Mathematics (MEI)

Advanced GCE A2 7895-8

Advanced Subsidiary GCE AS 3895-8

Mark Schemes for the Units

June 2008

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2008
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552310
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Further Mathematics (MEI) (7896)

Advanced GCE Further Mathematics (Additional) (MEI) (7897)
Advanced GCE Mathematics (MEI) (7895)
Advanced GCE Pure Mathematics (MEI) (7898)
Advanced Subsidiary GCE Further Mathematics (MEI) (3896) Advanced Subsidiary GCE Further Mathematics (Additional) (MEI) (3897)

Advanced Subsidiary GCE Mathematics (MEI) (3895)
Advanced Subsidiary GCE Pure Mathematics (MEI) (3898)
MARK SCHEME FOR THE UNITS
Unit/Content Page
4751 (C1) Introduction to Advanced Mathematics 1
4752 (C2) Concepts for Advanced Mathematics 6
4753 (C3) Methods for Advanced Mathematics 8
4754 (C4) Applications of Advanced Mathematics 12
4755 (FP1) Further Concepts for Advanced Mathematics 19
4756 (FP2) Further Methods for Advanced Mathematics 25
4757 (FP3) Further Applications of Advanced Mathematics 31
4758 Differential Equations 38
4761 Mechanics 1 42
4762 Mechanics 2 47
4763 Mechanics 3 51
4764 Mechanics 4 57
4766 Statistics 1 60
4767 Statistics 2 67
4768 Statistics 3 71
4769 Statistics 4 77
4771 Decision Mathematics 1 83
4772 Decision Mathematics 2 88
4773 Decision Mathematics Computation 93
4776 Numerical Methods 98
4777 Numerical Computation 101
Grade Thresholds 105

4751 (C1) Introduction to Advanced Mathematics

Section A

1	$x>6 / 4$ o.e. isw	2	M1 for $4 x>6$ or for $6 / 4$ o.e. found or for their final ans ft their $4 x>k$ or $k x>6$	2
2	(i) $(0,4)$ and $(6,0)$ (ii) $-4 / 6$ o.e. or ft their (i) isw	2 2	1 each; allow $x=0, y=4$ etc; condone $x=6, y=4$ isw but 0 for $(6,4)$ with no working 1 for $-\frac{4}{6} x$ or $4 /-6$ or $4 / 6$ o.e. or ft (accept 0.67 or better) 0 for just rearranging to $y=-\frac{2}{3} x+4$	4
3	(i) 0 or $-3 / 2$ o.e. (ii) $k<-9 / 8$ o.e. $w w w$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	1 each M2 for $3^{2}(-)(-8 k)<0$ o.e. or $-9 / 8$ found or M1 for attempted use of $b^{2}-4 a c$ (may be in quadratic formula); SC: allow M1 for $9-8 k<0$ and M1 ft for $k>9 / 8$	5
4	(i) T (ii) E (iii) T (iv) F	3	3 for all correct, 2 for 3 correct. 1 for 2 correct	3
5	$y(x-2)=(x+3)$ $x y-2 y=x+3$ or $\mathrm{ft}[\mathrm{ft}$ from earlier errors if of comparable difficulty - no ft if there are no $x y$ terms] $\begin{aligned} & x y-x=2 y+3 \text { or } \mathrm{ft} \\ & {[x=] \frac{2 y+3}{y-1} \text { o.e. or } \mathrm{ft}} \end{aligned}$ alt method: $\begin{aligned} y & =1+\frac{5}{x-2} \\ y-1 & =\frac{5}{x-2} \\ x-2 & =\frac{5}{y-1} \\ x & =2+\frac{5}{y-1} \end{aligned}$	M1 M1 M1 M1 M1 M1 M1	for multiplying by $x-2$; condone missing brackets for expanding bracket and being at stage ready to collect x terms for collecting x and 'other' terms on opposite sides of eqn for factorising and division for either method: award 4 marks only if fully correct	4

\begin{tabular}{|c|c|c|c|c|}
\hline 6 \& \begin{tabular}{l}
(i) 5 www \\
(ii) \(8 x^{10} y^{13} z^{4}\) or \(2^{3} x^{10} y^{13} z^{4}\)
\end{tabular} \& 2

3 \& | allow 2 for ± 5; M1 for $25^{1 / 2}$ seen or for $1 / 5$ seen or for using $25^{1 / 2}=5$ with another error (ie M1 for coping correctly with fraction and negative index or with square root) |
| :--- |
| mark final answer; B2 for 3 elements correct, B1 for 2 elements correct; condone multn signs included, but -1 from total earned if addn signs | \& 5

\hline 7 \& | (i) $\frac{5-\sqrt{3}}{22}$ or $\frac{5+(-1) \sqrt{3}}{22}$ or $\frac{5-1 \sqrt{3}}{22}$ |
| :--- |
| (ii) $37-12 \sqrt{ } 7$ isw www | \& 2

3 \& | or $a=5, b=-1, c=22 ; \mathrm{M} 1$ for attempt to multiply numerator and denominator by $5-\sqrt{3}$ |
| :--- |
| 2 for 37 and 1 for $-12 \sqrt{ } 7$ or M1 for 3 correct terms from $9-6 \sqrt{ } 7-6 \sqrt{ } 7+28$ or $9-3 \sqrt{ } 28-3 \sqrt{ } 28+28$ or $9-\sqrt{ } 252-$ $\sqrt{ } 252+28$ o.e. eg using $2 \sqrt{ } 63$ or M2 for $9-12 \sqrt{ } 7+28$ or $9-6 \sqrt{ } 28+$ 28 or $9-2 \sqrt{ } 252+28$ or $9-\sqrt{ } 1008+$ 28 o.e.; 3 for $37-\sqrt{ } 1008$ but not other equivs | \& 5

\hline 8 \& -2000 www \& 4 \& | M3 for $10 \times 5^{2} \times(-2[x])^{3}$ o.e. or M2 for two of these elements or M1 for 10 or $(5 \times 4 \times 3) /(3 \times 2 \times 1)$ o.e. used [${ }^{5} \mathrm{C}_{3}$ is not sufficient] or for 15101051 seen; |
| :--- |
| or B3 for 2000; |
| condone x^{3} in ans; |
| equivs: M3 for e.g $5^{5} \times 10 \times\left(-\frac{2}{5}[x]\right)^{3}$ o.e. [5^{5} may be outside a bracket for whole expansion of all terms], M2 for two of these elements etc similarly for factor of 2 taken out at start | \& 4

\hline 9 \& | $(y-3)(y-4)[=0]$ |
| :--- |
| $y=3$ or 4 cao |
| $x= \pm \sqrt{3}$ or ± 2 cao | \& | M1 |
| :--- |
| A1 |
| B2 | \& | for factors giving two terms correct or attempt at quadratic formula or completing square or B2 (both roots needed) |
| :--- |
| B1 for 2 roots correct or ft their y (condone $\sqrt{ } 3$ and $\sqrt{ } 4$ for B 1) | \& 4

\hline
\end{tabular}

Section B

4752 (C2) Concepts for Advanced Mathematics

Section A

1	210 c.a.o.	2	1 for m rads $=180^{\circ}$ soi	2
2	(i) $5.4 \times 10^{-3}, 0.0054$ or $\frac{27}{5000}$ (ii) 6 www	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	M1 for S = $5.4 /(1-0.1)$	3
3	stretch, parallel to the y axis, sf 3	2	1 for stretch plus one other element correct	2
4	$\begin{aligned} & {\left[f^{\prime}(x)=\right] 12-3 x^{2}} \\ & \text { their } f^{\prime}(x)>0 \text { or }=0 \text { soi } \\ & -2<x<2 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	condone $-2 \leq x \leq 2$ or "between -2 and 2"	3
5	$\begin{aligned} & \text { (i) grad of chord }=\left(2^{3.1}-2^{3}\right) / 0.1 \\ & \text { o.e. } \\ & =5.74 \text { c.a.o. } \\ & \text { (ii) correct use of } \mathrm{A} \text { and } \mathrm{C} \text { where } \\ & \quad \text { for } \mathrm{C}, 2.9<x<3.1 \\ & \text { answer in range }(5.36,5.74) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	or chord with ends $x=3 \pm h$, where $0<\mathrm{h} \leq 0.1$ s.c. 1 for consistent use of reciprocal of gradient formula in parts (i) and (ii)	4
6	$\begin{aligned} & {[y=] k x^{3 / 2}[+c]} \\ & \mathrm{k}=4 \end{aligned}$ subst of $(9,105)$ in their eqn with c or $c=-3$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	may appear at any stage must have c; must have attempted integration	4
7	```sector area =28.8 or }\frac{144}{5}[\mp@subsup{\textrm{cm}}{}{2} c.a.o. area of triangle = 1/2 }\times\mp@subsup{6}{}{2}\times\operatorname{sin}1. o.e. their sector - their triangle s.o.i. 10.8 to 10.81 [cm }\mp@subsup{}{}{2}\mathrm{]```	2 M1 M1 A1	M1 for $1 / 2 \times 6^{2} \times 1.6$ must both be areas leading to a positive answer	5
8	$\begin{aligned} & a+10 d=1 \text { or } 121=5.5(2 a+10 d) \\ & 5(2 a+9 d)=120 \text { o.e. } \\ & a=21 \text { s.o.i. www } \\ & \text { and } d=-2 \text { s.o.i. www } \\ & \text { 4th term is } 15 \end{aligned}$	M1 M1 A1 A1 A1	$\begin{aligned} & \text { or } 121=5.5(a+1) \text { gets M2 } \\ & \text { eg } 2 a+9 d=24 \end{aligned}$	5
9	$\begin{aligned} & x \log 5=\log 235 \text { or } x=\frac{\log 235}{\log 5} \\ & 3.39 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A2 } \end{aligned}$	or $x=\log _{5} 235$ A1 for 3.4 or versions of 3.392 ..	3
10	$2\left(1-\cos ^{2} \theta\right)=\cos \theta+2$ $-2 \cos ^{2} \theta=\cos \theta$ s.o.i. valid attempt at solving their quadratic in $\cos \theta$ $\cos \theta=-1 / 2 \mathrm{www}$ $\theta=90,270,120,240$	M1 A1 DM1 A1 A1	for $1-\cos ^{2} \theta=\sin ^{2} \theta$ substituted graphic calc method: allow M3 for intersection of $y=2 \sin ^{2} \theta$ and $y=\cos$ $\theta+2$ and A 2 for all four roots. All four answers correct but unsupported scores B2. 120 and 240 only: B1.	5

Section B

\begin{tabular}{|c|c|c|c|c|c|}
\hline 11 \& ii

iii

iv \& \begin{tabular}{l}
$$
\begin{aligned}
& (x+5)(x-2)(x+2) \\
& {[(x+2)]\left(x^{2}+3 x-10\right)} \\
& x^{3}+3 x^{2}-10 x+2 x^{2}+6 x-20
\end{aligned}
$$ o.e.
$$
y^{\prime}=3 x^{2}+10 x-4
$$

their $3 x^{2}+10 x-4=0$ s.o.i. $x=0.36 \ldots$ from formula o.e.

(-3.7, 12.6)
$$
(-1.8,12.6)
$$

 \&

2

M1

M1

M2

M1

A1

B1+1

B1+1

 \&

M1 for $a(x+5)(x-2)(x+2)$

for correct expansion of one pair of their brackets for clear expansion of correct factors - accept given answer from $(x+5)\left(x^{2}-4\right)$ as first step

M1 if one error or M1 for substitution of 0.4 if trying to obtain 0, and A1 for correct demonstration of sign change

accept ($-1.9,12.6$) or f.t. ($1 / 2$ their max x, their max y)
\end{tabular} \& 2

2

6
2

\hline 12 \& ii \& | Area $=(-) 0.136$ seen $\left[m^{2}\right] \mathrm{www}$ |
| :--- |
| Volume $=0.34\left[\mathrm{~m}^{3}\right]$ or ft from their area $\times 2.5$ $2 x^{4}-x^{3}-0.25 x^{2}-0.15 x \text { o.e. }$ |
| value at 0.5 [- value at 0] $=-0.1375$ |
| area of cross section (of trough) or area between curve and x -axis 0.34375 r.o.t. to 3 or more sf $\left[\mathrm{m}^{3}\right]$ m^{3} seen in (i) or (ii) | \& | A1 |
| :--- |
| E1 |
| B1 |
| U1 | \& | M3 for $0.1 / 2 \times(0.14+0.16+2[0.22$ $+0.31+0.36+0.32]) \mathrm{M} 2$ for one slip; M1 for two slips must be positive |
| :--- |
| M1 for 2 terms correct dep on integral attempted must have neg sign | \& 5

7

\hline 13 \& ii
iii

iv \& \begin{tabular}{l}
$\log P=\log a+b \log t \quad$ www comparison with $y=m x+c$ intercept $=\log _{10} a$ plots f.t.

ruled line of best fit gradient rounding to 0.22 or
$$
\begin{gathered}
0.23 \\
\mathrm{a}=10^{1.49} \mathrm{s.o.i} . \\
\mathrm{P}=31 \mathrm{t}^{\mathrm{m}}
\end{gathered}
$$

allow the form $P=10^{0.22 \text { logt }}$

answer rounds in range 60 to 63

 \& \&

must be with correct equation condone omission of base accept to 2 or more dp

M1 for y step / x-step accept1.47-1.50 for intercept accept answers that round to 30 32 , their positive m
\end{tabular} \& 3

4
4

4
1

\hline
\end{tabular}

4753 (C3) Methods for Advanced Mathematics

Section A

$\begin{array}{ll} 1 & \|2 x-1\| \leq 3 \\ \Rightarrow & -3 \leq 2 x-1 \leq 3 \\ \Rightarrow & -2 \leq 2 x \leq 4 \\ \Rightarrow & -1 \leq x \leq 2 \\ \text { or } & \\ & (2 x-1)^{2} \leq 9 \\ \Rightarrow & 4 x^{2}-4 x-8 \leq 0 \\ \Rightarrow & (4)(x+1)(x-2) \leq 0 \\ \Rightarrow & -1 \leq x \leq 2 \end{array}$	M1 A1 M1 A1 M1 A1 A1 A1 [4]	$\begin{aligned} & 2 x-1 \leq 3(\text { or }=) \\ & x \leq 2 \\ & 2 x-1 \geq-3(\text { or }=) \\ & x \geq-1 \\ & \\ & \text { squaring and forming quadratic }=0(\text { or } \leq) \\ & \text { factorising or solving to get } x=-1,2 \\ & x \geq-1 \\ & x \leq 2 \text { (www) } \end{aligned}$
$\begin{gathered} 2 \quad \text { Let } u=x, \mathrm{~d} v / \mathrm{d} x=\mathrm{e}^{3 x} \Rightarrow v=\mathrm{e}^{3 x} / 3 \\ \Rightarrow \quad \int x \mathrm{e}^{3 x} \mathrm{~d} x \end{gathered}=\frac{1}{3} x e^{3 x}-\int \frac{1}{3} e^{3 x} \cdot 1 \cdot d x \mathrm{x}=\frac{1}{3} x e^{3 x}-\frac{1}{9} e^{3 x}+c .$	M1 A1 A1 B1 [4]	parts with $u=x, \mathrm{~d} v / \mathrm{d} x=\mathrm{e}^{3 x} \Rightarrow v$ $\begin{aligned} & =\frac{1}{3} x e^{3 x}-\frac{1}{9} e^{3 x} \\ & +c \end{aligned}$
3 (i) $\mathrm{f}(-x)=\mathrm{f}(x)$ Symmetrical about $\mathrm{O} y$.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	
(ii) (A) even (B) neither (C) odd	B1 B1 B1 [3]	
$4 \begin{aligned} \text { Let } u=x^{2} & +2 \Rightarrow \mathrm{~d} u=2 x \mathrm{~d} x \\ \int_{1}^{4} \frac{x}{x^{2}+2} d x & =\int_{3}^{18} \frac{1 / 2}{u} d u \\ & =\frac{1}{2}[\ln u]_{3}^{18} \\ & =1 / 2(\ln 18-\ln 3) \\ & =1 / 2 \ln (18 / 3) \\ & =1 / 2 \ln 6^{*} \end{aligned}$	M1 A1 M1 E1 [4]	$\begin{aligned} & \int \frac{1 / 2}{u} d u \text { or } k \ln \left(x^{2}+1\right) \\ & 1 / 2 \ln u \text { or } 1 / 2 \ln \left(x^{2}+2\right) \end{aligned}$ substituting correct limits (u or x) must show working for $\ln 6$
$\begin{array}{ll} \mathbf{5} & y=x^{2} \ln x \\ \Rightarrow & \frac{d y}{d x}=x^{2} \cdot \frac{1}{x}+2 x \ln x \\ & =x+2 x \ln x \end{array}, ~ \begin{array}{ll} \mathrm{d} y / \mathrm{d} x=0 \text { when } x+2 x \ln x=0 \\ \Rightarrow & x(1+2 \ln x)=0 \\ \Rightarrow & \ln x=-1 / 2 \\ \Rightarrow & x=\mathrm{e}^{-1 / 2}=1 / \sqrt{ } \mathrm{e}^{*} \end{array}$	M1 B1 A1 M1 M1 E1 [6]	product rule $\mathrm{d} / \mathrm{d} x(\ln x)=1 / x$ soi oe their deriv $=0$ or attempt to verify $\ln x=-1 / 2 \Rightarrow x=\mathrm{e}^{-1 / 2}$ or $\ln (1 / \sqrt{ } \mathrm{e})=-1 / 2$

6(i) Initial mass $=20+30 \mathrm{e}^{0}=50$ grams Long term mass $=20$ grams	M1A1 B1 [3]	
$\begin{array}{ll} \text { (ii) } & 30=20+30 \mathrm{e}^{-0.1 t} \\ \Rightarrow & \mathrm{e}^{-0.1 t}=1 / 3 \\ \Rightarrow & -0.1 t=\ln (1 / 3)=-1.0986 \ldots \\ \Rightarrow & t=11.0 \mathrm{mins} \end{array}$	M1 M1 A1 [3]	anti-logging correctly $11,11.0,10.99,10.986$ (not more than $3 \mathrm{~d} . \mathrm{p}$)
(iii)	B1 B1 [2]	correct shape through $(0,50)$ - ignore negative values of t $\rightarrow 20 \text { as } t \rightarrow \infty$
$\begin{array}{ll} 7 & x^{2}+x y+y^{2}=12 \\ \Rightarrow & 2 x+x \frac{d y}{d x}+y+2 y \frac{d y}{d x}=0 \\ \Rightarrow & (x+2 y) \frac{d y}{d x}=-2 x-y \\ \Rightarrow & \frac{d y}{d x}=-\frac{2 x+y}{(x+2 y)} \end{array}$	M1 B1 A1 M1 A1 [5]	Implicit differentiation $x \frac{d y}{d x}+y$ correct equation collecting terms in $\mathrm{d} y / \mathrm{d} x$ and factorising oe cao

Section B

8(i) $\quad y=1 /(1+\cos \pi / 3)=2 / 3$.	$\begin{aligned} & \mathrm{B} 1 \\ & {[1]} \end{aligned}$	or 0.67 or better
(ii) $\begin{aligned} \mathrm{f}^{\prime}(x)= & -1(1+\cos x)^{-2} \cdot-\sin x \\ & =\frac{\sin x}{(1+\cos x)^{2}} \end{aligned}$ When $x=\pi / 3, \mathrm{f}^{\prime}(x)=\frac{\sin (\pi / 3)}{(1+\cos (\pi / 3))^{2}}$ $=\frac{\sqrt{3} / 2}{\left(1 \frac{1}{2}\right)^{2}}=\frac{\sqrt{3}}{2} \times \frac{4}{9}=\frac{2 \sqrt{3}}{9}$	M1 B1 A1 M1 A1 [5]	chain rule or quotient rule $\mathrm{d} / \mathrm{d} x(\cos x)=-\sin x$ soi correct expression substituting $x=\pi / 3$ oe or 0.38 or better. $(0.385,0.3849)$
$\begin{aligned} \text { (iii) deriv } & =\frac{(1+\cos x) \cos x-\sin x \cdot(-\sin x)}{(1+\cos x)^{2}} \\ & =\frac{\cos x+\cos ^{2} x+\sin ^{2} x}{(1+\cos x)^{2}} \\ & =\frac{\cos x+1}{(1+\cos x)^{2}} \\ & =\frac{1}{1+\cos x} * \\ \text { Area } & =\int_{0}^{\pi / 3} \frac{1}{1+\cos x} d x \\ & =\left[\frac{\sin x}{1+\cos x}\right]_{0}^{\pi / 3} \\ & =\frac{\sin \pi / 3}{1+\cos \pi / 3}(-0) \\ & =\frac{\sqrt{3}}{2} \times \frac{2}{3}=\frac{\sqrt{3}}{3} \end{aligned}$	M1 A1 M1dep E1 B1 M1 A1 cao [7]	Quotient or product rule condone uv' - u'v for M1 correct expression $\cos ^{2} x+\sin ^{2} x=1$ used dep M1 www substituting limits or $1 / \sqrt{ } 3$ - must be exact
$\begin{array}{ll} \text { (iv) } & y=1 /(1+\cos x) \quad x \leftrightarrow y \\ & x=1 /(1+\cos y) \\ \Rightarrow & 1+\cos y=1 / x \\ \Rightarrow & \cos y=1 / x-1 \\ \Rightarrow & y=\arccos (1 / x-1)^{*} \end{array}$ Domain is $1 / 2 \leq x \leq 1$	M1 A1 E1 B1 B1 [5]	attempt to invert equation www reasonable reflection in $y=x$

