	54	1	4	0	-	M1	simulation
/	4 1	4 2	31	34	1	<u> </u>	10	-	A1	time intervals
0				3 3		2	0	-	A1	passengers
9						2	5		A1	time to wait
10	24	3 2	26	25	2	1	5	J		
									_	
									B1	
	nore lu	115							В1	

|--|

6.										
(i)								1		
	Order of	1	3	6	4	5	2		M1	
	Inclusion	Δ	B	C	П	F	F		A1	select
		~		0		L			A1 A1	delete order
	А		10	7	-	9	5		/	
	В	-10-	-		1	_	-4			
	С	7	-	_	_	3	_			
	D		-1	-	_	2	_			
	E	-9	-	3	-2	-	-			
	F	5	4	_	_	1	1			
									B1	
	Arcs: AF	, FB, E	BD, DE,	EC						
	Length: 15								B1	
(ii) &	(iii)								D 4	
					4/5		1		B1 B1	lengths
				6	4(5)) 9			N/1	Diikotro
		^	$\frac{10}{10}$) 	10 9	1			A1	working values
[2 5	5/		7		2	7		A1	order of labelling
		=	9	1	>• c	-	/		AI	labels
	5		3			1				
				• [
	5(4)	9 -	2		6	10				
	9				(11)	10				
	Arcs: AF	, FB, E	BD, AC,	AE					M1 A1	
									B1	
(IV)	Cubic								וט	
	n applicatio	ns of I	Dijkstra	, which	is qua	dratic			B1	
1									1	

4772 Decision Mathematics 2

3.

(a) (i)											
	1	2	3	4		1	2	3	4			
1	∞	14	11	24	1	1	2	3	4		M1	sca Floyd
2	14	- xo	15	∞	2	1	2	3	4		A1	distance
3	11	15	x	12	3	1	2	3	4		A1	route
4	24	x	12	∞	4	1	2	3	4			
		I										
	1	2	2	4	1	1	2	2	4			
1	1	1/	3 11	4 24	1	1	2	3 3	4			
2	1/	28	15	27	2	1	1	3	+ 1		A1	
2	14	15	22	12	2	1	2	1	4			
4	24	38	12	48	4	1	1	3	- 1			
	27	50	12	40	-	1		5				
					г					I		
	1	2	3	4		1	2	3	4			
	28	14	11	24	1	<u>∠</u>		3	4			
2	14	2ŏ	10	30	2	1	1 0	J 1	1		A1	
3	24	10	12	12	3	1	2 1	」 2	4			
4	24	30	12	40	4	1	I	3	I			
					r				1	I		
	1	2	3	4		1	2	3	4			
1	22	14	11	23	1	3	2	3	3			
2	14	28	15	27	2	1	1	3	3		A1	
3	11	15	22	12	3	1	2	1	4			
4	23	27	12	24	4	3	3	3	3			
	1	2	3	4		1	2	3	4			
1	22	14	11	23	1	3	2	3	3			
2	14	28	15	27	2	1	1	3	3			
3	11	15	22	12	3	1	2	1	4			
4	23	27	12	24	4	3	3	3	3			
		20/	\frown			\frown	`					
		20(2	15	5	3 ()22					
						``	<u>\</u> 12					
		1	/ 1	1	27		\backslash	. .				
	(24			B1	loops
		\mathcal{I}^{22}	2		23		\rightarrow				B1	rest
							4	\bigcirc				
	1.2.4	A 1									N A A	A 4
(11)	134	21									M1	A1
	64	• • •									B1	
	$\Rightarrow 1$	3432	21								B1	

(iii)	27 + 11 + 14 = 52 TSP solution has length between 52 and 64	M1 A1 M1 A1	
(b)	e.g. $1 \ 3 \ 1 \ 2 \ 3 \ 4 \ 1$ length = 87 One repeated arc \rightarrow Eulerian	M1 A1 B1	A1