$\begin{array}{ll} 9 \text { (i) } & y=\sqrt{4-x^{2}} \\ \Rightarrow & y^{2}=4-x^{2} \\ \Rightarrow & x^{2}+y^{2}=4 \end{array}$ which is equation of a circle centre O radius 2 Square root does not give negative values, so this is only a semi-circle.	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & {[3]} \end{aligned}$	squaring $x^{2}+y^{2}=4+\text { comment }(\text { correct })$ oe, e.g. f is a function and therefore single valued
(ii) (A) Grad of $\mathrm{OP}=b / a$ $\Rightarrow \quad$ grad of tangent $=-\frac{a}{b}$ $\text { (B) } \begin{aligned} & \mathrm{f}^{\prime}(x)=\frac{1}{2}\left(4-x^{2}\right)^{-1 / 2} \cdot(-2 x) \\ & =-\frac{x}{\sqrt{4-x^{2}}} \\ \Rightarrow & \mathrm{f}^{\prime}(a)=-\frac{a}{\sqrt{4-a^{2}}} \end{aligned}$ (C) $b=\sqrt{ }\left(4-a^{2}\right)$ so $\mathrm{f}^{\prime}(a)=-\frac{a}{b}$ as before	M1 A1 M1 A1 B1 E1 [6]	chain rule or implicit differentiation oe substituting a into their $\mathrm{f}^{\prime}(x)$
(iii) Translation through $\binom{2}{0}$ followed by stretch scale factor 3 in y-direction	M1 A1 M1 A1 M1 A1 [6]	Translation in x-direction through $\binom{2}{0}$ or 2 to right ('shift', 'move' M1 A0) $\binom{2}{0}$ alone is SC1 stretch in y-direction (condone y 'axis') (scale) factor 3 elliptical (or circular) shape through $(0,0)$ and $(4,0)$ and $(2,6)$ (soi) -1 if whole ellipse shown
$\text { (iv) } \begin{aligned} & y=3 \mathrm{f}(x-2) \\ &=3 \sqrt{ }\left(4-(x-2)^{2}\right) \\ &=3 \sqrt{ }\left(4-x^{2}+4 x-4\right) \\ &=3 \sqrt{ }\left(4 x-x^{2}\right) \\ & \Rightarrow \quad y^{2}=9\left(4 x-x^{2}\right) \\ & \Rightarrow \quad 9 x^{2}+y^{2}=36 x^{*} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { E1 } \\ & {[3]} \end{aligned}$	or substituting $3 \sqrt{ }\left(4-(x-2)^{2}\right)$ oe for y in $9 x^{2}+y^{2}$ $4 x-x^{2}$ www

4754 (C4) Applications of Advanced Mathematics

Section A

1 $\begin{aligned} & \frac{x}{x^{2}-4}+\frac{2}{x+2}=\frac{x}{(x-2)(x+2)}+\frac{2}{x+2} \\ & =\frac{x+2(x-2)}{(x+2)(x-2)} \\ & =\frac{3 x-4}{(x+2)(x-2)} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	combining fractions correctly factorising and cancelling (may be $3 x^{2}+2 x-8$)
$\begin{aligned} \mathbf{2} \quad V & =\int_{0}^{1} \pi y^{2} d x=\int_{0}^{1} \pi\left(1+e^{2 x}\right) d x \\ & =\pi\left[x+\frac{1}{2} e^{2 x}\right]_{0}^{1} \\ & =\pi\left(1+\frac{1}{2} e^{2}-\frac{1}{2}\right) \\ & =\frac{1}{2} \pi\left(1+e^{2}\right)^{*} \end{aligned}$	M1 B1 M1 E1 [4]	must be $\pi \mathrm{x}$ their y^{2} in terms of x $\left[x+\frac{1}{2} e^{2 x}\right]$ only substituting both x limits in a function of x www
$\begin{array}{ll} \mathbf{3} & \cos 2 \theta=\sin \theta \\ \Rightarrow & 1-2 \sin ^{2} \theta=\sin \theta \\ \Rightarrow & 1-\sin \theta-2 \sin ^{2} \theta=0 \\ \Rightarrow & (1-2 \sin \theta)(1+\sin \theta)=0 \\ \Rightarrow & \sin \theta=1 / 2 \text { or }-1 \\ \Rightarrow & \theta=\pi / 6,5 \pi / 6,3 \pi / 2 \end{array}$	M1 M1 A1 M1 A1 A2,1,0 [7]	$\cos 2 \theta=1-2 \sin ^{2} \theta$ oe substituted forming quadratic(in one variable) $=0$ correct quadratic www factorising or solving quadratic $1 / 2,-1$ oe www cao penalise extra solutions in the range
$\begin{aligned} & 4 \quad \begin{array}{l} \sec \theta=x / 2, \tan \theta=y / 3 \\ \Rightarrow \quad \sec ^{2} \theta=1+\tan ^{2} \theta \\ \Rightarrow \quad x^{2} / 4=1+y^{2} / 9 \end{array} \\ & \Rightarrow \quad x^{2} / 4-y^{2} / 9=1 * \\ & \text { OR } x^{2} / 4-y^{2} / 9=4 \sec ^{2} \theta / 4-9 \tan ^{2} \theta / 9 \\ & \quad=\sec ^{2} \theta-\tan ^{2} \theta=1 \end{aligned}$	M1 M1 E1 [3]	$\sec ^{2} \theta=1+\tan ^{2} \theta$ used (oe, e.g. converting to sines and cosines and using $\left.\cos ^{2} \theta+\sin ^{2} \theta=1\right)$ eliminating θ (or x and y) www
$\begin{aligned} & \text { 5(i) } \quad \begin{aligned} & \mathrm{d} x / \mathrm{d} u=2 u, \mathrm{~d} y / \mathrm{d} u=6 u^{2} \\ & \Rightarrow \quad \frac{d y}{d x}=\frac{d y / d u}{d x / d u} \end{aligned}=\frac{6 u^{2}}{2 u} \\ & =3 u \end{aligned}$ OR $y=2(x-1)^{3 / 2}, d y / d x=3(x-1)^{1 / 2}=3 u$	B1 M1 A1 [3]	both $2 u$ and $6 u^{2}$ $\mathrm{B} 1(y=\mathrm{f}(x))$, M1 differentiation, A1
$\begin{aligned} & \text { (ii) } \quad \operatorname{At}(5,16), u=2 \\ & \Rightarrow \quad \mathrm{~d} y / \mathrm{d} x=6 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[22} \end{aligned}$	cao

$\text { 6(i) } \begin{aligned} \left(1+4 x^{2}\right)^{-\frac{1}{2}}= & 1-\frac{1}{2} \cdot 4 x^{2}+\frac{\left(-\frac{1}{2}\right) \cdot\left(-\frac{3}{2}\right)}{2!}\left(4 x^{2}\right)^{2}+\ldots \\ & =1-2 x^{2}+6 x^{4}+\ldots \end{aligned}$ Valid for $-1<4 x^{2}<1 \Rightarrow-1 / 2<x<1 / 2$	M1 A1 A1 M1A1 [5]	binomial expansion with $p=-1 / 2$ $\begin{aligned} & 1-2 x^{2} \ldots \\ & +6 x^{4} \end{aligned}$
$\text { (ii) } \begin{aligned} & \frac{1-x^{2}}{\sqrt{1+4 x^{2}}}=\left(1-x^{2}\right)\left(1-2 x^{2}+6 x^{4}+\ldots\right) \\ & =1-2 x^{2}+6 x^{4}-x^{2}+2 x^{4}+\ldots \\ & =1-3 x^{2}+8 x^{4}+\ldots \end{aligned}$	M1 A1 A1 [3]	substitituting their $1-2 x^{2}+6 x^{4}+\ldots$ and expanding ft their expansion (of three terms) cao
Max when $x-\pi / 6=\pi / 2 \Rightarrow x=\pi / 6+\pi / 2=2 \pi / 3$ max value $y=2$ So maximum is $(2 \pi / 3,2)$	M1 B1 M1 A1 B1 B1 [6]	correct pairs soi $R=2$ ft cao www cao ft their R SC B1 $(2,2 \pi / 3)$ no working

Section B

8(i) At A: $3 \times 0+2 \times 0+20 \times(-15)+300=0$ At B: $3 \times 100+2 \times 0+20 \times(-30)+300=0$ At C: $3 \times 0+2 \times 100+20 \times(-25)+300=0$ So ABC has equation $3 x+2 y+20 z+300=0$	M1 A2,1,0 [3]	substituting co-ords into equation of plane... for ABC OR using two vectors in the plane form vector product M1A1 then $3 x+2 y+20 \mathrm{z}=c=-300 \mathrm{~A} 1$ OR using vector equation of plane M1,elim both parameters M1, A1
$\begin{aligned} & \text { (ii) } \overrightarrow{\mathrm{DE}}=\left(\begin{array}{l} 100 \\ 0 \\ -10 \end{array}\right) \quad \overrightarrow{\mathrm{DF}}=\left(\begin{array}{l} 0 \\ 100 \\ 5 \end{array}\right) \\ & \left(\begin{array}{l} 100 \\ 0 \\ -10 \end{array}\right) \cdot\left(\begin{array}{l} 2 \\ -1 \\ 20 \end{array}\right)=100 \times 2+0 \times-1+-10 \times 20=200-200=0 \\ & \left(\begin{array}{l} 0 \\ 100 \\ 5 \end{array}\right) \cdot\left(\begin{array}{l} 2 \\ -1 \\ 20 \end{array}\right)=0 \times 2+100 \times-1+5 \times 20=-100+100=0 \end{aligned}$ Equation of plane is $2 x-y+20 z=c$ At D (say) $c=20 \times-40=-800$ So equation is $2 x-y+20 z+800=0$	B1B1 B1 B1 M1 A1 [6]	need evaluation need evaluation
(iii) Angle is θ, where $\begin{aligned} & \cos \theta=\frac{\left(\left(\begin{array}{l} 2 \\ -1 \\ 20 \end{array}\right) \cdot\left(\begin{array}{l} 3 \\ 2 \\ 20 \end{array}\right)\right.}{\sqrt{2^{2}+(-1)^{2}+20^{2}} \sqrt{3^{2}+2^{2}+20^{2}}}=\frac{404}{\sqrt{405} \sqrt{413}} \\ & \Rightarrow \quad \theta=8.95^{\circ} \end{aligned}$	M1 A1 A1 A1cao [4]	formula with correct vectors top bottom (or 0.156 radians)
$\begin{aligned} & \text { (iv) } \mathrm{RS}: \mathbf{r}=\left(\begin{array}{l} 15 \\ 34 \\ 0 \end{array}\right)+\lambda\left(\begin{array}{l} 3 \\ 2 \\ 20 \end{array}\right) \\ & =\left(\begin{array}{l} 15+3 \lambda \\ 34+2 \lambda \\ 20 \lambda \end{array}\right) \\ & \Rightarrow \quad 3(15+3 \lambda)+2(34+2 \lambda)+20.20 \lambda+300=0 \\ & \Rightarrow \quad 45+9 \lambda+68+4 \lambda+400 \lambda+300=0 \\ & \Rightarrow \quad 413+413 \lambda=0 \\ & \Rightarrow \quad \begin{array}{l} \lambda=-1 \end{array} \\ & \\ & \quad \text { so S is }(12,32,-20) \end{aligned}$	B1 B1 M1 A1 A1 [5]	$\begin{aligned} & \left(\begin{array}{l} 15 \\ 34 \\ 0 \end{array}\right)+\ldots \\ & \ldots+\lambda\left(\begin{array}{l} 3 \\ 2 \\ 20 \end{array}\right) \end{aligned}$ solving with plane $\lambda=-1$ cao

$\begin{aligned} 9(\mathbf{i}) & v=\int 10 e^{-\frac{1}{2} t} d t \\ & =-20 e^{-\frac{1}{2} t}+c \\ & \text { when } t=0, v=0 \\ \Rightarrow \quad & 0=-20+c \\ \Rightarrow \quad & c=20 \\ & \text { so } v=20-20 e^{-\frac{1}{2} t} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	separate variables and intend to integrate $-20 e^{-\frac{1}{2} t}$ finding c cao
(ii) As $t \rightarrow \infty \mathrm{e}^{-1 / 2 t} \rightarrow 0$ $\Rightarrow \quad v \rightarrow 20$ So long term speed is $20 \mathrm{~m} \mathrm{~s}^{-1}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { [2] } \end{aligned}$	ft (for their $c>0$, found)
$\text { (iii) } \begin{aligned} & \frac{1}{(w-4)(w+5)}=\frac{A}{w-4}+\frac{B}{w+5} \\ &=\frac{A(w+5)+B(w-4)}{(w-4)(w+5)} \\ & \Rightarrow \quad 1 \equiv A(w+5)+B(w-4) \\ & w=4: 1=9 A \Rightarrow A=1 / 9 \\ & w=-5: 1=-9 B \Rightarrow B=-1 / 9 \\ & \Rightarrow \frac{1}{(w-4)(w+5)}= \frac{1 / 9}{w-4}-\frac{1 / 9}{w+5} \\ &=\frac{1}{9(w-4)}-\frac{1}{9(w+5)} \end{aligned}$	M1 M1 A1 A1 [4]	cover up, substitution or equating coeffs 1/9 $-1 / 9$
$\begin{aligned} & \text { (iv) } \frac{d w}{d t}=-\frac{1}{2}(w-4)(w+5) \\ & \Rightarrow \quad \int \frac{d w}{(w-4)(w+5)}=\int-\frac{1}{2} d t \\ & \Rightarrow \int\left[\frac{1}{9(w-4)}-\frac{1}{9(w+5)}\right] d w=\int-\frac{1}{2} d t \\ & \Rightarrow \frac{1}{9} \ln (w-4)-\frac{1}{9} \ln (w+5)=-\frac{1}{2} t+c \\ & \Rightarrow \frac{1}{9} \ln \frac{w-4}{w+5}=-\frac{1}{2} t+c \\ & \text { When } t=0, w=10 \Rightarrow c=\frac{1}{9} \ln \frac{6}{15}=\frac{1}{9} \ln \frac{2}{5} \\ & \Rightarrow \ln \frac{w-4}{w+5}=-\frac{9}{2} t+\ln \frac{2}{5} \\ & \Rightarrow \frac{w-4}{w+5}=e^{-\frac{9}{2} t \ln \frac{2}{5}}=\frac{2}{5} e^{-\frac{9}{2} t}=0.4 e^{-4.5 t} * \end{aligned}$	M1 M1 A1ft M1 M1 E1 [6]	separating variables substituting their partial fractions integrating correctly (condone absence of c) correctly evaluating c (at any stage) combining lns (at any stage) wWW
$\begin{aligned} & \quad \text { (v) As } t \rightarrow \infty \mathrm{e}^{-4.5 t} \rightarrow 0 \\ & \Rightarrow \quad \quad-4 \rightarrow 0 \\ & \text { So long term speed is } 4 \mathrm{~m} \mathrm{~s}^{-1} . \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	

Comprehension

1. (i)

2	1	3
3	2	1
1	3	2

2	3	1
3	1	2
1	2	3

1	2	3	4
3	1	4	2
2	4	1	3
4	3	2	1

Lines drawn on diagram or reference to 2×2 blocks. M1 One (or more) block does not contain all 4 of the symbols 1, 2, 3 and 4. oe. E1
3.

1	2	3	4
4	3	1	2
2	1	4	3
3	4	2	1

4.

Either

Or

B2

M1
In the top row there are 9 ways of allocating a symbol to the left cell, then 8 for the next, 7 for the next and so on down to 1 for the right cell, giving
$9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=9$! ways.
E1
So there must be $9!\times$ the number of ways of completing the rest of the puzzle.
6.
(i)

Block side length, b	Sudoku, $s \times s$	M
1	1×1	-
2	4×4	12
3	9×9	$\mathbf{7 7}$
4	16×16	$\mathbf{2 5 2}$
5	$\mathbf{2 5} \times \mathbf{2 5}$	$\mathbf{6 2 1}$

(ii) $\quad M=b^{4}-4$
7.

(i)	There are neither 3 s nor 5 s among the givens. So they are interchangeable and therefore there is no unique solution	E1
(ii)	The missing symbols form a 3×3 embedded Latin square.	M1
There is not a unique arrangement of the numbers 1,2 and 3 in this square.	E1	

4755 (FP1) Further Concepts for Advanced Mathematics

Qu	Answer	Mark	Comment
Section A			
1(i)	$\left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right)$	B1	Multiplication, or other valid method (may be implied) c.a.o.
1(ii)	$\left(\begin{array}{ll} 3 & 0 \\ 0 & 3 \end{array}\right)$	B1	
1(iii)	$\left(\begin{array}{ll} 3 & 0 \\ 0 & 3 \end{array}\right)\left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right)=\left(\begin{array}{cc} -3 & 0 \\ 0 & 3 \end{array}\right)$	M1 A1 [4]	
2		B3	Circle, B1; centre $-3+2 \mathrm{j}, \mathrm{B} 1$; radius $=2, \mathrm{~B} 1$
		B3	Line parallel to real axis, B 1 ; through (0,2), B1; correct half line, B1
		B1 [7]	Points $-1+2 \mathrm{j}$ and $-5+2 \mathrm{j}$ indicated c.a.o.
3	$\begin{aligned} & \left(\begin{array}{cc} -1 & -1 \\ 2 & 2 \end{array}\right)\binom{x}{y}=\binom{x}{y} \\ & \Rightarrow-x-y=x, 2 x+2 y=y \\ & \Rightarrow y=-2 x \end{aligned}$	M1 M1 B1 [3]	$\operatorname{For}\left(\begin{array}{cc}-1 & -1 \\ 2 & 2\end{array}\right)\binom{x}{y}=\binom{x}{y}$
4	$\begin{aligned} & 3 x^{3}-x^{2}+2 \equiv A(x-1)^{3}+\left(x^{3}+B x^{2}+C x+D\right) \\ & \equiv A x^{3}-3 A x^{2}+3 A x-A+x^{3}+B x^{2}+C x+D \\ & \equiv(A+1) x^{3}+(B-3 A) x^{2}+(3 A+C) x+(D-A) \\ & \Rightarrow A=2, B=5, C=-6, D=4 \end{aligned}$	M1 B4 [5]	Attempt to compare coefficients One for each correct value

5(i) 5(ii)	$\begin{aligned} & \mathbf{A B}=\left(\begin{array}{lll} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{array}\right) \\ & \mathbf{A}^{-1}=\frac{1}{7}\left(\begin{array}{ccc} -1 & 0 & 2 \\ 14 & -14 & 7 \\ -5 & 7 & -4 \end{array}\right) \end{aligned}$	B3 [3] M1 A1 [2]	Minus 1 each error to minimum of 0 Use of B c.a.o.
6	$w=2 x \Rightarrow x=\frac{w}{2}$ $\Rightarrow 2\left(\frac{w}{2}\right)^{3}+\left(\frac{w}{2}\right)^{2}-3\left(\frac{w}{2}\right)+1=0$ $\Rightarrow w^{3}+w^{2}-6 w+4=0$	B1 M1 A1 A2 [5]	Substitution. For substitution $x=2 w$ give BO but then follow through for a maximum of 3 marks Substitute into cubic Correct substitution Minus 1 for each error (including ' $=0$ ' missing), to a minimum of 0 Give full credit for integer multiple of equation
6	OR $\begin{aligned} & \alpha+\beta+\gamma=-\frac{1}{2} \\ & \alpha \beta+\alpha \gamma+\beta \gamma=-\frac{3}{2} \\ & \alpha \beta \gamma=-\frac{1}{2} \end{aligned}$ Let new roots be k, l, m then $\begin{aligned} & k+l+m=2(\alpha+\beta+\gamma)=-1=\frac{-B}{A} \\ & k l+k m+l m=4(\alpha \beta+\alpha \gamma+\beta \gamma)=-6=\frac{C}{A} \\ & k l m=8 \alpha \beta \gamma=-4=\frac{-D}{A} \\ & \Rightarrow \omega^{3}+\omega^{2}-6 \omega+4=0 \end{aligned}$	B1 M1 A1 A2 [5]	All three Attempt to use sums and products of roots of original equation to find sums and products of roots in related equation Sums and products all correct ft their coefficients; minus one for each error (including ' $=0$ ' missing), to minimum of 0 Give full credit for integer multiple of equation