4.												_	
(i)	Let a	a be	e the n	umber	of to	onnes	of A p	roduce	d			M1 A	\ 1
	Max st		a+b+ 3a+2 5a+6	c b+5c< b+2c<	:60 :50							B1 B1 B1	
(ii)	e.g.												
	P		а	b		С	S 1	S ₂	RH	S		M1	initial tableau
	1		-1	-1	_	-1	0	0	0			A1	
	0		3	2	1	5	1	0	60)			
	0		5	6		2	0	1	50)			
						_			- 10			N/1	nivot
	1		-0.4	-0.6	5	0	0.2	0	12	2			ρινοι
	0		0.6	0.4	-	1	0.2	0	12	<u> </u>		///	
	0		J.0	5.2		0	-0.4		20)			
	1		>0	0		0	>0	>0	15	;		M1	
	0		· U	0		1	- 0		10)		A1	
	0		19/26	1	(0	-2/26	5/26	5				
	Mak	e 5	tonnes	s of B	and ^r	10 tor	nnes of	C				B1	interpretation
(iii) &	. (iv)	e.g	•										
	Α	Ρ	а	b	С	S ₁	S ₂	S ₃	art	RHS		B1	new constraint
	1	0	1	0	0	0	0	-1	0	8			
	0	1	-1	-1	-1	0	0	0	0	0		M1	surplus +
	0	0	3	2	5	1	0	0	0	60		AI	artificial
	0	0	5	6	2	0	1	0	0	50	-	B1	new objective
	0	0	1	0	0	0	0	_1	1	8			
	1	0	-	0	0	0	0	0	1	0			
	0	1	0	1	1	0	0	1	- I 1	8		N/1	
	0	0	0	2	5	1	0	3	-3	36	-		
	0	0	0	6	2	0	1	5	-5	10		///	
	0	0	1	0	0	0	0	_1	1	8	-		
		-		-				-					
		1	0	2	0	0	0.5	1.5		13			
		0	0	–13	0	1	-2.5	-4.5		11		B1	
		0	0	3	1	0	0.5	2.5		5			
		0	1	0	0	0	0	-1		8			
											J		
		~		<i>.</i> .				~					
	Mak	e 8	tonnes	s of A	and	o tonr	nes of (ز				B1	interpretation

4773 Decision Mathematics Computation

1.		
(i)	$XA + XB + XE + XF \ge 1$	M1 A1 ">" OK
	Indicator variables correspond to matrix column A (or row A) entries which are less than or equal to 5. Ensures that at least one such indicator is 1.	B1 indicator vars B1 <= 5 B1
(ii)	Min XA+XB+XC+XD+XE+XF	B1
()	st $XA+XB+XE+XF \ge 1$ $XA+XB+XE+XF \ge 1$ $XC+XF \ge 1$ $XD+XE \ge 1$ $XA+XB+XD+XE+XF \ge 1$ $XA+XB+XC+XE+XF \ge 1$	M1 A3 (–1 each error/ omission) allow (correct) reduced set of inequalities
(iii)	2 centres, at F&D or E&C or E&F	M1 A1 A1
(iv) (v)	e.g. add XF=0 to force solution E and C Three solutions are F & D, E & C, E & F.	M1 A1 B1
(vi)	Problem is unimodular (or convincing argument). In the interests of efficiency (and parsimony).	B1 B1

2.										
(i)	e.g. (candidat	es should s	how for	mulae))					
$\alpha =$	0.01 10 P(k	oirth) P(de	ath)	rand	rand	l birt	h c	death	B1	handling
β=	0.04 9	0.1	0.4 0.4	4261	0.3537	7	0	1		parameters
	8	0.09 0	.36 0	.257	0.1405	5	0	1	B1	births
	8	0.08 0	.32 0.8	3854	0.8632	2	0	0	B1	deaths
									B1	use of "rand"
									B1	use of "if"
									B1	updating
										population
(ii)	e.g. 113202	22330 -	0.2						M1 A	A1 B1
(iii)	ea									
()	в. В	0 01 0 0	2 0 03	0 04	0 05	0.06	0.0	7	M1	
	prob extinction	0 0	0.1	0.2	0.5	0.7	0.8		A1	decent range
									A1	reasonable
										outcomes
									R1	
(iv)	Addition of ano	ther rand +	anothe	r if + e	extra a	dd-on			M1	A1
									B1	
(v)	e 0									
(*)	с. у . ß	0.01.00	2 0 03	0 04	0.05	0.06	0 0	7	M1	
	prob extinction	0 0	0.00	0	0.00	0.2	0.3	,	A1	
		с с	Ŭ	J	Ŭ	0.2	0.0			

(a) m s	nax AB+ t AB-I BC+ BD+ AE-I AB< AB<	AE BC-BD+CB+DE DC-CB-CD-CG ED+CD-DB-D0 ED-EF+DE+FE FE-FG=0 :8 :3	B1 M1 A2	objective flow balance constraints	
E	BC< CB< DD CD CD CC DE ED EF FE CG FE FG	5 5 7 57 57 51 52 52 4 4 56		M1 A1	capacity constraints
	OBJI	ECTIVE FUNC	TION VALUE	N11	
	1)	10.00000			run
VARI	ABLE AB AE BC BD CB DB DC CD CD CG	VALUE 7.000000 3.000000 2.000000 0.000000 0.000000 1.000000 6.000000	REDUCED COST 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000	A1	results
	ED DE EF FE FG	0.000000 1.000000 4.000000 0.000000 4.000000	0.000000 0.000000 0.000000 1.000000 0.000000		
M	lax flow o	of 10 with flows	of 7 from A to B, … etc.	B1	interpretation
(b) min st	8x12+3x +x43+2x x12+x15	15+8x21+5x23 45+3x51+2x54 =10	+7X24+5X32+X34+8X37+7X42 +4X56+4X65+6X67+8X73+6X76	M1 A1	objective
	X21+X23 X32+X34 X42+X43	+X24=10 +X37=10 +X45=10		M1 A1	supply constraints

3.

X51+X5 X65+X6 X73+X7 X21+X5 X12+X3 X23+X4 X24+X3 X15+X4 X56+X7 X37+X6	54+X56=10 57=10 76=10 51=10 82+X42=10 83+X73=10 84+X54=10 85+X65=10 76=10 57=10		M1 A1	demand constraints
END				
OBJE	ECTIVE FUNCTI	ON VALUE		
1)	310.0000		M1	run
VARIABLE X12 X15 X21 X23 X24 X32 X34 X37 X42 X43 X45 X51	VALUE 0.000000 10.000000 10.000000 0.000000 10.000000 10.000000 10.000000 10.000000 0.000000 0.000000 0.000000 10.000000	REDUCED COST 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000	A1	results
X54 X56 X65 X67 X73 X76 Cost =	0.000000 0.000000 10.000000 0.000000 10.000000 10.000000 310 by sendin	0.000000 6.000000 0.000000 0.000000 0.000000 0.000000	В1	interpretation

4.			

(a) Auxiliary equation: $2\lambda^2 - 3\lambda + 1 = 0$ $(2\lambda - 1)(\lambda - 1) = 0$ $\lambda = 1 \text{ or } \frac{1}{2}$	M1 A1 M1 A1
$u_n = A + B(\frac{1}{2})^n$	B1 B1
5 = A + B 3 = A + ½B	B1 B1
$u_n = 1 + 4(\frac{1}{2})^n$	M1 A1
$u_2 = 2$, $u_3 = 1.5$, $u_{10} = 1.003906$ $u_{1000000} \approx 1$	B1 B1 B1
(b)(i) & (ii)	
0 5 1 3	
2 4.5 3 8.75	M1
4 13.625 5 16.6875	A1
6 16.40625 7 12.92188	
9 4.042969 10 3.087891	A1 3.087891
11 5.588867 12 10.29541	
13 14.85425	
14 16.98596	
16 11.45108	
17 6.551926	
18 3.376808	A1 6.893122
19 3.513287	
20 6.893122	
(iii) Limited wrt to (very) long-term	B1