Section B

8(i)	$x=3, x=-2, y=2$	B1 B1 B1 [3]	
8(ii)	Large positive $x, y \rightarrow 2^{+}$ (e.g. consider $x=100$) Large negative $x, y \rightarrow 2^{-}$ (e.g. consider $x=-100$)	M1 B1 B1 [3]	Evidence of method required
	Curve Central and RH branches correct Asymptotes correct and labelled LH branch correct, with clear minimum	B1 B1 B1 [3]	
8(iv)	$\begin{aligned} & -2<x<3 \\ & x \neq 0 \end{aligned}$	B2 B1 [3]	B2 max if any inclusive inequalities appear B3 for $-2<x<0$ and $0<x<3$,

Section B Total: 36
Total: 72

4756 (FP2) Further Methods for Advanced Mathematics

1(a)(i)	$\begin{aligned} & x=r \cos \theta, y=r \sin \theta \\ &\left(r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta\right)^{2}=3(r \cos \theta)(r \sin \theta)^{2} \\ & r^{4}=3 r^{3} \cos \theta \sin ^{2} \theta \\ & r=3 \cos \theta \sin ^{2} \theta \end{aligned}$	M1 A1 A1 ag 3	(M0 for $x=\cos \theta, y=\sin \theta$)
(ii)		B1 B1 B1	Loop in 1st quadrant Loop in 4th quadrant Fully correct curve Curve may be drawn using continuous or broken lines in any combination
(b)	$\begin{aligned} \int_{0}^{1} \frac{1}{\sqrt{4-3 x^{2}}} \mathrm{~d} x & =\left[\frac{1}{\sqrt{3}} \arcsin \frac{\sqrt{3} x}{2}\right]_{0}^{1} \\ & =\frac{1}{\sqrt{3}} \arcsin \frac{\sqrt{3}}{2} \\ & =\frac{\pi}{3 \sqrt{3}} \end{aligned}$	M1 A1A1 M1 A1 5	For arcsin For $\frac{1}{\sqrt{3}}$ and $\frac{\sqrt{3} x}{2}$ Exact numerical value Dependent on first M1 (M1A0 for $60 / \sqrt{3}$)
	OR Put $\sqrt{3} x=2 \sin \theta$ $\begin{aligned} \int_{0}^{1} \frac{1}{\sqrt{4-3 x^{2}}} \mathrm{~d} x & =\int_{0}^{\frac{\pi}{3}} \frac{1}{\sqrt{3}} \mathrm{~d} \theta \\ & =\frac{\pi}{3 \sqrt{3}} \end{aligned}$		Any sine substitution For $\int \frac{1}{\sqrt{3}} \mathrm{~d} \theta$ M1 dependent on first M1
(c)(i)	$\begin{aligned} & \ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\frac{1}{5} x^{5}-\ldots \\ & \ln (1-x)=-x-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}-\frac{1}{4} x^{4}-\frac{1}{5} x^{5}-\ldots \end{aligned}$	$\begin{array}{ll} B 1 & \\ B 1 & 2 \end{array}$	Accept unsimplified forms
(ii)	$\begin{aligned} \ln \left(\frac{1+x}{1-x}\right) & =\ln (1+x)-\ln (1-x) \\ & =2 x+\frac{2}{3} x^{3}+\frac{2}{5} x^{5}+\ldots \end{aligned}$	M1 A1	Obtained from two correct series Terms need not be added If MO , then B1 for $2 x+\frac{2}{3} x^{3}+\frac{2}{5} x^{5}$

(iii)	$\begin{aligned} \sum_{r=0}^{\infty} \frac{1}{(2 r+1) 4^{r}} & =1+\frac{1}{3 \times 4}+\frac{1}{5 \times 4^{2}}+\ldots \\ & =2 \times \frac{1}{2}+\frac{2}{3} \times\left(\frac{1}{2}\right)^{3}+\frac{2}{5} \times\left(\frac{1}{2}\right)^{5}+\ldots \\ & =\ln \left(\frac{1+1 / 2}{1-1 / 2}\right)=\ln 3 \end{aligned}$	B1 B1 B1 ag 3	Terms need not be added For $x=\frac{1}{2}$ seen or implied Satisfactory completion
2 (i)	$\begin{aligned} & \|z\|=8, \quad \arg z=\frac{1}{4} \pi \\ & \left\|z^{*}\right\|=8, \quad \arg z^{*}=-\frac{1}{4} \pi \\ & \|z w\|=8 \times 8=64 \\ & \arg (z w)=\frac{1}{4} \pi+\frac{7}{12} \pi=\frac{5}{6} \pi \\ & \left\|\frac{z}{w}\right\|=\frac{8}{8}=1 \\ & \arg \left(\frac{z}{w}\right)=\frac{1}{4} \pi-\frac{7}{12} \pi=-\frac{1}{3} \pi \end{aligned}$	B1B1 B1 ft	Must be given separately Remainder may be given in exponential or $r \mathrm{cjs} \theta$ form (B0 for $\frac{7}{4} \pi$) (B0 if left as $8 / 8$)
(ii)	$\begin{aligned} \frac{z}{w} & =\cos \left(-\frac{1}{3} \pi\right)+\mathrm{j} \sin \left(-\frac{1}{3} \pi\right) \\ & =\frac{1}{2}-\frac{\sqrt{3}}{2} \mathrm{j} \\ a & =\frac{1}{2}, \quad b=-\frac{1}{2} \sqrt{3} \end{aligned}$	M1 A1 2	If M0, then B1B1 for $\frac{1}{2} \text { and }-\frac{\sqrt{3}}{2}$
(iii)	$\begin{aligned} & r=\sqrt[3]{8}=2 \\ & \theta=\frac{1}{12} \pi \\ & \theta=\frac{\pi}{12}+\frac{2 k \pi}{3} \\ & \theta=-\frac{7}{12} \pi, \quad \frac{3}{4} \pi \end{aligned}$	B1 ft B1 M1 A1	Accept $\sqrt[3]{8}$ Implied by one further correct (ft) value Ignore values outside the required range
(iv)	$\begin{aligned} & w^{*}=8 \mathrm{e}^{-\frac{7}{12} \pi \mathrm{j}}, \text { so } 2 \mathrm{e}^{-\frac{7}{12} \pi \mathrm{j}}=\frac{1}{4} w^{*} \\ & \quad k_{1}=\frac{1}{4} \\ & z^{*}=8 \mathrm{e}^{-\frac{1}{4} \pi \mathrm{j}}=-8 \mathrm{e}^{\frac{3}{4} \pi \mathrm{j}} \end{aligned}$ So $\begin{gathered} 2 \mathrm{e}^{\frac{3}{4} \pi \mathrm{j}}=-\frac{1}{4} z^{*} \\ k_{2}=-\frac{1}{4} \end{gathered}$ $\begin{aligned} & \mathrm{j} w=8 \mathrm{e}^{\left(\frac{1}{2} \pi+\frac{7}{12} \pi\right) \mathrm{j}}=8 \mathrm{e}^{\frac{13}{12} \pi \mathrm{j}} \\ & =-8 \mathrm{e}^{\frac{1}{12} \pi \mathrm{j}}, \text { so } 2 \mathrm{e}^{\frac{1}{12} \pi \mathrm{j}}=-\frac{1}{4} \mathrm{j} w \\ & \quad k_{3}=-\frac{1}{4} \end{aligned}$	B1 ft M1 A1 ft M1 A1 ft	Matching w^{*} to a cube root with argument $-\frac{7}{12} \pi$ and $k_{1}=\frac{1}{4}$ or ft ft is $\frac{r}{8}$ Matching z^{*} to a cube root with argument $\frac{3}{4} \pi$ May be implied ft is $-\frac{r}{\left\|z^{*}\right\|}$ Matching jw to a cube root with argument $\frac{1}{12} \pi$ May be implied OR M1 for $\arg (\mathrm{j} w)=\frac{1}{2} \pi+\arg w$ (implied by $\frac{13}{12} \pi$ or $-\frac{11}{12} \pi$) ft is $-\frac{r}{8}$

3 (i)	$\mathbf{Q}^{-1}=\frac{1}{k-3}\left(\begin{array}{ccc} -1 & k+2 & -1 \\ 1 & 4-3 k & k-2 \\ 1 & -5 & 1 \end{array}\right)$ When $k=4, \mathbf{Q}^{-1}=\left(\begin{array}{ccc}-1 & 6 & -1 \\ 1 & -8 & 2 \\ 1 & -5 & 1\end{array}\right)$	M1 A1 M1 A1 M1 A1	Evaluation of determinant (must involve k) For ($k-3$) Finding at least four cofactors (including one involving k) Six signed cofactors correct (including one involving k) Transposing and dividing by det Dependent on previous M1M1 \mathbf{Q}^{-1} correct (in terms of k) and result for $k=4$ stated After 0, SC1 for \mathbf{Q}^{-1} when $k=4$ obtained correctly with some working
(ii)	$\begin{aligned} \mathbf{P} & =\left(\begin{array}{lll} 2 & -1 & 4 \\ 1 & 0 & 1 \\ 3 & 1 & 2 \end{array}\right), \quad \mathbf{D}=\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{array}\right) \\ \mathbf{M} & =\mathbf{P ~}^{\mathbf{D}} \mathbf{P}^{-1} \\ & =\left(\begin{array}{ccc} 2 & -1 & 4 \\ 1 & 0 & 1 \\ 3 & 1 & 2 \end{array}\right)\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{array}\right)\left(\begin{array}{ccc} -1 & 6 & -1 \\ 1 & -8 & 2 \\ 1 & -5 & 1 \end{array}\right) \\ & =\left(\begin{array}{ccc} 2 & 1 & 12 \\ 1 & 0 & 3 \\ 3 & -1 & 6 \end{array}\right)\left(\begin{array}{ccc} -1 & 6 & -1 \\ 1 & -8 & 2 \\ 1 & -5 & 1 \end{array}\right) \\ & =\left(\begin{array}{ccc} 11 & -56 & 12 \\ 2 & -9 & 2 \\ 2 & -4 & 1 \end{array}\right) \end{aligned}$	B1B1 B2 M1 A2	For B2, order must be consistent Give B1 for $\mathbf{M}=\mathbf{P}^{-1} \mathbf{D} \mathbf{P}$ $\text { or }\left(\begin{array}{ccc} 2 & -1 & 4 \\ 1 & 0 & 1 \\ 3 & 1 & 2 \end{array}\right)\left(\begin{array}{ccc} -1 & 6 & -1 \\ -1 & 8 & -2 \\ 3 & -15 & 3 \end{array}\right)$ Good attempt at multiplying two matrices (no more than 3 errors), leaving third matrix in correct position Give A1 for five elements correct Correct M implies B2M1A2 5-8 elements correct implies B2M1A1
(iii)	Characteristic equation is $\begin{aligned} & (\lambda-1)(\lambda+1)(\lambda-3)=0 \\ & \lambda^{3}-3 \lambda^{2}-\lambda+3=0 \\ & \mathbf{M}^{3}=3 \mathbf{M}^{2}+\mathbf{M}-3 \mathbf{I} \\ & \begin{aligned} \mathbf{M}^{4} & =3 \mathbf{M}^{3}+\mathbf{M}^{2}-3 \mathbf{M} \\ & =3\left(3 \mathbf{M}^{2}+\mathbf{M}-3 \mathbf{I}\right)+\mathbf{M}^{2}-3 \mathbf{M} \\ \quad & =10 \mathbf{M}^{2}-9 \mathbf{I} \end{aligned} \\ & a=10, b=0, c=-9 \end{aligned}$	B1 M1 A1 M1 A1	In any correct form (Condone omission of $=0$) M satisfies the characteristic equation Correct expanded form (Condone omission of I)

4 (i)	$\begin{aligned} & \cosh ^{2} x=\left[\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)\right]^{2}=\frac{1}{4}\left(\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}\right) \\ & \sinh ^{2} x=\left[\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)\right]^{2}=\frac{1}{4}\left(\mathrm{e}^{2 x}-2+\mathrm{e}^{-2 x}\right) \\ & \cosh ^{2} x-\sinh ^{2} x=\frac{1}{4}(2+2)=1 \end{aligned}$	B1 B1 B1 ag 3	For completion
	OR $\begin{array}{ll} \cosh x+\sinh x=\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)+\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)=\mathrm{e}^{x} & \mathrm{~B} 1 \\ \cosh x-\sinh x=\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)-\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)=\mathrm{e}^{-x} & \mathrm{~B} 1 \\ \cosh ^{2} x-\sinh ^{2} x=\mathrm{e}^{x} \times \mathrm{e}^{-x}=1 & \mathrm{~B} 1 \tag{B1} \end{array}$		Completion
(ii)	$\begin{aligned} 4\left(1+\sinh ^{2} x\right) & +9 \sinh x=13 \\ 4 \sinh ^{2} x & +9 \sinh x-9=0 \\ \sinh x & =\frac{3}{4},-3 \\ x & =\ln 2, \ln (-3+\sqrt{10}) \end{aligned}$	M1 M1 A1A1 A1A1 ft	(MO for $1-\sinh ^{2} x$) Obtaining a value for $\sinh x$ Exact logarithmic form Dep on M1M1 Max A1 if any extra values given
	$\text { OR } \begin{aligned} & 2 \mathrm{e}^{4 x}+9 \mathrm{e}^{3 x}-22 \mathrm{e}^{2 x}-9 \mathrm{e}^{x}+2=0 \\ &\left(2 \mathrm{e}^{2 x}-3 \mathrm{e}^{x}-2\right)\left(\mathrm{e}^{2 x}+6 \mathrm{e}^{x}-1\right)=0 \\ & \mathrm{e}^{x}=2,-3+\sqrt{10} \\ & x=\ln 2, \ln (-3+\sqrt{10}) \end{aligned}$		Quadratic and / or linear factors Obtaining a value for e^{x} Ignore extra values Dependent on M1M1 Max A1 if any extra values given Just $x=\ln 2$ earns MOM1A1AOA0AO
(iii)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=8 \cosh x \sinh x+9 \cosh x \\ &=\cosh x(8 \sinh x+9) \\ &=0 \text { only when } \sinh x=-\frac{9}{8} \\ & \cosh ^{2} x=1+\left(-\frac{9}{8}\right)^{2}=\frac{145}{64} \\ & y=4 \times \frac{145}{64}+9 \times\left(-\frac{9}{8}\right)=-\frac{17}{16} \end{aligned}$	B1 B1 M1 A1	Any correct form or $y=\left(2 \sinh x+\frac{9}{4}\right)^{2}+\ldots\left(-\frac{17}{16}\right)$ Correctly showing there is only one solution Exact evaluation of y or $\cosh ^{2} x$ or $\cosh 2 x$ Give B2 (replacing M1A1) for -1.06 or better
(iv)	$\begin{aligned} \int_{0}^{\ln 2} & (2+2 \cosh 2 x+9 \sinh x) \mathrm{d} x \\ & =[2 x+\sinh 2 x+9 \cosh x]_{0}^{\ln 2} \\ & =\left\{2 \ln 2+\frac{1}{2}\left(4-\frac{1}{4}\right)+\frac{9}{2}\left(2+\frac{1}{2}\right)\right\}-9 \\ & =2 \ln 2+\frac{33}{8} \end{aligned}$	M1 A2 M1 A1 ag	Expressing in integrable form Give A1 for two terms correct $\sinh (2 \ln 2)=\frac{1}{2}\left(4-\frac{1}{4}\right)$ Must see both terms for M1 Must also see $\cosh (\ln 2)=\frac{1}{2}\left(2+\frac{1}{2}\right)$ for A1

	$\begin{align*} \text { OR } & \int_{0}^{\ln 2}\left(\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}+\frac{9}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)\right) \mathrm{d} x \\ & =\left[\frac{1}{2} \mathrm{e}^{2 x}+2 x-\frac{1}{2} \mathrm{e}^{-2 x}+\frac{9}{2} \mathrm{e}^{x}+\frac{9}{2} \mathrm{e}^{-x}\right]_{0}^{\ln 2} \\ & =\left(2+2 \ln 2-\frac{1}{8}+9+\frac{9}{4}\right)-\left(\frac{1}{2}-\frac{1}{2}+\frac{9}{2}+\frac{9}{2}\right) \mathrm{M} 1 \\ & =2 \ln 2+\frac{33}{8} \quad \text { A1 ag } \end{align*}$		Expanded exponential form (M0 if the 2 is omitted) Give A1 for three terms correct $\mathrm{e}^{2 \ln 2}=4$ and $\mathrm{e}^{-2 \ln 2}=\frac{1}{4}$ both seen Must also see $\mathrm{e}^{\ln 2}=2 \text { and } \mathrm{e}^{-\ln 2}=\frac{1}{2}$ for A1
5 (i)		${ }_{3}^{B 1 B 1 B 1}$	
(ii)	Ellipse	B1	
(iii)	$y=\sqrt{2} \cos \left(\theta-\frac{1}{4} \pi\right)$ Maximum $y=\sqrt{2}$ when $\theta=\frac{1}{4} \pi$	M1 A1 ag 2	or $\sqrt{2} \sin \left(\theta+\frac{1}{4} \pi\right)$
	OR $\frac{\mathrm{d} y}{\mathrm{~d} \theta}=-\sin \theta+\cos \theta=0$ when $\theta=\frac{1}{4} \pi$ $y=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2}$		
(iv)	$\begin{aligned} x^{2}+y^{2}= & \lambda^{2} \cos ^{2} \theta-2 \cos \theta \sin \theta+\frac{1}{\lambda^{2}} \sin ^{2} \theta \\ & \quad+\cos ^{2} \theta+2 \cos \theta \sin \theta+\sin ^{2} \theta \\ = & \left(\lambda^{2}+1\right)\left(1-\sin ^{2} \theta\right)+\left(\frac{1}{\lambda^{2}}+1\right) \sin ^{2} \theta \\ = & 1+\lambda^{2}+\left(\frac{1}{\lambda^{2}}-\lambda^{2}\right) \sin ^{2} \theta \end{aligned}$ When $\sin ^{2} \theta=0, x^{2}+y^{2}=1+\lambda^{2}$ When $\sin ^{2} \theta=1, x^{2}+y^{2}=1+\frac{1}{\lambda^{2}}$ Since $0 \leq \sin ^{2} \theta \leq 1$, distance from O , $\sqrt{x^{2}+y^{2}}$, is between $\sqrt{1+\frac{1}{\lambda^{2}}}$ and $\sqrt{1+\lambda^{2}}$	M1 M1 A1 ag M1 M1 A1 ag	Using $\cos ^{2} \theta=1-\sin ^{2} \theta$
(v)	When $\lambda=1, x^{2}+y^{2}=2$ Curve is a circle (centre O) with radius $\sqrt{2}$	M1 A1 2	

(vi) | Sine $1 / 2$ mark for each point, |
| :--- |
| then round down |
| Special properties must be clear |
| from diagram, or stated |
| Max 3 if curve is not the correct |
| shape |

4757 (FP3) Further Applications of Advanced Mathematics

1 (i)	$\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left(\begin{array}{c} 6 \\ 8 \\ 5 \end{array}\right) \times\left(\begin{array}{c} 10 \\ -5 \\ 1 \end{array}\right)=\left(\begin{array}{c} 33 \\ 44 \\ -110 \end{array}\right)$ ABC is $3 x+4 y-10 z=-9+20-20$ $3 x+4 y-10 z+9=0$	B2 M1 A1 4	Ignore subsequent working Give B1 for one element correct SC1 for minus the correct vector For $3 x+4 y-10 z$ Accept $33 x+44 y-110 z=-99$ etc
(ii)	$\text { Distance is } \begin{aligned} & \frac{3 \times 5+4 \times 4-10 \times 8+9}{\sqrt{3^{2}+4^{2}+10^{2}}} \\ & =(-) \frac{40}{\sqrt{125}} \quad\left(=\frac{8}{\sqrt{5}}\right) \end{aligned}$	M1 A1 ft A1 3	Using distance formula (or other complete method) Condone negative answer Accept a.r.t. 3.58
(iii)	$\begin{aligned} \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{CD}}=\left(\begin{array}{l} 6 \\ 8 \\ 5 \end{array}\right) \times\left(\begin{array}{c} -2 \\ 4 \\ 5 \end{array}\right) & =\left(\begin{array}{c} 20 \\ -40 \\ 40 \end{array}\right) \quad\left[=20\left(\begin{array}{c} 1 \\ -2 \\ 2 \end{array}\right)\right] \\ \text { Distance is } \overrightarrow{\mathrm{AC}} \cdot \hat{\mathbf{n}} & =\frac{\left(\begin{array}{c} 10 \\ -5 \\ 1 \end{array}\right) \cdot\left(\begin{array}{c} 1 \\ -2 \\ 2 \end{array}\right)}{\sqrt{1^{2}+2^{2}+2^{2}}} \\ & =\frac{22}{3} \end{aligned}$	M1 A1 M1 A1 4	Evaluating $\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{CD}}$ or method for finding end-points of common perp PQ $\begin{aligned} & \text { or } \mathrm{P}(3 / 2,11,23 / 4) \& \\ & \mathrm{Q}(71 / 18,55 / 9,383 / 36) \\ & \text { or } \overline{\mathrm{PQ}}=(22 / 9,-44 / 9,44 / 9) \end{aligned}$
(iv)	Volume is $\frac{1}{6}(\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}) \cdot \overrightarrow{\mathrm{AD}}$ $\begin{aligned} & =\frac{1}{6}\left(\begin{array}{c} 33 \\ 44 \\ -110 \end{array}\right) \cdot\left(\begin{array}{c} 8 \\ -1 \\ 6 \end{array}\right) \\ & =(-) \frac{220}{3} \end{aligned}$	M1 A1 M1 A1 4	Scalar triple product Accept a.r.t. 73.3
(v)	E is $\begin{aligned} &(-3+10 \lambda, 5-5 \lambda, 2+\lambda) \\ & 3(-3+10 \lambda)-2(2+\lambda)+5=0 \\ & \lambda=\frac{2}{7} \end{aligned}$ F is $\begin{aligned} &(-3+8 \mu, 5-\mu, 2+6 \mu) \\ & 3(-3+8 \mu)-2(2+6 \mu)+5=0 \\ & \mu=\frac{2}{3} \end{aligned}$ Since $0<\lambda<1$, E is between A and C Since $0<\mu<1, \mathrm{~F}$ is between A and D	M1 A1 M1 A1 B1	

(vi)	$\begin{aligned} V_{\mathrm{ABEF}} & =\frac{1}{6}(\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AE}}) \cdot \overrightarrow{\mathrm{AF}} \\ & =\frac{1}{6} \lambda \mu(\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}) \cdot \overrightarrow{\mathrm{AD}} \\ & =\lambda \mu V_{\mathrm{ABCD}} \\ & =\frac{4}{21} V_{\mathrm{ABCD}} \end{aligned}$ Ratio of volumes is $\frac{4}{21}: \frac{17}{21}$ $=4: 17$	M1 A1 M1 A1 ag	($13 \frac{61}{63}$) ft if numerical Finding ratio of volumes of two parts SC1 for 4 : 17 deduced from 4/21 without working
2 (i)	$\begin{aligned} & \frac{\partial \mathrm{g}}{\partial x}=6 z-2(x+2 y+3 z)=-2 x-4 y \\ & \frac{\partial \mathrm{~g}}{\partial y}=-4(x+2 y+3 z) \\ & \frac{\partial \mathrm{g}}{\partial z}=6 x-6(x+2 y+3 z)=-12 y-18 z \end{aligned}$	M1 A1 A1 A1	Partial differentiation Any correct form, ISW
(ii)	At $\mathrm{P}, \frac{\partial \mathrm{g}}{\partial x}=16, \frac{\partial \mathrm{~g}}{\partial y}=-4, \frac{\partial \mathrm{~g}}{\partial z}=36$ Normal line is $\mathbf{r}=\left(\begin{array}{c}7 \\ -7.5 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}4 \\ -1 \\ 9\end{array}\right)$	M1 A1 A1 ft 3	Evaluating partial derivatives at P All correct Condone omission of ' $\mathrm{r}=$ '
(iii)	$\begin{aligned} & \delta \mathrm{g} \approx 16 \delta x-4 \delta y+36 \delta z \\ & \text { If } \overrightarrow{\mathrm{PQ}}=\lambda\left(\begin{array}{c} 4 \\ -1 \\ 9 \end{array}\right), \\ & \quad \delta \mathrm{g} \approx 16(4 \lambda)-4(-\lambda)+36(9 \lambda) \quad(=392 \lambda) \\ & h=\delta \mathrm{g}, \text { so } h \approx 392 \lambda \\ & \overrightarrow{\mathrm{PQ}} \approx \frac{h}{392}\left(\begin{array}{c} 4 \\ -1 \\ 9 \end{array}\right), \text { so } \mathbf{n}=\frac{1}{392}\left(\begin{array}{c} 4 \\ -1 \\ 9 \end{array}\right) \end{aligned}$	M1 M1 A1 ft M1 A1 5	Alternative: M3 for substituting $x=7+4 \lambda$, ... into $\mathrm{g}=125+h$ and neglecting λ^{2} A1 ft for linear equation in λ and h A1 for \mathbf{n} correct
(iv)	Require $\frac{\partial \mathrm{g}}{\partial x}=\frac{\partial \mathrm{g}}{\partial y}=0$ $\begin{aligned} & -2 x-4 y=0 \text { and } x+2 y+3 z=0 \\ & x+2 y=0 \text { and } z=0 \\ & \mathrm{~g}(x, y, z)=0-0^{2}=0 \neq 125 \end{aligned}$ Hence there is no such point on S	M1 M1 M1 A1	Useful manipulation using both eqns Showing there is no such point on S Fully correct proof
(v)	$\begin{gathered} \text { Require } \frac{\partial \mathrm{g}}{\partial z}=0 \\ \text { and } \frac{\partial \mathrm{g}}{\partial y}=5 \frac{\partial \mathrm{~g}}{\partial x} \\ -4 x-8 y-12 z=5(-2 x-4 y) \end{gathered}$	M1 M1 M1	Implied by $\frac{\partial \mathrm{g}}{\partial x}=\lambda, \frac{\partial \mathrm{g}}{\partial y}=5 \lambda$ This M1 can be awarded for $-2 x-4 y=1 \text { and }-4 x-8 y-12 z=5$

	$y=-\frac{3}{2} z \text { and } x=5 z$ $\begin{aligned} 6(5 z) z-(5 z)^{2} & =125 \\ z & = \pm 5 \end{aligned}$ Points are (25, $-7.5,5)$ and (-25, 7.5, -5)	A1 M1 M1 A1 A1 ft	or $z=-\frac{2}{3} y$ and $x=-\frac{10}{3} y$ or $y=-\frac{3}{10} x$ and $z=\frac{1}{5} x$ or $x=-\frac{5}{4} \lambda, y=\frac{3}{8} \lambda, z=-\frac{1}{4} \lambda$ or $x: y: z=10:-3: 2$ Substituting into $\mathrm{g}(x, y, z)=125$ Obtaining one value of x, y, z or λ Dependent on previous M1 ft is minus the other point, provided all M marks have been earned
3 (i)	$\begin{aligned} \dot{x}^{2}+\dot{y}^{2} & =\left(24 t^{2}\right)^{2}+\left(18 t-8 t^{3}\right)^{2} \\ & =576 t^{4}+324 t^{2}-288 t^{4}+64 t^{6} \\ & =324 t^{2}+288 t^{4}+64 t^{6} \\ & =\left(18 t+8 t^{3}\right)^{2} \end{aligned}$ Arc length is $\int_{0}^{2}\left(18 t+8 t^{3}\right) \mathrm{d} t$ $\begin{aligned} & =\left[9 t^{2}+2 t^{4}\right]_{0}^{2} \\ & =68 \end{aligned}$	B1 M1 A1 ag M1 A1 A1	Note $\int_{0}^{2}\left(18+8 t^{3}\right) \mathrm{d} t=\left[18 t+2 t^{4}\right]_{0}^{2}=68$ earns M1A0AO
(ii)	Curved surface area is $\int 2 \pi y \mathrm{~d} s$ $\begin{aligned} & =\int_{0}^{2} 2 \pi\left(9 t^{2}-2 t^{4}\right)\left(18 t+8 t^{3}\right) \mathrm{d} t \\ & =\int_{0}^{2} \pi\left(324 t^{3}+72 t^{5}-32 t^{7}\right) \mathrm{d} t \\ & =\pi\left[81 t^{4}+12 t^{6}-4 t^{8}\right]_{0}^{2} \\ & =1040 \pi \quad(\approx 3267) \end{aligned}$		Using $\mathrm{d} s=\left(18 t+8 t^{3}\right) \mathrm{d} t$ Correct integral expression including limits (may be implied by later work)
(iii)	$\begin{aligned} \kappa & =\frac{\check{x} \ddot{y}-\dddot{x} \ddot{y}}{\left(\dot{x}^{2}+\dot{y}^{2}\right)^{\frac{3}{2}}}=\frac{\left(24 t^{2}\right)\left(18-24 t^{2}\right)-(48 t)\left(18 t-8 t^{3}\right)}{\left(18 t+8 t^{3}\right)^{3}} \\ & =\frac{48 t^{2}\left(9-12 t^{2}-18+8 t^{2}\right)}{8 t^{3}\left(9+4 t^{2}\right)^{3}}=\frac{-48 t^{2}\left(9+4 t^{2}\right)}{8 t^{3}\left(9+4 t^{2}\right)^{3}} \\ & =\frac{-6}{t\left(4 t^{2}+9\right)^{2}} \end{aligned}$	M1 A1A1 M1 A1 ag	Using formula for κ (or ρ) For numerator and denominator Simplifying the numerator

(iv)	When $t=1, x=8, y=7, \kappa=-\frac{6}{169}$ $\begin{gathered} \rho=(-) \frac{169}{6} \\ \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\dot{y}}{\dot{x}}=\frac{18 t-8 t^{3}}{24 t^{2}}=\frac{10}{24} \\ \hat{\mathbf{n}}=\binom{5 / 13}{-12 / 13} \\ \mathbf{c}=\binom{8}{7}+\frac{169}{6}\binom{5 / 13}{-12 / 13} \end{gathered}$ Centre of curvature is $\left(18 \frac{5}{6},-19\right)$	B1 M1 M1 A1 M1 A1A1	Finding gradient (or tangent vector) Finding direction of the normal Correct unit normal (either direction)
4 (i)	Commutative: $x * y=y * x$ (for all x, y) Associative: $(x * y) * z=x *(y * z)$ (for all x, y, z)	B1 B2 3	Accept e.g. 'Order does not matter' Give B1 for a partial explanation, e.g. 'Position of brackets does not matter'
(ii)	$\begin{aligned} 2\left(x+\frac{1}{2}\right)\left(y+\frac{1}{2}\right)-\frac{1}{2} & =2 x y+x+y+\frac{1}{2}-\frac{1}{2} \\ & =2 x y+x+y=x * y \end{aligned}$	B1 ag $\quad 1$	Intermediate step required
$\text { (iii) }(A)$	$\begin{aligned} & \text { If } x, y \in S \text { then } x>-\frac{1}{2} \text { and } y>-\frac{1}{2} \\ & x+\frac{1}{2}>0 \text { and } y+\frac{1}{2}>0 \text {, so } 2\left(x+\frac{1}{2}\right)\left(y+\frac{1}{2}\right)>0 \\ & 2\left(x+\frac{1}{2}\right)\left(y+\frac{1}{2}\right)-\frac{1}{2}>-\frac{1}{2}, \text { so } x * y \in S \end{aligned}$	M1 A1 A1 3	
(B)	0 is the identity since $0 * x=0+x+0=x$ If $x \in S$ and $x * y=0$ then $\begin{aligned} & 2 x y+x+y=0 \\ & \qquad y=\frac{-x}{2 x+1} \\ & y+\frac{1}{2}=\frac{1}{2(2 x+1)}>0 \quad\left(\text { since } x>-\frac{1}{2}\right) \\ & \text { so } y \in S \end{aligned}$ S is closed and associative; there is an identity; and every element of S has an inverse in S	B1 B1 M1 A1 M1 A1 6	or $2\left(x+\frac{1}{2}\right)\left(y+\frac{1}{2}\right)-\frac{1}{2}=0$ or $y+\frac{1}{2}=\frac{1}{4\left(x+\frac{1}{2}\right)}$ Dependent on M1A1M1
(iv)	If $x * x=0, \quad 2 x^{2}+x+x=0$ $x=0 \text { or }-1$ 0 is the identity (and has order 1) -1 is not in S	M1 A1 A1 3	

(v)	$\begin{aligned} 4 * 6 & =48+4+6=58 \\ & =56+2=7 \times 8+2 \end{aligned}$ So $4 \circ 6=2$								2	
(vi)	Element	0	1	2	4	5	6			
	Order	1	6	6	3	3	2	B3	3	Give B2 for 4 correct B1 for 2 correct
(vii)	$\begin{aligned} & \{0\}, G \\ & \{0,6\} \\ & \{0,4,5\} \end{aligned}$							$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$		Condone omission of G If more than 2 non-trivial subgroups are given, deduct 1 mark (from final B1B1) for each non-trivial subgroup in excess of 2

Pre-multiplication by transition matrix

5 (i)	$\mathbf{P}=\left(\begin{array}{lll}0.1 & 0.7 & 0.1 \\ 0.4 & 0.2 & 0.6 \\ 0.5 & 0.1 & 0.3\end{array}\right)$	B2	2	Give B1 for two columns correct
(ii)	$\mathbf{P}^{6}\left(\begin{array}{c} 1 / 3 \\ 1 / 3 \\ 1 / 3 \end{array}\right)=\left(\begin{array}{c} 0.328864 \\ 0.381536 \\ 0.2896 \end{array}\right)$ $\mathrm{P}(B$ used on 7 th day $)=0.3815$	M1 M1 M1 A1	4	Using \mathbf{P}^{6} (or \mathbf{P}^{7}) For matrix of initial probabilities For evaluating matrix product Accept 0.381 to 0.382
(iii)	$\begin{aligned} & 0.328864 \times 0.1+0.381536 \times 0.2+0.2896 \times 0.3 \\ & \quad=0.1961 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	3	Using diagonal elements from \mathbf{P} Correct method Accept a.r.t. 0.196
(iv)	$\begin{aligned} & \mathbf{P}^{3}=\left(\begin{array}{lll} 0.352 & 0.328 & 0.304 \\ 0.364 & 0.404 & 0.372 \\ 0.284 & 0.268 & 0.324 \end{array}\right) \\ & \begin{array}{l} 0.328864 \times 0.352+0.381536 \times 0.404+0.2896 \times 0.324 \\ \\ =0.3637 \end{array} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	4	For evaluating \mathbf{P}^{3} Using diagonal elements from P^{3} Correct method Accept a.r.t. 0.364
(v)	$\mathbf{Q}=\left(\begin{array}{lll} 0.3289 & 0.3289 & 0.3289 \\ 0.3816 & 0.3816 & 0.3816 \\ 0.2895 & 0.2895 & 0.2895 \end{array}\right)$ $0.3289,0.3816,0.2895$ are the long-run probabilities for the routes A, B, C	B1 B1 B1 B1		Deduct 1 if not given as a (3×3) matrix Deduct 1 if not 4 dp Accept 'equilibrium probabilities'
(vi)	$\begin{aligned} & \left(\begin{array}{lll} 0.1 & 0.7 & a \\ 0.4 & 0.2 & b \\ 0.5 & 0.1 & c \end{array}\right)\left(\begin{array}{l} 0.4 \\ 0.2 \\ 0.4 \end{array}\right)=\left(\begin{array}{l} 0.4 \\ 0.2 \\ 0.4 \end{array}\right) \\ & 0.04+0.14+0.4 a=0.4, \text { so } a=0.55 \\ & 0.16+0.04+0.4 b=0.2, \text { so } b=0 \\ & 0.2+0.02+0.4 c=0.4, \text { so } c=0.45 \end{aligned}$ After C, routes A, B, C will be used with probabilities $0.55,0,0.45$	M1 M1 A2		Obtaining a value for a, b or c Give A1 for one correct
(vii)	$\begin{aligned} & 0.4 \times 0.1+0.2 \times 0.2+0.4 \times 0.45 \\ & \quad=0.26 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$		Using long-run probs $0.4,0.2$, 0.4 Using diag elements from new matrix

Post-multiplication by transition matrix

5 (i)	$\mathbf{P}=\left(\begin{array}{lll}0.1 & 0.4 & 0.5 \\ 0.7 & 0.2 & 0.1 \\ 0.1 & 0.6 & 0.3\end{array}\right)$	B2 2	Give B1 for two rows correct
(ii)	$\begin{aligned} & \left(\begin{array}{lll} 1 / 3 & 1 / 3 & 1 / 3 \end{array}\right) \mathbf{P}^{6}=\left(\begin{array}{lll} 0.328864 & 0.381536 & 0.2896 \end{array}\right) \\ & P(B \text { used on } 7 \text { th day })=0.3815 \end{aligned}$	M1 M1 M1 A1 4	Using \mathbf{P}^{6} (or \mathbf{P}^{7}) For matrix of initial probabilities For evaluating matrix product Accept 0.381 to 0.382
(iii)	$\begin{aligned} & 0.328864 \times 0.1+0.381536 \times 0.2+0.2896 \times 0.3 \\ & \quad=0.1961 \end{aligned}$	M1 M1 A1 3	Using diagonal elements from \mathbf{P} Correct method Accept a.r.t. 0.196
(iv)	$\begin{aligned} & \mathbf{P}^{3}=\left(\begin{array}{lll} 0.352 & 0.364 & 0.284 \\ 0.328 & 0.404 & 0.268 \\ 0.304 & 0.372 & 0.324 \end{array}\right) \\ & \begin{aligned} & 0.328864 \times 0.352+0.381536 \times 0.404+0.2896 \times 0.324 \\ &=0.3637 \end{aligned} \end{aligned}$	M1 M1 M1 A1	For evaluating \mathbf{P}^{3} Using diagonal elements from \mathbf{P}^{3} Correct method Accept a.r.t. 0.364
(v)	$\mathbf{Q}=\left(\begin{array}{lll} 0.3289 & 0.3816 & 0.2895 \\ 0.3289 & 0.3816 & 0.2895 \\ 0.3289 & 0.3816 & 0.2895 \end{array}\right)$ 0.3289, $0.3816,0.2895$ are the long-run probabilities for the routes A, B, C	B1B1B1 B1	Deduct 1 if not given as a (3×3) matrix Deduct 1 if not $4 d p$ Accept 'equilibrium probabilities'
(vi)	$\begin{aligned} & \left(\begin{array}{lll} 0.4 & 0.2 & 0.4 \end{array}\right)\left(\begin{array}{ccc} 0.1 & 0.4 & 0.5 \\ 0.7 & 0.2 & 0.1 \\ a & b & c \end{array}\right)=\left(\begin{array}{lll} 0.4 & 0.2 & 0.4 \end{array}\right) \\ & 0.04+0.14+0.4 a=0.4, \text { so } a=0.55 \\ & 0.16+0.04+0.4 b=0.2, \text { so } b=0 \\ & 0.2+0.02+0.4 c=0.4, \text { so } c=0.45 \end{aligned}$ After C, routes A, B, C will be used with probabilities $0.55,0,0.45$	M1 M1 A2	Obtaining a value for a, b or c Give A1 for one correct
(vii)	$\begin{aligned} & 0.4 \times 0.1+0.2 \times 0.2+0.4 \times 0.45 \\ & \quad=0.26 \end{aligned}$	M1 M1 A1 3	Using long-run probs $0.4,0.2$, 0.4 Using diag elements from new matrix

4758 Differential Equations

1 (i)	$2 \ddot{x}=2 g-8(x+0.25 g)-2 k v$ Weight positive as down, tension negative as up. Resistance negative as opposes motion. $\Rightarrow \ddot{x}+k \dot{x}+4 x=0$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { E1 } \end{aligned}$	N2L equation with all forces using given expressions for tension and resistance Must follow correct N2L equation	
	$\begin{aligned} & x=A \cos 2 t+B \sin 2 t \\ & t=0, x=0.1 \Rightarrow A=0.1 \\ & \dot{x}=-2 A \sin 2 t+2 B \cos 2 t \text { so } t=0, \dot{x}=0 \Rightarrow B=0 \\ & x=0.1 \cos 2 t \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Find the coefficient of cos Find the coefficient of sin cao	
	$\begin{aligned} & \alpha^{2}+2 \alpha+4=0 \\ & \alpha=-1 \pm \sqrt{3} j \\ & x=\mathrm{e}^{-t}(C \cos \sqrt{3} t+D \sin \sqrt{3} t) \\ & t=0, x=0.1 \Rightarrow C=0.1 \\ & \dot{x}=-\mathrm{e}^{-t}(C \cos \sqrt{3} t+D \sin \sqrt{3} t) \\ & +\mathrm{e}^{-t}(-\sqrt{3} C \sin \sqrt{3} t+\sqrt{3} D \cos \sqrt{3} t) \\ & 0=-C+\sqrt{3} D \\ & D=\frac{0.1}{\sqrt{3}} \\ & x=0.1 \mathrm{e}^{-t}\left(\cos \sqrt{3} t+\frac{1}{\sqrt{3}} \sin \sqrt{3} t\right) \\ & 0.1 \end{aligned}$	M1 A1 M1 F1 M1 M1 M1 A1 B1 B1 B1	Auxiliary equation CF for complex roots CF for their roots Condition on x Differentiate (product rule) Condition on \dot{x} cao Curve through $(0,0.1)$ with zero gradient Oscillating Asymptote $x=0$	
(iv)	$k^{2}-4 \cdot 1 \cdot 4>0$ (As k is positive) $k>4$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Use of discriminant Correct inequality Accept $k<-4$ in addition (but not $k>-4$) Curve through $(0,0.1)$ Decays without oscillating (at most one intercept with positive t axis)	