4776	Numer	ical M	ethods
------	-------	--------	--------

1		x f(x)	3 0.5	3.5 -0.8		root = (3) =	x (-0.8) - 3.5 x 0.5 .192308 (3.19	5) / (-0.8 - 0.5) 92, 3.19)	[M1A1A1] [A1]
					(-) mpe is	3.5 - 3.192	2308 = 0.307602	(0.308, 0.31)	[M1A1]
									[TOTAL 6]
2		1 3 5 7	2 1 5 k	-1 4 k-5	5 k-9	k-14			
		9	2	2-k	7-2k	16-3k			[M1A1A1A1]
			16-3k = k-	14 h	ence k = 7	.5			[M1A1] [TOTAL 6]
3		h 0.2 0.1 0.05	f(2+h) .494507 .323418 .241636	f(2-h) .867869 .010586 .085281		f '(2) .566594 .564163 .563555	-0.00243 -0.00061		derivatives [M1A1A1A1] differences [M1A1]
		difference 1.563 sec	es reducing sure to 3 dp.	by a factor	4 so next	estimate at	oout 1.56340.		[M1] [B1] [TOTAL 8]
4		$f(x) = x^{3}-2$ $x_{r+1} = x_{r} - 1$	5 (x _r ³ -25)/3x _r ²	f'(x) = 3x	² (a.g.)				[M1A1A1]
		r x _r diffs ratios difference	0 4	1 3.1875 -0.8125 at an incre	2 .945197 -0.2423 .298219 easing rate	3 2.92417 -0.02103 .086783 (hence fast	ter than first orde	r)	[M1A1] [B1] [B1] [E1] [TOTAL 8]
5	(i)	0.001 369	352	(accept 0	.001 369 4))			[B1]
	(ii)	sin 86° = 564 sin 86° - s	0.997 sin 86° = 0.0	001 369	sin 85° = 195	0.996			[B1B1] [A1]
	(iii)	2 x 0.0784 = 0.00136	4591 x 0.00 935	8 726 54					[M1] [A1]
	(iv)	Rounding First meth	has differe nod involves	nt effects i s subtractio	n the two e on of nearly	xpressions equal num	(may be implied obers and so lose) es accuracy	[E1] [E1]
									[TOTAL 8]

4776		Mark Scheme	June 2008
6 (i)	h M 2 2.763547 2.42 1 2.677635 2.59 0.5 2.656743 2.63	⊤ 25240 94393 36014	mid-point: [M1A1A1] trapezium: [M1A1A1A 1] [subtotal 7]
(ii)	M: 2.763547 2.677635 -0.0 2.656743 -0.0	diffs .08591 .02089 reducing by a factor 4 <i>(may be</i>	implied) [M1A1E1]
	Differences in	I T reduce by a factor 4, too	[B1] [subtotal 4]
(iii)	M 2.763547 2.42 2.677635 2.59 2.656743 2.63 Differences in	T S 25240 2.650778 94393 2.649888 -0.00089033 36014 2.649833 -0.000054333	[M1] S values: [A1A1] diffs [A1]
	How this leads Next differenc Accept 2.6498	s to an answer, e.g: ce about -0.0000034 and/or next ans 8 or 2.64983	wer about 2.649830 [E1] [A1] [<i>subtotal 7</i>]
7 (i)	Eg: graph of x ² and 4 + 1 Change of sign to find int	1/x for x > 0 showing single intersecti terval (2,3) - i.e. a = 2	[TOTAL 18] ion [G2] [B1]
	r 0 x _r 2.5 2.09 2.1149 secure	1 2 3 97618 2.115829 2.114859 2.1149 e to 4 dp	4 5 91 2.114907 [M1A1A1] [A1] [subtotal 7]
(ii)	The iteration gives positiv	ve values only.	[E1]
	r 0 x _r -2 -1.8 -1.8608 secure	1 2 3 87083 -1.86158 -1.86087 -1.8608 e to 4 dp	4 5 81 -1.86081 [M1A1A1] [A1] [subtotal 5]

June	2008
------	------

(iii)	Eg		r	0	1	2	3	4	
			Xr	-0.5	-1.41421	-1.81463	-1.85713	-1.86052	
			not conve	erging to re	quired root	(converging	g to previou	us root)	[M1A1]
	Eg		x _{r+1} = 1 / ($(x_r^2 - 4)$					[M1]
		r	0	1	2	3	4	5	
		Xr	-0.5	-0.26667	-0.25452	-0.25412	-0.2541	-0.2541	[M1A1]
			-0.2541 s	ecure to 4	dp				[A1] [subtotal 6]
									[TOTAL 18]

4777 Numerical Computation

1 (i)	Eg: e _{r+1}	is approxim	ately ke _r						[E2]
(1)	Uses y ₀ Convinc	$= \alpha + e_0$, y ing algebra	$a_1 = \alpha + ke_0,$ to eliminate	$y_2 = \alpha + k^2$ e k hence giv	²e₀ or equ ven result	uivalent			[M1A1] [A1A1] [subtotal 6]
(ii)	Convinc	ing re-arran	gment						[A1]
	yo	y 1	y ₂	extrap (new y _o)	new y ₁	new y ₂	extrap	once	[M1A1]
	1	0.908662	0.917409	0.916644	0.916648	0.916647 4 or 5 sf lo	0.916647 oks secure	twice	[M1A1] [A1] [subtotal 6]
(iii)					extrap				
	х	y ₀	y 1	y ₂	(new y _o)	new y ₁	new y ₂	extrap	
	1.1	1	0.908662	0.917409	0.916644	0.916648	0.916647	0.916647	
	1.2	0.916647	0.845937	0.858962	0.856936	0.85695	0.856947	0.856948	set up
	1.3	0.856948	0.799744	0.815042	0.811814	0.81184	0.811833	0.811835	SS
	1.4	0.811835	0.763904	0.780556	0.776263	0.776302	0.776288	0.776292	[M2A2]
	1.5	0.776292	0.734953	0.752555	0.747298	0.747351	0.747329	0.747335	
	1.6	0.747335	0.7108	0.729213	0.723043	0.72311	0.723076	0.723087	values
	1.7	0.723087	0.690112	0.70934	0.702258	0.70234	0.702292	0.70231	[A3]
	1.8	0.70231	0.671996	0.692131	0.684095	0.684194	0.684128	0.684155	
	1.9	0.684155	0.655831	0.677026	0.667954	0.668075	0.667985	0.668023	
	2	0.668023	0.641175	0.663627	0.653402	0.65355	0.653427	0.653483	
						3 or 4 sf lo	oks secure		[A1]
	v	V							

2	T _n - I = /	$A_2h^2 + A_4h^4$	+ A ₆ h ⁶ + …						
(1)	$T_{2n} - I =$ $4(T_{2n} - I)$ $4T_{2n} - T_{n}$ $(4T_{2n} - T_{n})$ $(T_{n}^{*} = (4T_{n})$	$A_{2}(h/2)^{2} + A_{2}(h/2)^{2} + A_{2$	$h_{4}(h/2)^{4} + A_{6}h_{6}h^{6} + b_{6}h^{6} + \dots + b_{6}h^{6} + \dots + b_{6}h^{6} + h^{4} + B_{6}h^{6} + has error content has error conte$	(h/2) ⁶ + + of order h ⁴ as ror of order h	s given) 1 ⁶				[M1A1] [M1] [A1] [A1] [B1]
									[subtotal 6]
(ii)	x 0	f(x) 0	Т	T*	T**	(T***)			
	2 1	3.523188 0.731059 0.155615	3.523188 2.492653	2.149141				f.	[64]
	1.5	1.839543	2.243905	2.160989	2.161779			1.	[A1]
	0.25 0.75	0.035136 0.382038						T:	[M1A2]
	1.25	1.214531	0 100155	0 161570	0 161611	2 161609		T*:	[M1A1]
	0.125	0.0083	2.182199	2.101572	2.101011	2.101008		T**:	[M1A1]
	0.375	0.083344					an	swer.	[61]
	0.025	0.540367					an	50001.	ניאן
	1.125	0.955439							
	1.625	2.206199							
	1.875	3.048173	2.166744	2.161606	2.161609	2.161609			
			_						[subtotal 9]
(iii)	k	I		2.5					
	0 0 25	0 0 002847							modify SS
	0.5	0.024686		2					[M2]
	0.75	0.089495		15					volues of l
	1.25	0.225935		1.0					values of 1 [A2]
	1.5	0.845007		1					
	1.75	1.398068							graph
	2	2.101000		0.5					[02]
				0					[cubtotal 6]
				0	0.5	1 1.5	2		
(iv)	k		L						
()	1.57	0.980739		accept 1.5	7		evidence of	f t&e:	[M2]
	1.58	1.001291		or 1.58			re	esult:	[A1]
	1.579	0.999223		(OF IN DETW	een)				[subtotal 3]
									[TOTAL 24]