(i)	$\begin{aligned} & x=A \mathrm{e}^{-2 t} \\ & t=0, x=8 \Rightarrow A=8 \\ & x=8 \mathrm{e}^{-2 t} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Any valid method Condition on x	
	$\begin{aligned} & \dot{y}+y=16 \mathrm{e}^{-2 t} \\ & \alpha+1=0 \Rightarrow \alpha=-1 \\ & \text { CF } y=B \mathrm{e}^{-t} \\ & \text { PI } y=a \mathrm{e}^{-2 t} \\ & -2 a \mathrm{e}^{-2 t}+a \mathrm{e}^{-2 t}=16 \mathrm{e}^{-2 t} \\ & a=-16 \\ & \mathrm{GS} y=-16 \mathrm{e}^{-2 t}+B \mathrm{e}^{-t} \\ & t=0, y=0 \Rightarrow B=16 \\ & y=16\left(\mathrm{e}^{-t}-\mathrm{e}^{-2 t}\right) \end{aligned}$ Alternative mark scheme for first 7 marks. $\begin{aligned} & I=e^{t} \\ & d\left(y e^{t}\right) / d t=16 e^{-t} \\ & y e^{t}=-16 e^{-t}+B \\ & y=-16 e^{-2 t}+B e^{-t} \end{aligned}$	M1 M1 A1 B1 M1 A1 F1 M1 F1 M1 M1 A1 B1 M1 A1 F1	Substitute for x Auxiliary equation Differentiate and substitute cao Their PI + CF (with one arbitrary constant) Condition on y Follow a non-trivial GS Substitute for x Attempt integrating factor IF correct Integrate cao Divide by their I (must divide constant)	
	$y=16 \mathrm{e}^{-t}\left(1-\mathrm{e}^{-t}\right)$ $16 \mathrm{e}^{-t}>0$ and $t>0 \Rightarrow \mathrm{e}^{-t}<1$ hence $y>0$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \\ & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Or equivalent ($\mathrm{NB} \mathrm{e}^{-t}>\mathrm{e}^{-2 t}$ needs justifying) Complete argument Starts at origin General shape consistent with their solution and $y>0$ Tends to zero	
	$\begin{aligned} & \frac{\mathrm{d}}{\mathrm{~d} t}(x+y+z)=(-2 x)+(2 x-y)+(y)=0 \\ & \Rightarrow x+y+z=c \end{aligned}$ Hence initial conditions $\Rightarrow x+y+z=8$ $\begin{aligned} & z=8-x-y \\ & z=8\left(1-2 \mathrm{e}^{-t}+\mathrm{e}^{-2 t}\right)=8\left(1-\mathrm{e}^{-t}\right)^{2} \end{aligned}$	M1 E1 E1 M1 E1	Consider sum of DE's Substitute for x and y and find z Convincingly shown (x, y must be correct)	
(v)	$\begin{aligned} & 0.99 \times 8=8\left(1-\mathrm{e}^{-t}\right)^{2} \\ & t=-0.690638 \text { or } 5.29581 \end{aligned}$ 99% is Z after 5.30 hours	B1 B1	Correct equation (any form) Accept value in [5.29, 5.3]	5

3 (i) a d	M1	Divide by t (condone LHS only)
$I=\exp \left(\int \frac{k}{t} \mathrm{~d} t\right)=\exp (k \ln t)=t^{k}$	M1	Attempt integrating factor
	A1	Integrating factor
$t^{k} \dot{y}+k t^{k-1} y=t^{k}$	F1	Multiply DE by their I
$\frac{\mathrm{d}}{\mathrm{d} t}\left(y t^{k}\right)=t^{k}$	M1	LHS
$y t^{k}=\int t^{k} \mathrm{~d} t$	M1	Integrate
$=\frac{1}{k+1} t^{k+1}+A$	A1	cao (including constant)
$y=\frac{1}{k+1} t+A t^{-k}$	F1	Divide by their I (must divide constant)
$t=1, y=0 \Rightarrow 0=\frac{1}{k+1}+A \Rightarrow A=-\frac{1}{k+1}$	M1	Use condition
$y=\frac{1}{k+1}\left(t-t^{-k}\right)$	F1	Follow a non-trivial GS

(ii) $\quad y=\frac{1}{3}\left(t-t^{-2}\right)$

1

B1 Shape consistent with their solution for $t \geq 1$
B1 Passes through $(1,0)$
B1 Behaviour for large t

(iii) | $y t^{-1}=\int t^{-1} \mathrm{~d} t$ | M 1 | Follow their (i) |
| :--- | :--- | :--- |
| $=\ln t+B$ | A 1 | cao |
| $y=t(\ln t+B)$ | F 1 | Divide by their I (must divide constant) |
| $t=1, y=0 \Rightarrow B=0 \Rightarrow y=t \ln t$ | A1 | cao |

(iv) $\frac{\mathrm{d} y}{\mathrm{~d} t}=1+t^{-1} \sin y$

t	y	$\mathrm{~d} y / \mathrm{d} t$		
1	0	1	M 1	Use algorithm
1.1	0.1	1.0908	A1	$y(1.1)$
1.2	0.2091		A1	$y(1.2)$

M1 Rearrange DE (may be implied)

Decreasing step length has increased estimate. Assuming this estimate is more accurate, decreasing step length further will increase estimate further, so true value likely to be greater.
Hence underestimates.
Alternative mark scheme for last 2 marks: dy/dt seems to be increasing, hence Euler's method
will underestimate true value + sketch (or explanation).

B1 Must give reason

M1 Identify effect of decreasing step length

A1 Convincing argument

M1 Identify derivative increasing
A1 Convincing argument

4761 Mechanics 1

Q 1		mark	comment	sub
(i)	N2L $\uparrow 1000-100 \times 9.8=100 a$ $a=0.2$ so $0.2 \mathrm{~m} \mathrm{~s}^{-2}$ upwards	M1 B1 A1	N2L. Accept $F=m g a$ and no weight Weight correct (including sign). Allow if seen. Accept ± 0.2. Ignore units and direction	3
(ii)	$T_{\mathrm{BA}}-980=100 \times 0.8$ so tension is 1060 N	M1 A1	N2L. $F=m a$. Weight present, no extras. Accept sign errors.	2
(iii)	$T_{\mathrm{BA}} \cos 30=1060$ $T_{\mathrm{BA}}=1223.98 \ldots \text { so } 1220 \mathrm{~N}(3 \mathrm{~s} . \mathrm{f} .)$	M1 A1 A1	Attempt to resolve their (ii). Do not award for their 1060 resolved unless all forces present and all resolutions needed are attempted. If start again allow no weight. Allow $\sin \leftrightarrow \cos$. No extra forces. Condone sign errors FT their 1060 only cao	3
		8		

Q 2		mark	comment	sub
(i)		B1	Sketch. O, i, j and \mathbf{r} (only require correct quadrant.) Vectors must have arrows. Need not label r.	1
(ii)	$\begin{aligned} & \sqrt{4^{2}+(-5)^{2}} \\ & =\sqrt{41} \text { or } 6.4031 \ldots \text { so } 6.40(3 \mathrm{s.} \mathrm{f.}) \\ & \text { Need } 180-\arctan \left(\frac{4}{5}\right) \\ & 141.340 \text { so } 141^{\circ} \end{aligned}$	M1 A1 M1 A1	Accept $\sqrt{4^{2}-5^{2}}$ Or equivalent. Award for $\arctan \left(\pm \frac{4}{5}\right)$ or $\arctan \left(\pm \frac{5}{4}\right)$ or equivalent seen without 180 or 90 . cao	4
(iii)	$\mathbf{1 2 i} \mathbf{i} 15 \mathbf{j}$ or $\binom{12}{-15}$	B1	Do not award for magnitude given as the answer. Penalise spurious notation by 1 mark at most once in paper	1
		6		

Q 3		mark	comment	sub
(i)	$\mathbf{F}=5\binom{-1}{2}=\binom{-5}{10}$ so $\binom{-5}{10} \mathrm{~N}$	M1 A1	Penalise spurious notation by 1 mark at most once in paper Use of N2L in vector form Ignore units. [Award 2 for answer seen] [SC1 for $\sqrt{125}$ or equiv seen]	2
(ii)	$\mathbf{s}=\binom{-2}{3}+4\binom{4}{5}+\frac{1}{2} \times 4^{2} \times\binom{-1}{2}$ $\mathbf{s}=\binom{6}{39} \text { so }\binom{6}{39} \mathrm{~m}$	M1 A1 B1	Use of $\mathbf{s}=t \mathbf{u}+0.5 t^{2} \mathbf{a}$ or integration of a. Allow \mathbf{s}_{0} omitted. If integrated need to consider \mathbf{v} when $t=0$ Correctly evaluated; accept \mathbf{s}_{0} omitted. Correctly adding \mathbf{s}_{0} to a vector (FT). Ignore units. [NB $\binom{8}{36}$ seen scores M1 A1]	3
		5		

Q 4		mark	comment	sub
(i)	The distance travelled by P is $0.5 \times 0.5 \times t^{2}$ The distance travelled by Q is $10 t$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Accept $10 t+125$ if used correctly below.	2
(ii)	Meet when $0.25 t^{2}=125+10 t$ so $t^{2}-40 t-500=0$ Solving $t=50(\text { or }-10)$ Distance is $0.25 \times 50^{2}=625 \mathrm{~m}$	M1 F1 M1 A1 A1	Allow their wrong expressions for P and Q distances Allow ± 125 or 125 omitted Award for their expressions as long as one is quadratic and one linear. Must have 125 with correct sign. Accept any method that yields (smaller) + ve root of their 3 term quadratic cao Allow -ve root not mentioned cao [SC2 400 m seen]	5
		7		

Q 5		mark	comment	sub
	either Overall, N2L \rightarrow $135-9=(5+4) a$ $a=14 \text { so } 14 \mathrm{~m} \mathrm{~s}^{-2}$ For A, N2L \rightarrow $T-9=4 \times 14$ so 65 N or $135-T=5 a$ $T-9=4 a$ Solving $T=65 \text { so } 65 \mathrm{~N}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Use of N2L. Allow $F=m g a$ but no extra forces. Allow 9 omitted. N2L on A or B with correct mass. $F=m a$. All relevant forces and no extras. cao * 1 equation in T and a. Allow sign errors. Allow $F=m g a$ Both equations correct and consistent Dependent on M^{*} solving for T. cao.	4
		4		

Q 6		mark	comment	sub
(i)	$\begin{aligned} & 40 \times 0.6 t-5 t^{2} \\ & =24 t-5 t^{2} \end{aligned}$	M1 A1	Use of $s=u t+0.5 a t^{2}$ with $a= \pm 9.8, \pm 10$. Accept 40 or 40×0.8 for ' u '. Any form	2
(ii)	either Need zero vertical distance so $24 t-5 t^{2}=0$ so $t=0$ or $t=4.8$ or Time to highest point, T $0=40 \times 0.6-10 T$ so $T=2.4$ and time of flight is 4.8 range is $40 \times 0.8 \times 4.8=153.6$ so 154 m (3 s. f.)	M1 A1 M1 A1 M1 A1	Equate their y to zero. With fresh start must have correct y. Accept no reference to $t=0$ and the other root in any form. FT their y if gives $t>0$ Allow use of $u=40$ and 40×0.8. Award even if half range found. May be awarded for doubling half range later. Horiz cpt. Accept 0.6 instead of 0.8 only if consistent with expression in (i). FT their t. cao [NB Use of half range or half time to get 76.8... ($\mathrm{g}=10$) or 78.36... $(\mathrm{g}=9.8)$ scores 2] [If range formula used: M1 sensible attempt at substitution; allow $\sin 2 \alpha$ wrong B1 $\sin 2 \alpha$ correct A1 all correct A1 cao]	
		6		

Q 7		mark	comment	sub
(i)	Continuous string: smooth ring: light string	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	One reason Another reason	2
(ii)	Resolve $\leftarrow: ~ 60 \cos \alpha-60 \cos \beta=0$ $\text { (so } \cos \alpha=\cos \beta \text {) and so } \alpha=\beta$	M1	[(ii) and (iii) may be argued using Lami or triangle of forces] Resolution and an equation or equivalent. Accept $s \leftrightarrow c$. Accept a correct equation seen without method stated. Accept the use of ' T instead of ' 60 '. Shown. Must have stated method (allow \rightarrow seen).	2
(iii)	Resolve \uparrow $2 \times 60 \times \sin \alpha-8 g=0$ so $\alpha=40.7933 \ldots$ so 40.8° (3 s. f.)	M1 B1 B1 A1 A1	Resolution and an equation. Accept $s \leftrightarrow c$. Do not award for resolution that cannot give solution (e.g. horizontal) Both strings used (accept use of half weight), seen in an equation $\sin \alpha$ or equivalent seen in an equation All correct	5
(iv)	Resolve \rightarrow $10+T_{\mathrm{QC}} \cos 25-T_{\mathrm{PC}} \cos 45=0$ Resolve $\uparrow T_{\mathrm{PC}} \sin 45+T_{\mathrm{QC}} \sin 25-8 g=0$ Solving $\begin{aligned} & T_{\mathrm{CQ}}=51.4701 \ldots \text { so } 51.5 \mathrm{~N}(3 \mathrm{~s} . \mathrm{f} .) \\ & T_{\mathrm{CP}}=80.1120 \ldots \text { so } 80.1 \mathrm{~N}(3 \mathrm{~s} . \mathrm{f.}) \end{aligned}$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { F1 } \end{array}$	Recognise strings have different tensions. Resolution and an equation. Accept $s \leftrightarrow c$. No extra forces. All forces present. Allow sign errors. Correct. Any form. Resolution and an equation. Accept $s \leftrightarrow c$. No extra forces. All forces present. Allow sign errors. Correct. Any form. * A method that leads to at least one solution of a pair of simultaneous equations. cao either tension other tension. Allow FT only if M1* awarded [Scale drawing: $1^{\text {st }} \mathrm{M} 1$ then A1, A1 for answers correct to 2 s.f.]	8
		17		

Q 8		mark	comment	sub
(i)	10	B1		1
(ii)	$v=36+6 t-6 t^{2}$	M1 A1	Attempt at differentiation	
(iii)	$a=6-12 t$	M1 F1	Attempt at differentiation	
(iv)	Take $a=0$ so $t=0.5$ and $v=37.5$ so $37.5 ~ m ~ s ~$			

4762 Mechanics 2

Q 1		mark	comment	sub
(a) (i)	In i direction: $\quad 6 u-12=18$ so $u=5$ i.e. $5 \mathrm{im} \mathrm{s}^{-1}$ either In i direction: $\quad 0.5 v+12=0.5 \times 11$ $v=-13 \mathrm{so}-13 \mathbf{i ~ m ~ s}^{-1}$ or $\begin{aligned} & 6 \times 5+0.5 v=6 \times 3+0.5 \times 11 \\ & v=-13 \\ & \text { so }-13 \mathrm{i} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	M1 E1 M1 B1 A1 M1 A1 A1	Use of I-M Accept $6 u-12=18$ as total working. Accept 5 instead of $5 \mathbf{i}$. Use of I-M Use of +12i or equivalent Accept direction indicated by any means PCLM Allow only sign errors Accept direction indicated by any means	5
(ii)	Using NEL: $\frac{11-3}{-13-5}=-e$ $e=4 / 9(0 . \dot{4})$	M1 F1 F1	Use of NEL. Condone sign errors but not reciprocal expression FT only their -13 (even if +ve) FT only their - 13 and only if -ve (allow 1 s.f. accuracy)	3
(iii)	In \mathbf{i} direction: $-2 \times 7=0.5 v-0.5 \times 11$ $v=-17 \mathrm{so}-17 \mathrm{im} \mathrm{~s}^{-1}$ or $-2 \mathbf{i}=0.5 a$ $\text { so } a=-4 \mathrm{im} \mathrm{~s}^{-2}$ $v=11 \mathbf{i}-4 \mathbf{i} \times 7$ $v=-17 \mathrm{so}-17 \mathrm{im} \mathrm{~s}^{-1}$	M1 M1 A1 A1 M1 A1 M1 A1	Use of $\mathrm{I}=\mathrm{F} t$ Use of $\mathbf{I}=m(\mathbf{v}-\mathbf{u})$ For ± 17 cao. Direction (indicated by any means) Use of $\mathbf{F}=m \mathbf{a}$ For ± 4 Use of uvast cao. Direction (indicated by any means)	4
(b)	$u \mathbf{i}+e v \mathbf{j}$ $\tan \alpha=\frac{v}{u}, \tan \beta=\frac{e v}{u}$ $\tan \beta=e\left(\frac{v}{u}\right)=e \tan \alpha$	B1 B1 M1 B1 E1	For u For ev Use of tan. Accept reciprocal argument. Accept use of their components Both correct. Ignore signs. Shown. Accept signs not clearly dealt with.	5
		17		

Q 2		mark	comment	sub
(i)	$\begin{aligned} & (2+3 \times 6)\binom{\bar{x}}{\bar{y}}=6\binom{3}{0}+6\binom{6}{3}+6\binom{3}{6}+2\binom{0}{7} \\ & 20\binom{\bar{x}}{\bar{y}}=\binom{18+36+18}{18+36+14}=\binom{72}{68} \\ & \bar{x}=3.6 \\ & \bar{y}=3.4 \end{aligned}$	M1 B1 B1 B1 E1 A1	Method for c.m. Total mass correct For any of the $1^{\text {st }} 3$ RHS terms For the $4^{\text {th }}$ RHS term cao [If separate cpts, award the $2^{\text {nd }} \mathrm{B} 1$ for $2 x$ - terms correct and $3^{\text {rd }}$ B1 for 2×7 in y term]	6
(ii)	$\begin{aligned} & \arctan \left(\frac{3.6}{2+(6-3.4)}\right)=\arctan \left(\frac{3.6}{4.6}\right) \\ & \text { so } 38.047 \ldots \text { so } 38.0^{\circ} \text { (3 s. f.) } \end{aligned}$	B1 B1 M1 B1 A1	Diagram showing G vertically below D 3.6 and their 3.4 correctly placed (may be implied) Use of arctan on their lengths. Allow reciprocal of argument. Some attempt to calculate correct lengths needed $2+(6-\text { their } 3.4) \text { seen }$ cao	5
(iii)	moments about D $5 \times 3.6=6 \times T_{\mathrm{BP}}$ so tension in BP is 3 N Resolve vert: $3+T_{\mathrm{DQ}}=5$ so tension in DQ is 2 N	M1 F1 M1 F1	moments about D. No extra forces FT their values if calc 2nd Resolve vertically or moments about B. FT their values if calc $2 n d$	4
(iv)	We require x-cpt of $c . m$. to be zero either $(20+L) \bar{x}=20 \times 3.6-\frac{1}{2} L^{2}$ or $2 \times 6 \times(0.5 \times 6)+6 \times 6-0.5 \times L^{2}=0$ $L=12$	M1 B1 A1 A1	A method to achieve this with all cpts For the $0.5 \times L^{2}$ All correct	4
		19		

Q 3		mark	comment	sub
(a) (i)		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Internal forces all present and labelled All forces correct with labels and arrows (Allow the internal forces set as tensions, thrusts or a mixture)	
(ii)	A \uparrow $T_{\mathrm{AD}} \sin 30-L=0$ so $T_{\mathrm{AD}}=2 L$ so $2 L \mathrm{~N}$ (T) $\begin{aligned} & \mathrm{A} \rightarrow T_{\mathrm{AB}}+T_{\mathrm{AD}} \cos 30=0 \\ & \text { so } T_{\mathrm{AB}}=-\sqrt{3} L \text { so } \sqrt{3} L \mathrm{~N}(\mathrm{C}) \end{aligned}$ B $\uparrow \quad T_{\mathrm{BD}} \sin 60-3 L=0$ $\text { so } T_{\mathrm{BD}}=2 \sqrt{3} L \text { so } 2 \sqrt{3} L \mathrm{~N}(\mathrm{~T})$ B \rightarrow $T_{\mathrm{BC}}+T_{\mathrm{BD}} \cos 60-T_{\mathrm{AB}}=0$ so $T_{\text {BC }}=-2 \sqrt{3} L$ so $2 \sqrt{3} L \mathrm{~N}$ (C)	M1 A1 M1 F1 M1 A1 M1 F1 E1	Equilibrium equation at a pin-joint attempted $1^{\text {st }}$ ans. Accept + or -. Second equation attempted $2^{\text {nd }}$ ans. FT any previous answer(s) used. Third equation attempted $3^{\text {rd }}$ ans. FT any previous answer(s) used. Fourth equation attempted $4^{\text {th }}$ ans. FT any previous answer(s) used. All T/C consistent [SC 1 all T/C correct WWW]	9
(b)	Leg QR with frictional force $F \leftarrow$ moments c.w. about R $U \times 2 l \sin 60-W l \cos 60=0$ Horiz equilibrium for QR $F=U$ Hence $\frac{1}{2} W=\sqrt{3} F$ and so $F=\frac{\sqrt{3}}{6} W$	M1 A1 A1 M1 E1 M1 E1	Accept only 1 leg considered (and without comment) Suitable moments equation. Allow 1 force omitted a.c. moments c.w. moments A second correct equation for horizontal or vertical equilibrium to eliminate a force (U or reaction at foot) [Award if correct moments equation containing only W and F * This second equation explicitly derived Correct use of $2^{\text {nd }}$ equation with the moments equation Shown. CWO but do not penalise * again.	
		18		