4777

i)	h	х	У	k 1	k 2	k 3	k 4
	0.2	0	0	0.2	0.110557	0.121189	0.086653
	0.2	0.2	0.125024	0.085978	0.063177	0.064854	0.046393
	0.2	0.4	0.189763	0.046408	0.031125	0.032033	0.018694
	0.2	0.6	0.221666	0.018708	0.007021	0.007628	-0.00291
	0.2	0.8	0.229182	-0.0029	-0.01239	-0.01194	-0.02066
	0.2	1	0.217146	-0.02065	-0.02863	-0.02828	-0.0357
	0.2	1.2	0.188783	-0.03569	-0.04256	-0.04228	-0.04872
	0.2	1.4	0.146433	-0.04871	-0.05472	-0.05449	-0.06015
	0.2	1.6	0.091887	-0.06015	-0.06547	-0.06527	-0.07031
	0.2	1.8	0.026567	-0.0703	-0.07506	-0.07488	-0.07941
	0.2	2	-0.04836	-0.0794	-0.08369	-0.08353	-0.08762
	0.2	2.2	-0.13194	-0.08761	-0.0915	-0.09136	-0.09507
	0.2	2.4	-0.22334	-0.09507	-0.0986	-0.09849	-0.10187
	0.2	2.6	-0.32186	-0.10187	-0.1051	-0.105	-0.1081
	0.2	2.8	-0.42689	-0.1081	-0.11107	-0.11097	-0.11382
	0.2	3	-0.53789	-0.11382	-0.11656	-0.11647	-0.1191

[G2]

Maximum about (0.8, 0.23) root about 1.8

[A1A1A1] [subtotal11]

(ii)	Eg: h = 0.0 h = 0.0	[M2] [A1A1] [A1] [subtotal5]								
(iii)	Eg:									
	S	h	х	У	k 1	k 2	k 3	k 4		
	1	0.01	0	0	0.01	0.009	0.009025	0.008621		
	1	0.01	0.01	0.009112	0.008618	0.008314	0.008319	0.008065		
	1	0.01	0.02	0.017437	0.008065	0.007844	0.007847	0.007649	Mods	
	1	0.01	0.03	0.025286	0.007649	0.007468	0.00747	0.007303	[M3]	
	1	0.01	0.04	0.032757	0.007303	0.007147	0.007148	0.007002	t&e	
									[M3]	
	s = 0.715, h = 0.01 gives root closest to x = 1 accept 0.71 to 0.72								[A2]	
									[subtotal8] [TOTAL 24]	