Q 4		mark	comment	sub
(a) (i)	Tension is perp to the motion of the sphere (so WD, Fd $\cos \theta=0$)	E1		1
(ii)	Distance dropped is $2-2 \cos 40=$ 0.467911.. GPE is $m g h$ so $0.15 \times 9.8 \times 0.467911 \ldots=0.687829 \ldots \mathrm{~J}$	M1 E1 M1 B1	Attempt at distance with resolution used. Accept $\sin \leftrightarrow \cos$ Accept seeing $2-2 \cos 40$ Any reasonable accuracy	4
(iii)	$\begin{aligned} & 0.5 \times 0.15 \times v^{2}=0.687829 \ldots \\ & \text { so } v=3.02837 \ldots \text { so } 3.03 \mathrm{~m} \mathrm{~s}^{-1}(3 \mathrm{~s} . \text { f. }) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { F1 } \end{aligned}$	Using KE + GPE constant FT their GPE	2
(iv)	$\begin{aligned} & \frac{1}{2} \times 0.15\left(v^{2}-2.5^{2}\right) \\ & =0.687829 \ldots-0.6 \times \frac{40}{360} \times 2 \pi \times 2 \\ & v=2.06178 \ldots \text { so } 2.06 \mathrm{~m} \mathrm{~s}^{-1}(3 \mathrm{~s} . \mathrm{f.}) \end{aligned}$	M1 B1 M1 A1 A1	Use of W-E equation (allow 1 KE term or GPE term omitted) KE terms correct WD against friction WD against friction correct (allow sign error) cao	5
(b)	N2L down slope: $3 g \sin 30-F=3 \times \frac{1}{8} g$ $\begin{aligned} & \text { so } F=\frac{9 g}{8}(=11.025) \\ & R=3 g \times \frac{\sqrt{3}}{2}(=25.4611 \ldots) \\ & \mu=\frac{F}{R}=\frac{\sqrt{3}}{4}(=0.43301 \ldots) \end{aligned}$	M1 A1 A1 B1 M1 E1	Must have attempt at weight component Allow sign errors. Use of $F=\mu R$ Must be worked precisely	6
		18		

4763 Mechanics 3

1(a)(i)	[Velocity] $=\mathrm{LT}^{-1}$ [Acceleration] $=\mathrm{LT}^{-2}$ [Force] $=\mathrm{MLT}^{-2}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	(Deduct 1 mark if kg, m, s are consistently used instead of M, L, T)
(ii)	$\begin{aligned} {[\lambda] } & =\frac{[\text { Force }]}{\left[v^{2}\right]}=\frac{\mathrm{MLT}^{-2}}{\left(\mathrm{LT}^{-1}\right)^{2}} \\ & =\mathrm{ML}^{-1} \end{aligned}$	M1 A1 cao 2	
(iii)	$\begin{aligned} & {\left[\frac{U^{2}}{2 g}\right]=\frac{\left(\mathrm{LT}^{-1}\right)^{2}}{\mathrm{LT}^{-2}}=\mathrm{L}} \\ & {\left[\frac{\lambda U^{4}}{4 m g^{2}}\right]=\frac{\left(\mathrm{ML}^{-1}\right)\left(\mathrm{LT}^{-1}\right)^{4}}{\mathrm{M}\left(\mathrm{LT}^{-2}\right)^{2}}} \\ & =\frac{\mathrm{ML}^{3} \mathrm{~T}^{-4}}{\mathrm{ML}^{2} \mathrm{~T}^{-4}}=\mathrm{L} \end{aligned}$ $[H]=L$; all 3 terms have the same dimensions	B1 cao M1 A1 cao E1	(Condone constants left in) Dependent on B1M1A1
(iv)	$\begin{aligned} & \left(\mathrm{ML}^{-1}\right)^{2}\left(\mathrm{LT}^{-1}\right)^{\alpha} \mathrm{M}^{\beta}\left(\mathrm{LT}^{-2}\right)^{\gamma}=\mathrm{L} \\ & \beta=-2 \\ & -2+\alpha+\gamma=1 \\ & -\alpha-2 \gamma=0 \\ & \alpha=6 \\ & \gamma=-3 \end{aligned}$	B1 cao M1 A1 A1 cao A1 cao	At least one equation in α, γ One equation correct

(b)	EE is $\frac{1}{2} \times \frac{2060}{24} \times 6^{2} \quad(=1545)$ $($ PE gained $)=($ EE lost $)+($ KE lost $)$ $\begin{aligned} 50 \times 9.8 \times h & =1545+\frac{1}{2} \times 50 \times 12^{2} \\ 490 h & =1545+3600 \\ h & =10.5 \end{aligned}$ $\mathrm{OA}=30-h=19.5 \mathrm{~m}$	B1	Equation involving PE, EE and KE Can be awarded from start to point where string becomes slack or any complete method (e.g. SHM) for finding v^{2} at natural length If B0, give A1 for $v^{2}=88.2$ correctly obtained or $0=88.2-2 \times 9.8 \times s \quad(s=4.5)$ Notes $\frac{1}{2} \times \frac{2060}{24} \times 6$ used as $E E$ can earn B0M1F1AO $\frac{2060}{24} \times 6$ used as $E E$ gets BOMO

2 (i)	$\begin{aligned} & T \cos \alpha=m g \\ & 3.92 \cos \alpha=0.3 \times 9.8 \\ & \cos \alpha=0.75 \\ & \text { Angle is } 41.4^{\circ} \quad(0.723 \mathrm{rad}) \end{aligned}$	M1 A1	2	Resolving vertically (Condone sin / cos mix for M marks throughout this question)
(ii)	$\begin{aligned} T \sin \alpha & =m \frac{v^{2}}{r} \\ 3.92 \sin \alpha & =0.3 \times \frac{v^{2}}{4.2 \sin \alpha} \end{aligned}$ Speed is $4.9 \mathrm{~m} \mathrm{~s}^{-1}$	M1 B1 A1 A1		Force and acceleration towards centre (condone $v^{2} / 4.2$ or $4.2 \omega^{2}$) For radius is $4.2 \sin \alpha \quad(=2.778)$ Not awarded for equation in ω unless $v=(4.2 \sin \alpha) \omega$ also appears
(iii)	$\begin{aligned} & T-m g \cos \theta=m \frac{v^{2}}{a} \\ & T-0.3 \times 9.8 \times \cos 60^{\circ}=0.3 \times \frac{8.4^{2}}{4.2} \\ & \text { Tension is } 6.51 \mathrm{~N} \end{aligned}$	M1 A1 A1	3	Forces and acceleration towards O
(iv)	$\begin{aligned} \frac{1}{2} m v^{2}-m g \times 4.2 \cos \theta & =\frac{1}{2} m \times 8.4^{2}-m g \times 4.2 \cos 60^{\circ} \\ v^{2}-82.32 \cos \theta & =70.56-41.16 \\ v^{2} & =29.4+82.32 \cos \theta \end{aligned}$	M1 M1 A1 E1	4	For $(-) m g \times 4.2 \cos \theta$ in PE Equation involving $\frac{1}{2} m v^{2}$ and PE
(v)	$\begin{aligned} (T)-m g \cos \theta & =m \frac{v^{2}}{a} \\ (T)-m \times 9.8 \cos \theta & =m \times \frac{29.4+82.32 \cos \theta}{4.2} \end{aligned}$ String becomes slack when $T=0$ $\begin{aligned} -9.8 \cos \theta & =7+19.6 \cos \theta \\ \cos \theta & =-\frac{7}{29.4} \\ \theta & =104^{\circ} \quad(1.81 \mathrm{rad}) \end{aligned}$	M1 M1 A1 M1 A1	5	Force and acceleration towards O Substituting for v^{2} Dependent on first M1 No marks for $v=0 \Rightarrow \theta=111^{\circ}$

3 (i)	$\begin{aligned} T_{\mathrm{PB}} & =35(x-3.2) \quad[=35 x-112] \\ T_{\mathrm{BQ}} & =5(6.5-x-1.8) \\ & =5(4.7-x) \quad[=23.5-5 x] \end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \hline \end{array}$	Finding extension of BQ
(ii)	$\begin{aligned} T_{\mathrm{BQ}}+m g-T_{\mathrm{PB}} & =m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}} \\ 5(4.7-x)+2.5 \times 9.8-35(x-3.2) & =2.5 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}} \\ 160-40 x & =2.5 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}} \\ \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}} & =64-16 x \end{aligned}$	M1 A2 E1	Equation of motion (condone one missing force) Give A1 for three terms correct
(iii)	At the centre, $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=0$ $x=4$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$ 2	
(iv)	$\omega^{2}=16$ Period is $\frac{2 \pi}{\sqrt{16}}=\frac{1}{2} \pi=1.57 \mathrm{~s}$	M1 A1 2	Seen or implied (Allow M1 for $\omega=16$) Accept $\frac{1}{2} \pi$
(v)	Amplitude $A=4.4-4=0.4 \mathrm{~m}$ Maximum speed is $A \omega$ $=0.4 \times 4=1.6 \mathrm{~m} \mathrm{~s}^{-1}$	B1 ft M1 A1 cao 3	ft is $\mid 4.4$-(iii)
(vi)	$\begin{aligned} & x=4+0.4 \cos 4 t \\ & v=(-) 1.6 \sin 4 t \end{aligned}$ When $\begin{aligned} v=0.9, \quad \sin 4 t & =-\frac{0.9}{1.6} \\ 4 t & =\pi+0.5974 \end{aligned}$ Time is 0.935 s	M1 A1 M1 A1 cao	For $v=C \sin \omega t$ or $C \cos \omega t$ This M1A1 can be earned in (v) Fully correct method for finding the required time e.g. $\frac{1}{4} \arcsin \frac{0.9}{1.6}+\frac{1}{2}$ period
	OR $\begin{aligned} 0.9^{2} & =16\left(0.4^{2}-y^{2}\right) \\ y & =-0.3307 \end{aligned}$ $\begin{aligned} & y=0.4 \cos 4 t \\ & \cos 4 t=-\frac{0.3307}{0.4} \\ & 4 t=\pi+0.5974 \end{aligned}$ Time is 0.935 s		$\begin{aligned} & \text { Using } v^{2}=\omega^{2}\left(A^{2}-y^{2}\right) \\ & \text { and } y=A \cos \omega t \text { or } A \sin \omega t \\ & \text { For } y=(\pm) 0.331 \text { and } \\ & y=0.4 \cos 4 t \end{aligned}$

$\begin{aligned} & 4 \\ & (\mathrm{a})(\mathrm{i}) \end{aligned}$	$\begin{aligned} & V=\int \pi x^{2} \mathrm{~d} y=\int_{0}^{8} \pi\left(4-\frac{1}{2} y\right) \mathrm{d} y \\ &=\pi\left[4 y-\frac{1}{4} y^{2}\right]_{0}^{8}=16 \pi \\ & V \bar{y}=\int^{2} \pi y x^{2} \mathrm{~d} y \\ &=\int_{0}^{8} \pi y\left(4-\frac{1}{2} y\right) \mathrm{d} y \\ &=\pi\left[2 y^{2}-\frac{1}{6} y^{3}\right]_{0}^{8}=\frac{128}{3} \pi \\ & \bar{y}=\frac{\frac{128}{3} \pi}{16 \pi} \\ &=\frac{8}{3} \quad(\approx 2.67) \end{aligned}$	M1 A1 M1 A1 A1 M1 A1	π may be omitted throughout Limits not required for M marks throughout this question Dependent on M1M1
(ii)	CM is vertically above lower corner $\begin{aligned} \tan \theta & =\frac{2}{\bar{y}}=\frac{2}{8 / 3} \quad\left(=\frac{3}{4}\right) \\ \theta & =36.9^{\circ} \quad(=0.6435 \mathrm{rad}) \end{aligned}$	M1 M1 A1 A1 4	Trig in a triangle including θ Dependent on previous M1 Correct expression for $\tan \theta$ or $\tan (90-\theta)$ Notes $\tan \theta=\frac{2}{\text { cand's } \bar{y}}$ implies M1M1A1 $\tan \theta=\frac{\text { cand's } \bar{y}}{2}$ implies M1M1 $\tan \theta=\frac{1}{\text { cand's } \bar{y}}$ without further evidence is MOMO

4764 Mechanics 4

1(i) If δm is change in mass over time δt
PCLM $m v=(m+\delta m)(v+\delta v)+|\delta m|(v-u)$
$\delta m<0$]
$(m+\delta m) \frac{\delta v}{\delta t}+u \frac{\delta m}{\delta t}=0 \Rightarrow m \frac{\mathrm{~d} v}{\mathrm{~d} t}=-u \frac{\mathrm{~d} m}{\mathrm{~d} t}$
[N.B.
M1 Change in momentum over time δt
M1 Rearrange to produce DE
A1 Accept sign error
$\frac{\mathrm{d} m}{\mathrm{~d} t}=-k \Rightarrow m=m_{0}-k t$
M1 Find m in terms of t
$\Rightarrow\left(m_{0}-k t\right) \frac{\mathrm{d} v}{\mathrm{~d} t}=u k$
E1 Convincingly shown
(ii) $\quad v=\int \frac{u k}{m_{0}-k t} \mathrm{~d} t$
$=-u \ln \left(m_{0}-k t\right)+c$
Separate and integrate
A1 cao (allow no constant)
$t=0, v=0 \Rightarrow c=u \ln m_{0}$
M1 Use initial condition
$v=u \ln \left(\frac{m_{0}}{m_{0}-k t}\right)$
A1 All correct
(iii) $m=\frac{1}{3} m_{0} \Rightarrow m_{0}-k t=\frac{1}{3} m_{0} \quad \mathrm{M} 1 \quad$ Find expression for mass or time

A1 Or $t=2 m_{0} / 3 k$
$\Rightarrow v=u \ln 3$
A1

2(i)	$P=F v$		Used, not just quoted	
	$=m v \frac{\mathrm{~d} v}{\mathrm{~d} x} v$	M1	Use N2L and expression for acceleration	
	$\Rightarrow m v^{2} \frac{\mathrm{~d} v}{\mathrm{~d} x}=m\left(k^{2}-v^{2}\right)$	A1	Correct DE	
	$\Rightarrow \frac{v^{2}}{k^{2}-v^{2}} \frac{\mathrm{~d} v}{\mathrm{~d} x}=1$	M1	Rearrange	
	$\Rightarrow\left(\frac{k^{2}}{k^{2}-v^{2}}-1\right) \frac{\mathrm{d} v}{\mathrm{~d} x}=1$	E1	Convincingly shown	
	$\int\left(\frac{k^{2}}{k^{2}-v^{2}}-1\right) \mathrm{d} v=\int \mathrm{d} x$	M1	Separate and integrate	
	$\frac{1}{2} k \ln \left(\frac{k+v}{k-v}\right)-v=x+c$	A1	LHS	
	$x=0, v=0 \Rightarrow c=0$	M1	Use condition	
	$x=\frac{1}{2} k \ln \left(\frac{k+v}{k-v}\right)-v$	A1	cao	
				9
(ii)	Terminal velocity when acceleration zero $\Rightarrow v=k$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$		
	$v=0.9 k \Rightarrow x=\frac{1}{2} k \ln \left(\frac{1.9}{0.1}\right)-0.9 k=\left(\frac{1}{2} \ln 19-0.9\right) k \approx$	F1	Follow their solution to (i)	
	$0.572 k$			

	$\begin{aligned} & M=\int_{0}^{a} k(a+r) 2 \pi r \mathrm{~d} r \\ & =2 k \pi\left[\frac{1}{2} a r^{2}+\frac{1}{3} r^{3}\right]_{0}^{a} \\ & =\frac{5}{3} k \pi a^{3} \\ & I=\int_{0}^{a} k(a+r) 2 \pi r \cdot r^{2} \mathrm{~d} r \\ & =2 k \pi\left[\frac{1}{4} a r^{4}+\frac{1}{5} r^{5}\right]_{0}^{a} \\ & =\frac{9}{10} k \pi a^{5} \\ & =\frac{27}{50} M a^{2} \end{aligned}$	M1 M1 M1 A1 E1 M1 A1 A1 E1	Use circular elements (for M or l) Integral for mass Integrate (for M or I) For [...] Integral for I For [...] cao Complete argument (including mass)	
				9
(ii)	$\begin{aligned} & I=13.5 \\ & 0.625 \times 50=I \omega \\ & \Rightarrow \omega \approx 2.31 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Seen or used (here or later) Use angular momentum Use moment of impulse cao	
				4
(iii)	$\ddot{\theta}=\frac{30-2.31}{20} \approx 1.38$	M1	Find angular acceleration	
	$\begin{aligned} & \text { Couple }=I \ddot{\theta} \\ & \approx 18.7 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { F1 } \end{aligned}$	Use equation of motion Follow their ω and I	
				3
(iv)	$I \ddot{\theta}=-3 \dot{\theta}$	B1	Allow sign error and follow their I (but not M)	
	$I \frac{\mathrm{~d} \dot{\theta}}{\mathrm{~d} t}=-3 \dot{\theta}$	M1	Set up DE for $\dot{\theta}$ (first order)	
	$\int \frac{\mathrm{d} \dot{\theta}}{\dot{\theta}}=\int-\frac{3}{I} \mathrm{~d} t$	M1	Separate and integrate	
	$\ln \|\dot{\theta}\|=-\frac{t}{4.5}+c$	B1	$\ln (\text { multiple of } \dot{\theta}) \text { seen }$	
	$\dot{\theta}=A \mathrm{e}^{-t / 4.5}$	M1	Rearrange, dealing properly with constant	
	$t=0, \dot{\theta}=30 \Rightarrow A=30$	M1	Use condition on $\dot{\theta}$	
	$\dot{\theta}=30 \mathrm{e}^{-t / 4.5}$	A1		
				7
(v)	Model predicts $\dot{\theta}$ never zero in finite time.	B1		
				1

	$V=\frac{1}{2}\left(\frac{m g}{10 a}\right)(a \theta)^{2}+m g a \cos \theta$ (relative to centre of pulley) $\begin{aligned} & \frac{\mathrm{d} V}{\mathrm{~d} \theta}=\frac{1}{2}\left(\frac{m g}{10 a}\right) \cdot 2 a^{2} \theta-m g a \sin \theta \\ & \frac{\mathrm{~d} V}{\mathrm{~d} \theta}=m g a\left(\frac{1}{10} \theta-\sin \theta\right) \end{aligned}$	M1 B1 M1 A1 M1 E1	EPE term Extension $=a \theta$ GPE relative to any zero level (\pm constant) Differentiate	
	$\theta=0 \Rightarrow \frac{\mathrm{~d} V}{\mathrm{~d} \theta}=m g a\left(\frac{1}{10}(0)-\sin 0\right)=0$ hence equilibrium $\begin{aligned} & \frac{\mathrm{d}^{2} V}{\mathrm{~d} \theta^{2}}=m g a\left(\frac{1}{10}-\cos \theta\right) \\ & V^{\prime \prime}(0)=-0.9 m g a<0 \end{aligned}$ hence unstable	M1 E1 M1 A1 M1 E1	Consider value of $\frac{\mathrm{d} V}{\mathrm{~d} \theta}$ Differentiate again Consider sign of $V^{\prime \prime}$ $V^{\prime \prime}$ must be correct	
(iii)	If the pulley is smooth, then the tension in the string is constant. Hence the EPE term is valid.			
(iv)	Equilibrium positions at $\theta=2.8$, $\theta=7.1$ and $\theta=8.4$ From graph, $V^{\prime \prime}(2.8)=m g a f^{\prime}(2.8)>0$ hence stable at $\theta=2.8$ $\begin{aligned} & V^{\prime \prime}(7.1)=m g a \mathrm{f}^{\prime}(7.1)<0 \Rightarrow \text { unstable at } \theta=7.1 \\ & V^{\prime \prime}(8.4)=m g a \mathrm{f}^{\prime}(8.4)>0 \Rightarrow \text { stable at } \theta=8.4 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	One correct All three correct, no extras Accept answers in [2.7,3.0), [7,7.2], [8.3,8.5] Consider sign of $V^{\prime \prime}$ or f^{\prime} Accept no reference to $V^{\prime \prime}$ for one conclusion but other two must relate to sign of $V^{\prime \prime}$, not just f^{\prime}.	
(v)		B1 B1	P in approximately correct place B in approximately correct place	2
(vi)	If $\theta<0$ then expression for EPE not valid hence not necessarily an equilibrium position.	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$		

4766 Statistics 1

$\begin{aligned} & \hline \text { Q1 } \\ & \text { (i) } \end{aligned}$	Mean = 7.35 (or better) Standard deviation: 3.69-3.70 (awfw) Allow s ${ }^{2}=13.62$ to 13.68 Allow rmsd = 3.64-3.66 (awfw) After B0, B0 scored then if at least 4 correct mid-points seen or used. $\{1.5,4,6,8.5,15\}$ Attempt of their mean $=\frac{\sum f x}{44}$, with $301 \leq \mathrm{fx} \leq 346$ and fx strictly from mid-points not class widths or top/lower boundaries.	B2cao $\sum f x=323.5$ B2cao $\sum f x^{2}=2964.25$ (B1) for variance s.o.i.o (B1) for rmsd (B1) mid-points (B1) $6.84 \leq$ mean ≤ 7.86	4
(ii)	Upper limit $=7.35+2 \times 3.69=14.73$ or 'their sensible mean' $+2 \times$ 'their sensible s.d.' So there could be one or more outliers	M1 (with s.d. < mean) E1dep on B2, B2 earned and comment	2
		TOTAL	6
$\begin{aligned} & \hline \text { Q2 } \\ & \text { (i) } \end{aligned}$	$P(W) \times P(C)=0.20 \times 0.17=0.034$ $P(W \cap C)=0.06$ (given in the question) Not equal so not independent (Allow $0.20 \times 0.17 \neq 0.06$ or $\neq \mathrm{p}(\mathrm{W} \cap \mathrm{C})$ so not independent).	M1 for multiplying or 0.034 seen A1 (numerical justification needed)	2
(ii)	The last two G marks are independent of the labels	G1 for two overlapping circles labelled G1 for 0.06 and either 0.14 or 0.11 in the correct places G1 for all 4 correct probs in the correct places (including the 0.69) NB No credit for Karnaugh maps here	3
(iii)	$\mathrm{P}(W \mid C)=\frac{\mathrm{P}(W \cap C)}{\mathrm{P}(\mathrm{C})}=\frac{0.06}{0.17}=\frac{6}{17}=0.353$ (awrt 0.35)	M1 for 0.06 / 0.17 A1 cao	2

(iv)	Children are more likely than adults to be able to speak Welsh or 'proportionally more children speak Welsh than adults' Do not accept: 'more Welsh children speak Welsh than adults'	E1FT Once the correct idea is seen, apply ISW	1
		TOTAL	8
$\begin{aligned} & \hline \text { Q3 } \\ & \text { (i) } \end{aligned}$	(A) $0.5+0.35+\boldsymbol{p}+\boldsymbol{q}=1$ so $\boldsymbol{p}+\boldsymbol{q}=0.15$ (B) $0 \times 0.5+1 \times 0.35+2 \boldsymbol{p}+3 \boldsymbol{q}=0.67$ so $2 \boldsymbol{p}+3 \boldsymbol{q}=0.32$ (C) from above $2 \boldsymbol{p}+2 \boldsymbol{q}=0.30$ so $\boldsymbol{q}=0.02, \boldsymbol{p}=0.13$	B1 p+q in a correct equation before they reach $p+q=0.15$ B1 2p + 3q in a correct equation before they reach $2 p+3 q=0.32$ (B1) for any 1 correct answer B2 for both correct answers	1 1 2
(ii)	$\begin{aligned} & \mathrm{E}\left(X^{2}\right)=0 \times 0.5+1 \times 0.35+4 \times 0.13+9 \times 0.02=1.05 \\ & \operatorname{Var}(X)=\text { 'their } 1.05 \text { ' }-0.67^{2}=0.6011(\text { awrt } 0.6) \end{aligned}$ (M1, M1 can be earned with their p^{+}and q^{+}but not A mark)	M1 $\Sigma x^{2} p$ (at least 2 non zero terms correct) M1dep for (-0.67^{2}), provided $\operatorname{Var}(X)>0$ A1 cao (No n or n-1 divisors)	3
		TOTAL	7
$\begin{aligned} & \text { Q4 } \\ & \text { (i) } \end{aligned}$	$X \sim \mathrm{~B}(8,0.05)$ (A) $\mathrm{P}(\boldsymbol{X}=0)=0.95^{8}=0.6634 \quad 0.663$ or better Or using tables $\mathrm{P}(\boldsymbol{X}=0)=0.6634$ (B) $\mathrm{P}(\boldsymbol{X}=1)=\binom{8}{1} \times 0.05 \times 0.95^{7}=0.2793$ $\mathrm{P}(\boldsymbol{X}>1)=1-(0.6634+0.2793)=0.0573$ Or using tables $\mathrm{P}(X>1)=1-0.9428=0.0572$	M1 0.95^{8} A1 CAO Or B2 (tables) M1 for $P(X=1)$ (allow 0.28 or better) M1 for $1-\mathrm{P}(\mathrm{X} \leq 1)$ must have both probabilities A1cao (0.0572 - 0.0573) M1 for $P(X \leq 1) 0.9428$ M1 for $1-\mathrm{P}(X \leq 1)$ A1 cao (must end in...2)	2 3
(ii)	Expected number of days $=250 \times 0.0572=14.3$ awrt	M1 for $250 \times \operatorname{prob}(B)$ A1 FT but no rounding at end	2
		TOTAL	7

\begin{tabular}{|c|c|c|c|}
\hline \& Section B \& \& \\
\hline \[
\begin{aligned}
\& \text { Q6 } \\
\& \text { (i) }
\end{aligned}
\] \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { (B) Either: All } 5 \text { case } \\
\& \text { P(at least one England })= \\
\& (0.79 \times 0.20)+(0.79 \times 0.01)+(0.20 \times 0.79)+(0.01 \times 0.79)+ \\
\& (0.79 \times 0.79) \\
\& =0.158+0.0079+0.158+0.0079+0.6241=0.9559
\end{aligned}
\] \\
Or
\[
\mathrm{P}(\text { at least one England })=1-\mathrm{P} \text { (neither England) }
\]
\[
=1-(0.21 \times 0.21)=1-0.0441=0.9559
\]
or listing all
\[
=1-\{(0.2 \times 0.2)+(0.2 \times 0.01)+(0.01 \times 0.20)+(0.01 x
\]
\[
0.01)\}
\]
\[
=1-\left({ }^{* *}\right)
\]
\[
=1-\{0.04+0.002+0.002+0.0001)
\]
\[
=1-0.0441
\]
\[
=0.9559
\] \\
Or: All 3 case \\
P(at least one England) \(=\)
\[
\begin{aligned}
\& =0.79 \times 0.21+0.21 \times 0.79+0.79^{2} \\
\& =0.1659+0.1659+0.6241 \\
\& =0.9559
\end{aligned}
\] \\
(C)Either
\[
0.79 \times 0.79+0.79 \times 0.2+0.2 \times 0.79+0.2 \times 0.2=0.9801
\] \\
Or
\[
0.99 \times 0.99=0.9801
\] \\
Or
\[
\begin{aligned}
\& 1-\{0.79 \times 0.01+0.2 \times 0.01+0.01 \times 0.79+0.01 \times 0.02+ \\
\& \left.0.01^{2}\right\}=1-0.0199 \\
\& \quad=0.9801
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 for multiplying \\
A1cao \\
M1 for any correct term (3case or 5case) \\
M1 for correct sum of all 3 (or of all 5) with no extras \\
A1cao (condone 0.96 www) \\
Or M1 for \(0.21 \times 0.21\) \\
or for (**) fully \\
enumerated or 0.0441 \\
seen \\
M1dep for 1 - (\(1^{\text {st }}\) part) \\
A1cao \\
See above for 3 case \\
M1 for sight of all 4 correct terms summed \\
A1 cao (condone 0.98 \\
www) \\
or \\
M1 for \(0.99 \times 0.99\) \\
A1cao \\
Or \\
M1 for everything \\
\(1-\{\ldots .\). \\
A1cao
\end{tabular} \& 3

2

\hline (ii) \& \[
\left.$$
\begin{array}{l}
\text { P(both the rest of the UK | neither overseas) } \\
\qquad=\frac{\mathrm{P}(\text { the rest of the UK and neither overseas })}{\mathrm{P}(\text { neither overseas })} \\
\quad=\frac{0.04}{0.9801}=0.0408
\end{array}
$$\right\}

\] \& | M1 for numerator of 0.04 or 'their answer to (i)(A)' |
| :--- |
| M1 for denominator of 0.9801 or 'their answer to (i) (C)' |
| A1 FT $(0<p<1) 0.041$ at least | \& 3

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline (iii) \& \begin{tabular}{l}
(A)
\[
\begin{aligned}
\text { Probability } \& =1-0.79^{5} \\
\& =1-0.3077 \\
\& =0.6923 \text { (accept awrt } 0.69)
\end{aligned}
\] \\
see additional notes for alternative solution \\
(B) \(1-0.79^{n}>0.9\) \\
EITHER: \\
\(1-0.79^{n}>0.9\) or \(0.79^{n}<0.1\) \\
(condone \(=\) and \(\geq\) throughout) but not reverse inequality \\
\(\mathrm{n}>\frac{\log 0.1}{\log 0.79}\), so \(\mathrm{n}>9.768 \ldots\) \\
Minimum \(n=10\) Accept \(n \geq 10\) \\
OR (using trial and improvement): \\
Trial with \(0.79^{9}\) or \(0.79^{10}\)
\[
\begin{aligned}
\& 1-0.79^{9}=0.8801(<0.9) \text { or } 0.79^{9}=0.1198(>0.1) \\
\& 1-0.79^{10}=0.9053(>0.9) \text { or } 0.79^{10}=0.09468(<0.1)
\end{aligned}
\] \\
Minimum \(n=10\) Accept \(n \geq 10\) \\
NOTE: \(n=10\) unsupported scores SC1 only
\end{tabular} \& \begin{tabular}{l}
M1 for \(0.79^{5}\) or 0.3077... \\
M1 for \(1-0.79^{5}\) dep \\
A1 CAO \\
M1 for equation/inequality in \(n\) (accept either statement opposite) \\
M1 (indep) for process of using logs i.e. \(\frac{\log a}{\log b}\) \\
A1 CAO \\
M1 (indep) for sight of 0.8801 or 0.1198 \\
M1 (indep) for sight of 0.9053 or 0.09468 \\
A1 dep on both M's cao
\end{tabular} \& 3

3

\hline \& \& TOTAL \& 16

\hline
\end{tabular}

$\begin{aligned} & \text { Q7 } \\ & \text { (i) } \end{aligned}$	Positive	B1	1
(ii)	$\begin{aligned} & \text { Number of people }=20 \times 33(000)+5 \times 58(000) \\ & \quad=660(000)+290(000)=950000 \end{aligned}$	M1 first term M1 (indep) second term A1 cao NB answer of 950 scores M2A0	3
(iii)	(A) $a=1810+340=2150$ (B) Median = age of $1385\left(000^{\text {th }}\right)$ person or 1385.5 (000) Age 30, cf = 1240 (000); age 40, cf = 1810 (000) Estimate median $=(30)+\frac{\mathbf{1 4 5}}{\mathbf{5 7 0}} \times \mathbf{1 0}$ Median $=32.5$ years ($32.54 \ldots$) If no working shown then 32.54 or better is needed to gain the M1A1. If 32.5 seen with no previous working allow SC1	M1 for sum A1 cao 2150 or 2150 thousand but not 215000 B1 for 1385 (000) or 1385.5 M1 for attempt to interpolate $\frac{\mathbf{1 4 5} k}{\mathbf{5 7 0} k} \times 10$ (2.54 or better suggests this) A1 cao min 1dp	2 3
(iv)	Frequency densities: 56, 65, 77, 59, 45, 17 (accept 45.33 and 17.43 for 45 and 17)	B1 for any one correct B1 for all correct (soi by listing or from histogram) Note: all G marks below dep on attempt at frequency density, NOT frequency G1 Linear scales on both axes (no inequalities) G1 Heights FT their listed fds or all must be correct. Also widths. All blocks joined G1 Appropriate label for vertical scale eg 'Frequency density (thousands)', 'frequency (thousands) per 10 years', 'thousands of people per 10 years'. (allow key). OR f.d.	5

(v)	Any two suitable comments such as: Outer London has a greater proportion (or \%) of people under 20 (or almost equal proportion) The modal group in Inner London is 20-30 but in Outer London it is $30-40$ Outer London has a greater proportion (14\%) of aged 65+ All populations in each age group are higher in Outer London Outer London has a more evenly spread distribution or balanced distribution (ages) o.e.	$\begin{aligned} & \mathrm{E} 1 \\ & \mathrm{E} 1 \end{aligned}$	2
(vi)	Mean increase \uparrow median unchanged (-) midrange increase \uparrow standard deviation increase \uparrow interquartile range unchanged. (-)	Any one correct B1 Any two correct B2 Any three correct B3 All five correct B4	4
		TOTAL	20

4767 Statistics 2

Question 1

(i)	EITHER: $\begin{aligned} & \begin{aligned} \mathrm{S}_{x y} & =\Sigma x y-\frac{1}{n} \Sigma x \Sigma y=880.1-\frac{1}{48} \times 781.3 \times 57.8 \\ & =-60.72 \end{aligned} \\ & \begin{aligned} \mathrm{S}_{x x} & =\Sigma x^{2}-\frac{1}{n}(\Sigma x)^{2}=14055-\frac{1}{48} \times 781.3^{2}=1337.7 \\ \mathrm{~S}_{y y} & =\Sigma y^{2}-\frac{1}{n}(\Sigma y)^{2}=106.3-\frac{1}{48} \times 57.8^{2}=36.70 \end{aligned} \\ & r=\frac{\mathrm{S}_{x y}}{\sqrt{\mathrm{~S}_{x x} \mathrm{~S}_{y y}}}=\frac{-60.72}{\sqrt{1337.7 \times 36.70}}=-0.274 \end{aligned}$ OR:	M1 for method for $S_{x y}$ M1 for method for at least one of $S_{x x}$ or $S_{y y}$ A1 for at least one of $\mathrm{S}_{x y}, \mathrm{~S}_{x x}, \mathrm{~S}_{y y}$. correct M1 for structure of r A1 CAO (-0.27 to -0.28) M1 for method for $\operatorname{cov}(x, y)$ M1 for method for at least one msd A1 for at least one of $\mathrm{cov} / \mathrm{msd}$ correct M1 for structure of r A1 CAO (-0.27 to -0.28)	5
(ii)	$\mathrm{H}_{0}: \rho=0$ $\mathrm{H}_{1}: \rho<0$ (one-tailed test) where ρ is the population correlation coefficient For $n=48,5 \%$ critical value $=0.2403$ Since $\|-0.274\|>0.2403$ we can reject H_{0} : There is sufficient evidence at the 5% level to suggest that there is negative correlation between education spending and population growth.	B 1 for $\mathrm{H}_{0}, \mathrm{H}_{1}$ in symbols B1 for defining ρ B1FT for critical value M1 for sensible comparison leading to a conclusion A1 for result ($\mathrm{FT} \mathrm{r}<0$) E1 FT for conclusion in words	6
(iii)	Underlying distribution must be bivariate Normal. If the distribution is bivariate Normal then the scatter diagram will have an elliptical shape.	B1 CAO for bivariate Normal B1 indep for elliptical shape	2
(iv)	- Correlation does not imply causation - There could be a third factor - increased growth could cause lower spending. Allow any sensible alternatives, including example of a possible third factor.	$\begin{aligned} & \hline \text { E1 } \\ & \text { E1 } \\ & \text { E1 } \end{aligned}$	3
(v)	Advantage - less effort or cost Disadvantage - the test is less sensitive (ie is less likely to detect any correlation which may exist)	$\begin{aligned} & \mathrm{E} 1 \\ & \mathrm{E} 1 \\ & \hline \end{aligned}$	2
			18

Question 2

(i)	(A) $\mathrm{P}(X=2)=\mathrm{e}^{-0.37} \frac{0.37^{2}}{2!}=0.0473$ $\begin{aligned} & \text { (B) } \mathrm{P}(X>2) \\ & =1-\left(\mathrm{e}^{-0.37} \frac{0.37^{2}}{2!}+\mathrm{e}^{-0.37} \frac{0.37^{1}}{1!}+\mathrm{e}^{-0.37} \frac{0.37^{0}}{0!}\right) \\ & =1-(0.0473+0.2556+0.6907)=0.0064 \end{aligned}$	M1 A1 (2 s.f.) M1 for $\mathrm{P}(X=1)$ and $\mathrm{P}(X=0)$ M1 for complete method A1 NB Answer given	5
(ii)	$\begin{aligned} & \mathrm{P}(\text { At most one day more than } 2) \\ & =\binom{30}{1} \times 0.9936^{29} \times 0.0064+0.9936^{30}= \\ & =0.1594+0.8248=0.9842 \end{aligned}$	M1 for coefficient M1 for $0.9936^{29} \times 0.0064$ M1 for 0.993630 A1 CAO (min 2sf)	4
(iii)	$\begin{aligned} & \lambda=0.37 \times 10=3.7 \\ & P(X>8)=1-0.9863 \\ & =0.0137 \end{aligned}$	B1 for mean (SOI) M1 for probability A1 CAO	3
(iv)	Mean no. per $1000 \mathrm{ml}=200 \times 0.37=74$ Using Normal approx. to the Poisson, $\begin{aligned} & X \sim \mathrm{~N}(74,74) \\ & \quad \mathrm{P}(X>90)=\mathrm{P}\left(Z>\frac{90.5-74}{\sqrt{74}}\right) \\ & =\mathrm{P}(Z>1.918)=1-\Phi(1.918) \\ & =1-0.9724=0.0276 \end{aligned}$	B1 for Normal approx. with correct parameters (SOI) B1 for continuity corr. M1 for probability using correct tail A1 CAO (min 2 s.f.), (but FT wrong or omitted CC)	4
(v)	$\begin{aligned} & \mathrm{P}(\text { questionable })=0.0064 \times 0.0137 \times 0.0276 \\ & =2.42 \times 10^{-6} \end{aligned}$	M1 A1 CAO	2
			18

Question 3

(i)	$\begin{aligned} & X \sim \mathrm{~N}\left(27500,4000^{2}\right) \\ & \mathrm{P}(X>25000)=\mathrm{P}\left(Z>\frac{25000-27500}{4000}\right) \\ & =\mathrm{P}(Z>-0.625) \\ & =\Phi(0.625)=0.7340(3 \text { s.f. }) \end{aligned}$	M1 for standardising A1 for -0.625 M1 dep for correct tail A1CAO (must include use of differences)	4
(ii)	$\begin{aligned} & \mathrm{P}(7 \text { of } 10 \text { last more than } 25000) \\ & =\binom{10}{7} \times 0.7340^{7} \times 0.2660^{3}=0.2592 \end{aligned}$	M1 for coefficient M1 for $0.7340^{7} \times 0.2660^{3}$ A1 FT (min 2sf)	3
(iii)	$\begin{aligned} & \text { From tables } \Phi^{-1}(0.99)=2.326 \\ & \frac{k-27500}{4000}=-2.326 \\ & x=27500-2.326 \times 4000=18200 \end{aligned}$	B1 for 2.326 seen M1 for equation in k and negative z-value A1 CAO for awrt 18200	3
(iv)	$\mathrm{H}_{0}: \mu=27500 ; \quad \mathrm{H}_{1}: \mu>27500$ Where μ denotes the mean lifetime of the new tyres.	B1 for use of 27500 B1 for both correct B1 for definition of μ	3
(v)	$\begin{aligned} \text { Test statistic } & =\frac{28630-27500}{4000 / \sqrt{15}}=\frac{1130}{1032.8} \\ & =1.094 \end{aligned}$ 5% level 1 tailed critical value of $z=1.645$ 1.094 < 1.645 so not significant. There is not sufficient evidence to reject H_{0} There is insufficient evidence to conclude that the new tyres last longer.	M1 must include $\sqrt{ } 15$ A1 FT B1 for 1.645 M1 dep for a sensible comparison leading to a conclusion A1 for conclusion in words in context	5
			18

Question 4

(i)	H_{0} : no association between location and species. H_{1} : some association between location and species.	B1 for both	1
(ii)	$\begin{aligned} & \text { Expected frequency }=38 / 160 \times 42=9.975 \\ & \begin{aligned} \text { Contribution } & =(3-9.975)^{2} / 9.975 \\ & =4.8773 \end{aligned} \end{aligned}$	M1 A1 M1 for valid attempt at (O-E) ${ }^{2} / \mathrm{E}$ A1 NB Answer given	4
(iii)	Refer to χ_{4}^{2} Critical value at 5% level $=9.488$ Test statistic $X^{2}=32.85$ Result is significant There appears to be some association between location and species NB if $\mathrm{H}_{0} \mathrm{H}_{1}$ reversed, or 'correlation' mentioned, do not award first B1or final E1	B1 for 4 deg of f(seen) B1 CAO for cv M1 Sensible comparison, using 32.85 , leading to a conclusion A1 for correct conclusion (FT their c.v.) E1 conclusion in context	5
(iv)	- Limpets appear to be distributed as expected throughout all locations. - Mussels are much more frequent in exposed locations and much less in pools than expected. - Other shellfish are less frequent in exposed locations and more frequent in pools than expected.	E1 E1, E1 E1, E1	5
(v)	$\frac{24}{53} \times \frac{32}{65} \times \frac{16}{42}=0.0849$	M1 for one fraction M1 for product of all 3 A1 CAO	3
			18