4 (i)	$Q = \Sigma (y - a - bx - cx^2)^2$							[M1]
(1)	dQ/da = 0 gives other equations:		Σ y =	na + bΣx	+ c Σ x ²	[M1A1]		
			Σ xy =	a Σ x + b Σ	$x^2 + c \Sigma x^3$			[B1]
			$\Sigma x^2 y =$	$a \Sigma x^2 + b \Sigma$	$\Sigma \mathbf{x}^3 + \mathbf{c} \Sigma \mathbf{x}^4$	1		[B1]
(ii)	х	Y						[subtotal 5]
()	0 0.5 1 1.5 2 2.5 3	1.02 2.08 2.73 3.14 2.87 2.22 1.43		3.50 3.00 2.50 2.00 1.50 1.00 0.50 0.00 0	1		2 3	[G2]
	rough parab (guad	nly polic tratic) in	shane					[E1]
	(ๆนนน		Shape					[subtotal 3]
(iii)	х	У	ху	x ² y	x^2	x ³	x ⁴	
	0	1.02	0	0	0	0	0	
	0.5	2.08	1.04	0.52	0.25	0.125	0.0625	
	1	2.73	2.73	2.73	1	1	1	
	1.5	3.14	4.71	7.065	2.25	3.375	5.0625	
	2	2.87	5.74	11.48	4	8	16	
	2.5	2.22	5.55	13.875	6.25	15.625	39.0625	
	3	1.43	4.29	12.87	9	27	81	[M2]
	10.5	15.49	24.06	48.54	22.75	55.125	142.1875	[A2]
	norma	al						
	equat	tions:						
	•	7	10.5	22.75	15.49			form equations
		10.5	22.75	55.125	24.06			[M1A1]
		22.75	55.125	142.1875	48.54	a=	1.017619	solution
	ļ		-6.46154	-21	0.554615	b=	2.562143	[M2A2]
			-2 69231	-10.5	1 656923			
		-		_1 75	1 / 25833	c=	0 81476	
			I	-1.75	1.420000	U-	-0.01470	
	х	У	y fitted	residual	res ²			
	0	1.02	1.017619	0.002381	5.67E-06			
	0.5	2.08	2.095	-0.015	0.000225			
	1	2.73	2.765	-0.035	0.001225			y fitted
	1.5	3.14	3.027619	0.112381	0.012629			[M1A1]
	2	2.87	2.882857	-0.01286	0.000165			
	2.5	2.22	2.330714	-0.11071	0.012258			residuals
	3	1.43	1.37119	0.05881	0.003459			[M1A1]
		residua residua	Il sum is zer Il sum of squ	o (except fo uares is 0.02	r rounding 6 29967	errors) as	it should be	[E1] [A1] [subtotal 46]
								[Subtotal 16] [TOTAL 24]

Grade Thresholds

Advanced GCE MEI Mathematics 3895 7895 June 2008 Examination Series

Unit Threshold Marks

Unit		Maximum Mark	Α	В	С	D	E	U
All units	UMS	100	80	70	60	50	40	0
4751	Raw	72	61	53	45	37	30	0
4752	Raw	72	55	48	41	34	28	0
4753	Raw	72	59	52	46	40	33	0
4753/02	Raw	18	15	13	11	9	8	0
4754	Raw	90	75	67	59	51	43	0
4755	Raw	72	60	51	42	34	26	0
4756	Raw	72	57	51	45	39	33	0
4757	Raw	72	50	44	38	33	28	0
4758	Raw	72	58	50	42	34	26	0
4758/02	Raw	18	15	13	11	9	8	0
4761	Raw	72	57	48	39	30	22	0
4762	Raw	72	56	48	40	33	26	0
4763	Raw	72	53	45	37	29	21	0
4764	Raw	72	55	47	40	33	26	0
4766	Raw	72	53	45	38	31	24	0
4767	Raw	72	57	49	41	33	26	0
4768	Raw	72	56	49	42	35	28	0
4769	Raw	72	57	49	41	33	25	0
4771	Raw	72	58	51	44	37	31	0
4772	Raw	72	51	44	37	31	25	0
4773	Raw	72	51	44	37	30	24	0
4776	Raw	72	57	49	41	34	26	0
4776/02	Raw	18	14	12	10	8	7	0
4777	Raw	72	54	46	39	32	25	0
Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
7895-7898	600	480	420	360	300	240	0
3895-3898	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
7895	42.5	63.7	79.2	90.7	97.5	100	9600
7896	58.0	78.2	89.2	95.3	98.7	100	1539
7897	73.5	85.3	88.2	100	100	100	34
7898	27.8	52.8	61.1	77.8	91.7	100	36
3895	30.5	46.0	60.6	73.6	83.7	100	12767
3896	49.7	68.6	81.4	90.0	95.2	100	2039
3897	82.1	88.5	92.3	97.4	100	100	78
3898	47.8	52.2	69.6	87.0	95.7	100	23

For a description of how UMS marks are calculated see: <u>http://www.ocr.org.uk/learners/ums_results.html</u>

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