4768 Statistics 3

Q1	$\mathrm{f}(\mathrm{x})=k(20-x) \quad 0 \leq x \leq 20$			
$\begin{aligned} & \text { (a) } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \int_{0}^{20} k(20-x) \mathrm{d} x=\left[k\left(20 x-\frac{x^{2}}{2}\right)\right]_{0}^{20}=k \times 200=1 \\ & \therefore k=\frac{1}{200} \end{aligned}$ Straight line graph with negative gradient, in the first quadrant. Intercept correctly labelled $(20,0)$, with nothing extending beyond these points. Sarah is more likely to have only a short time to wait for the bus.	M1 A1 G1 G1 E1	Integral of $\mathrm{f}(x)$, including limits (which may appear later), set equal to 1. Accept a geometrical approach using the area of a triangle. C.a.o.	5
(ii)	$\begin{aligned} & \operatorname{Cdf} \mathrm{F}(x)=\int_{0}^{x} \mathrm{f}(t) \mathrm{d} t \\ &=\frac{1}{200}\left(20 x-\frac{x^{2}}{2}\right) \\ &=\frac{x}{10}-\frac{x^{2}}{400} \\ & \begin{aligned} \mathrm{P}(X>10) & =1-\mathrm{F}(10) \\ & =1-(1-1 / 4)=1 / 4 \end{aligned} \end{aligned}$	M1 A1 M1 A1	Definition of cdf, including limits (or use of " +c " and attempt to evaluate it), possibly implied later. Some valid method must be seen. Or equivalent expression; condone absence of domain [0, 20]. Correct use of c's cdf. f.t. c's cdf. Accept geometrical method, e.g area $=1 / 2(20-10) f(10)$, or similarity.	4
(iii)	Median time, m, is given by $F(m)=1 / 2$. $\begin{aligned} & \therefore \frac{m}{10}-\frac{m^{2}}{400}=\frac{1}{2} \\ & \therefore m^{2}-40 m+200=0 \\ & \therefore m=5.86 \end{aligned}$	M1 M1 A1	Definition of median used, leading to the formation of a quadratic equation. Rearrange and attempt to solve the quadratic equation. Other solution is 34.14 ; no explicit reference to/rejection of it is required.	3

$\begin{aligned} & \text { (b) } \\ & \text { (i) } \end{aligned}$	A simple random sample is one where every sample of the required size has an equal chance of being chosen.	E2	S.C. Allow E1 for "Every member of the population has an equal chance of being chosen independently of every other member".	2
(ii)	Identify clusters which are capable of representing the population as a whole. Choose a random sample of clusters. Randomly sample or enumerate within the chosen clusters.	$\begin{aligned} & \mathrm{E} 1 \\ & \text { E1 } \\ & \mathrm{E} 1 \end{aligned}$		3
(iii)	A random sample of the school population might involve having to interview single or small numbers of pupils from a large number of schools across the entire country. Therefore it would be more practical to use a cluster sample.	E1 E1	For "practical" accept e.g. convenient / efficient / economical.	2
				19

Q2	$\begin{aligned} & A \sim \mathrm{~N}(100, \quad \sigma=1.9) \\ & B \sim \mathrm{~N}(50, \quad \sigma=1.3) \end{aligned}$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Norma distribution tables penalise the first occurrence only.	
(i)	$\begin{aligned} \mathrm{P}(A<103) & =\mathrm{P}\left(Z<\frac{103-100}{1.9}=1.5789\right) \\ & =0.9429 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For standardising. Award once, here or elsewhere. c.a.o.	3
(ii)	$\begin{aligned} & A_{1}+A_{2}+A_{3} \sim \mathrm{~N}(300, \\ & \left.\mathrm{P}(\text { this }>306)=\quad \sigma^{2}=1.9^{2}+1.9^{2}+1.9^{2}=10.83\right) \\ & \mathrm{P}\left(Z>\frac{306-300}{3.291}=1.823\right)=1-0.9658=0.0342 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Mean. Variance. Accept sd (= 3.291). c.a.o.	3
(iii)	$\begin{gathered} A+B \sim \mathrm{~N}(150, \\ \left.\quad \sigma^{2}=1.9^{2}+1.3^{2}=5.3\right) \\ \mathrm{P} \text { (this }>147)=\mathrm{P}\left(Z>\frac{147-150}{2 \cdot 302}=-1.303\right) \\ =0.9037 \end{gathered}$	B1 B1 A1	Mean. Variance. Accept sd (= 2.302). c.a.o.	3
(iv)	$\begin{aligned} & B_{1}+B_{2}-A \sim N(0, \\ & \left.1 \cdot 3^{2}+1 \cdot 3^{2}+1 \cdot 9^{2}=6 \cdot 99\right) \\ & \mathrm{P}(-3<\text { this }<3) \\ & =\mathrm{P}\left(\frac{-3-0}{2.644}<Z<\frac{3-0}{2.644}\right)=\mathrm{P}(-1.135<Z<1 \cdot 135) \\ & =2 \times 0.8718-1=0.7436 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { A1 } \end{aligned}$	Mean. $\operatorname{Or} A-\left(B_{1}+B_{2}\right)$. Variance. Accept sd (= 2.644). Formulation of requirement two sided. c.a.o.	5
(v)	Given $\quad \bar{x}=302.3 \quad s_{n-1}=3.7$ Cl is given by $\quad 302.3 \pm 1.96 \times \frac{3.7}{\sqrt{100}}$ $\begin{aligned} & =302 \cdot 3 \pm 0 \cdot 7252=(301 \cdot 57(48), \\ & 303 \cdot 02(52)) \end{aligned}$ The batch appears not to be as specified since 300 is outside the confidence interval.	M1 B1 A1 E1	Correct use of 302.3 and $3.7 / \sqrt{100}$. For 1.96 c.a.o. Must be expressed as an interval.	4
				18

Q3						
(a) (i)	$\mathrm{H}_{0}: \mu_{D}=0$ $\left(\right.$ or $\left.\mu_{I}=\mu_{\\| \prime}\right)$ $\mathrm{H}_{1}: \mu_{D} \neq 0$ $\left(\right.$ or $\left.\mu_{I I} \neq \mu_{1}\right)$ $\mathrm{H}_{1}: \mu_{D} \neq 0 \quad\left(\right.$ or $\left.\mu_{\\| \prime} \neq \mu_{l}\right)$ where μ_{D} is "mean for $I I$ - mean for I " Normality of differences is required.	B1 B1 B1	Both. Hypotheses in words only must include "population". For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\bar{X}_{I}=\bar{X}_{I I}$ " or similar unless \bar{X} is clearly and explicitly stated to be a population mean.	3		
(ii)	MUST be PAIRED COMPARISON t test. Differences are: $\begin{aligned} & \bar{d}=11.6 \quad s_{n-1}=17.707 \\ & \text { Test statistic is } \frac{11.6-0}{\frac{17.707}{\sqrt{8}}} \end{aligned}$ $=1.852(92)$ Refer to t_{7}. Double-tailed 5\% point is 2.365 . Not significant. Seems there is no difference between the mean yields of the two types of plant.	-14.9 M1 M1 A1 M1 A1 A1 A1	-2.0 16.3 11.5 $s_{n}=16.563$ but do NOT allow this here or in construction of test statistic, but FT from there. Allow c's \bar{d} and/or s_{n-1}. Allow alternative: 0 + (c's 2.365) $\times \frac{17.707}{\sqrt{8}}(=14.806) \text { for }$ subsequent comparison with \bar{d}. (Or $\bar{d}-($ c's 2.365$) \times \frac{17.707}{\sqrt{8}}$ (=-3.206) for comparison with 0 .) c.a.o. but ft from here in any case if wrong. Use of $0-\bar{d}$ scores M1A0, but ft. No ft from here if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. Special case: (t_{8} and 2.306) can score 1 of these last 2 marks if either form of conclusion is given.	7		

4769 Statistics 4

Q1				
(i)	$\begin{aligned} & \mathrm{L}=\frac{e^{-\theta} \theta^{x_{1}}}{x_{1}!} \cdots \frac{e^{-\theta} \theta^{x_{n}}}{x_{n}!}\left[=\frac{e^{-n \theta} \theta^{\sum^{x_{i}}}}{x_{1}!x_{2}!\cdots x_{n}!}\right] \\ & \ln \mathrm{L}=\mathrm{const}-n \theta+\sum x_{i} \ln \theta \\ & \frac{d \ln \mathrm{~L}}{d \theta}=-n+\frac{\sum x_{i}}{\theta}=0 \\ & \Rightarrow \hat{\theta}=\frac{\sum x_{i}}{n}(=\bar{x}) \end{aligned}$ Check this is a maximum e.g. $\frac{d^{2} \ln \mathrm{~L}}{\mathrm{~d} \theta^{2}}=-\frac{\sum x_{i}}{\theta^{2}}<0$	M1 A1 M1 A1 M1 A1 A1 M1 A1	product form fully correct CAO	9
(ii)	$\lambda=\mathrm{P}(X=0)=e^{-\theta}$	B1		1
(iii)	We have $R \sim \mathrm{~B}\left(n, e^{-\theta}\right)$, so $\mathrm{E}(R)=n e^{-\theta}$ $\operatorname{Var}(R)=n e^{-\theta}\left(1-e^{-\theta}\right)$ $\tilde{\lambda}=\frac{R}{n}$ $\therefore \mathrm{E}(\tilde{\lambda})=e^{-\theta}$ i.e. unbiased $\operatorname{Var}(\tilde{\lambda})=\frac{e^{-\theta}\left(1-e^{-\theta}\right)}{n}$	M1 B1 B1 M1 A1 A1 A1	BEWARE PRINTED ANSWER	7

Q2				
(i)	$\mathrm{P}(X=x)=q^{x-1} p$	B1	FT into pgf only	
	Pgf $\mathrm{G}(t)=\mathrm{E}\left(t^{X}\right)=\sum^{\infty} p t^{x} q^{x-1}$			
	Pgf $\mathrm{G}(t)=\mathrm{E}(t \times)=\sum_{x=1} p t q$	M1		
	$\begin{aligned} & =p t\left(1+q t+q^{2} t^{2}+\ldots\right) \\ & =p t(1-q t)^{-1} \end{aligned}$	A1		
		A1	BEWARE PRINTED ANSWER [consideration of $\|q t\|<1$ not required]	
	$\begin{aligned} & \mu=\mathrm{G}^{\prime}(1) \quad \sigma^{2}=\mathrm{G}^{\prime \prime}(1)+\mu-\mu^{2} \\ & G^{\prime}(t)=p t(-1)(1-q t)^{-2}(-q)+p(1-q t)^{-1} \end{aligned}$	M1	for attempt to find $\mathrm{G}^{\prime}(t)$ and/or $\mathrm{G}^{\prime \prime}(t)$	
	$=p q t(1-q t)^{-2}+p(1-q t)^{-1}$	A1		
	$\therefore \mathrm{G}^{\prime}(1)=p q(1-q)^{-2}+p(1-q)^{-1}=\frac{q}{p}+1=\frac{\frac{1}{p}}{\underline{\underline{p}}}$	A1	BEWARE PRINTED ANSWER	
	$\begin{aligned} \mathrm{G}^{\prime \prime}(t)= & p q t(-2)(1-q t)^{-3}(-q)+p q(1-q t)^{-2}+ \\ & p(-1)(1-q t)^{-2}(-q) \end{aligned}$	A1		
	$\begin{aligned} \therefore \mathrm{G}^{\prime \prime}(1) & =2 p q^{2}(1-q)^{-3}+p q(1-q)^{-2}+p q(1-q)^{-2} \\ & =\frac{2 q^{2}}{p^{2}}+\frac{2 q}{p} \end{aligned}$	A1		
	$\therefore \sigma^{2}=\frac{2 q^{2}}{p^{2}}+\frac{2 q}{p}+\frac{1}{p}-\frac{1}{p^{2}}=\frac{2 q^{2}+2 p q+p-1}{p^{2}}$	M1	For inserting their values	
	$=\frac{q}{p^{2}}(2 q+2 p-1)=\frac{q}{p^{2}}$	A1	BEWARE PRINTED ANSWER	
				11

(ii)		E1 E1 1 1 1		5
(iii)	N (candidate's μ_{Y}, candidate's σ_{Y}^{2})	1		1
(iv)	$\begin{aligned} & Y=\text { no of tickets to be sold } \sim \text { random variable as } \\ & \text { in (ii) with } n=140 \text { and } p=0.8 \\ & \sim \text { Approx } \mathrm{N}\left(\frac{140}{0.8}=175, \frac{140 \times 0.2}{(0.8)^{2}}=43.75\right) \\ & \quad \mathrm{P}(Y \geq 160) \approx \mathrm{P}\left(\mathrm{~N}(175,43.75)>159 \frac{1}{2}\right) \\ & =\mathrm{P}(\mathrm{~N}(0,1)>-2.343) \\ & =0.9905 \\ & \text { For any sensible discussion in context (eg groups } \\ & \text { of passengers } \Rightarrow \text { not indep.) } \end{aligned}$	E1 1 M1 A1 A1 E1 E1	Do not award if cty corr absent or wrong, but FT if 160 used \rightarrow $-2.268,0.9884$ CAO	7
Q3	$\begin{aligned} & X=\text { amount of salt } \sim \mathrm{N}\left(\mu[750], \sigma^{2}\left[20^{2}\right]\right) \\ & \text { Sample of } n=9 \end{aligned}$			
(i)	Type I error: rejecting null hypothesis when it is true. Type II error: accepting null hypothesis when it is false. OC: P (accepting null hypothesis ... \ldots as a function of the parameter under investigation)	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \\ & \text { B1 } \\ & \text { B1 } \\ & \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow B1 for $\mathrm{P}\left(\mathrm{rej} \mathrm{H}_{0}\right.$ when true) Allow B1 for $\mathrm{P}\left(\right.$ acc H_{0} when false) [P(type II error \| the true value of the parameter) scores B1+B1]	6
(ii)	$\begin{aligned} & \text { Reject if } \bar{x}<735 \text { or } \bar{x}>765 \\ & \alpha=\mathrm{P}\left(\bar{X}<735 \text { or } \bar{X}>765 \left\lvert\, \bar{X} \sim \mathrm{~N}\left(750, \frac{20^{2}}{9}\right)\right.\right) \\ & \quad=\mathrm{P}\left(\mathrm{Z}<\frac{(735-750) 3}{20}=-2.25\right. \\ & \left.\quad \text { or } \mathrm{Z}>\frac{(765-750) 3}{20}=2.25\right) \\ & =2(1-0.9878)=2 \times 0.0122=0.0244 \end{aligned}$ This is the probability of rejecting good output and unnecessarily re-calibrating the machine seems small [but not very small?]	M1 A1 A1 A1 E1 E1	Might be implicit CAO Accept any sensible comments	6

(iii)	Accept if $735<\bar{x}<765$, and now $\mu=725$. $\begin{aligned} & \beta=\mathrm{P}\left(735<\bar{X}<765 \mid \bar{X} \sim \mathrm{~N}\left(725,20^{2} / 9\right)\right) \\ & =\mathrm{P}(1.5<\mathrm{Z}<6) \\ & \quad=1-0.9332=0 \underline{0.0668} \end{aligned}$ This is the probability of accepting output and carrying on when in fact μ has slipped to 725 -small[-ish?]	A1 A1 A1 E1 E1	might be implicit CAO If upper limit 765 not considered, maximum 2 of these 4 marks. If $\Phi(6)$ not considered, maximum 3 out of 4 . accept sensible comments	6
(iv)		M1 A1 1 1 1	both correct if any two correct	6
Q4				
(i)	```\[x_{i j}=\mu+\alpha_{i}+e_{i j} \] \[\mu=\text { population } \ldots \] .. grand mean for whole experiment \[\alpha_{i}=\text { population } \ldots \] \[\mu \] \[\text { .. mean by which } i \text { th treatment differs from } \] \[e_{i j} \text { are experimental errors... } \] \[\sim \operatorname{ind} N\left(0, \sigma^{2}\right) \]```	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 3 \end{aligned}$	Allow "uncorrelated" 1 for ind $\mathrm{N} ; 1$ for $0 ; 1$ for σ^{2}.	9
(ii)	Totals are 240, 246, 254, 264, 196 each from sample of size 5 Grand total 936 "Correction factor" CF = $\frac{936^{2}}{20}=43804.8$ Total SS $=44544-\mathrm{CF}=739.2$			

4771 Decision Mathematics 1

Solutions

1.

2.
(i)

	X	Y
$5,14,153,6,24,2,14,15$	$5,14,153$	5,2
$5,14,6,24,14,15$	$5,14,24$	5
$14,6,14,15$,	14,15	14,6
14,14		

Answer = 14
Comparisons $=30$
(ii)

	X	Y
$5,14,153,6,24,2,14$	$5,14,153$	5,2
$5,14,6,24,14$	$5,14,24$	5
$14,6,14$	14	14,6
14		

Answer $=14$
Comparisons $=24$
(iii) Median
(iv) Time taken approximately proportional to square of length of list (or twice length takes four times the time, or equivalent).
3.

(i)	$\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2} \quad \mathrm{~T}_{1} \rightarrow \mathrm{~T}_{3} \rightarrow \mathrm{~T}_{2}$	M 1	
	$\mathrm{~T}_{1} \rightarrow \mathrm{~T}_{3} \quad \mathrm{~T}_{1} \rightarrow \mathrm{~T}_{2} \rightarrow \mathrm{~T}_{3}$	A 1	
	$\mathrm{~T}_{1} \rightarrow \mathrm{~T}_{2} \rightarrow \mathrm{~T}_{3} \rightarrow \mathrm{~T}_{4} \quad \mathrm{~T}_{1} \rightarrow \mathrm{~T}_{3} \rightarrow \mathrm{~T}_{4}$		
(ii)	$\mathrm{T}_{4} \rightarrow \mathrm{~T}_{3} \rightarrow \mathrm{~T}_{2} \rightarrow \mathrm{~T}_{1} \quad \mathrm{~T}_{4} \rightarrow \mathrm{~T}_{3} \rightarrow \mathrm{~T}_{1}$	M 1	
	$\mathrm{~T}_{4} \rightarrow \mathrm{~T}_{3} \rightarrow \mathrm{~T}_{1} \rightarrow \mathrm{~T}_{2} \quad \mathrm{~T}_{4} \rightarrow \mathrm{~T}_{3} \rightarrow \mathrm{~T}_{2}$	A 1	
	$\mathrm{~T}_{4} \rightarrow \mathrm{~T}_{3}$		
(iii)	22		M 1
	allow for 23		
(iv)	11	A 1	
		M 1	halving (not 11.5)

4.

(i) e.g.			$\begin{aligned} & 00-1 \\ & 10- \\ & 40- \\ & 80 \\ & 90 \end{aligned}$	09 39 79 89 99								$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	proportions OK efficient
(ii)	e.g.		$\begin{aligned} & 00-1 \\ & 16-4 \\ & 48-5 \\ & 56-7 \\ & 80-8 \\ & 88-9 \\ & 96,9 \end{aligned}$	15 47 55 79 87 95 97	$\rightarrow 1$ $\rightarrow 2$ $\rightarrow 3$ $\rightarrow 4$ $\rightarrow 5$ $\rightarrow 6$ 98	99	reje					$\begin{aligned} & \text { M1 } \\ & \text { A2 } \\ & \text { A1 } \end{aligned}$	some rejected proportions OK (-1 each error) efficient
(iii) \& (iv)													
Sim. no.		s in	rrivin		fter	Jo					Time to 15 passengers (minutes)		
1	3	2	2	1	1	2	2	2	3	1	6	M1	
2	3	1	2	2	1	4	1	2	5	1	6	A2	(-1 each error)
3	5	1	2	2	2	1		4	2	2	12		
4	4	6	3	2	4	1	1	2	2	3	4		
5	5	1	4	1	3	2	5	4	2	2	17		
6	4	4	4	2	5	3		4	1	4	8		
7	4	1	4	2	3	1	5	4	1	3	16	M1	simulation
8	2	2	2	2	2	4	3	5	1	2	6	A1	time intervals
9	1	1	1	1	1	1		1	1	2	5	A1	passengers
10	2	4	3	2		6		5	2	1	5	A1	time to wait
(v)	0.8 more runs											$\begin{array}{\|l} \text { B1 } \\ \text { B1 } \end{array}$	

5.

(a)(i) Activity D.

Depends on A and B in project 1 , but on A, B and C in project 2.
(ii) Project 1: Duration is 5 for $x<3$, thence $x+2$.

Project 2: Duration is 5 for $x<2$, thence $x+3$
(b) (i) \& (ii)

M1
A1
A1
B1 "5"
B1 B1 beyond 5
M1 activity-on-arc
A1 single start and single end
A2 precedences (-1 each error)

M1 A1 forward pass
M1 A1 backward pass
B1
B1
6.
(i)

Order of inclusion	1	3	6	4	5	2
	A	B	c	D	E	F
A	-	10	7		9	5
B	-10			1		(4)
C	7	-	-	-	(3)	-
D		-1			2	
E	9		3	$-\sqrt{2}$		
F	(5)	4				

Arcs: AF, FB, BD, DE, EC
Length: 15
(ii) \& (iii)

Arcs: AF, FB, BD, AC, AE
Length: 26
(iv) Cubic
n applications of Dijkstra, which is quadratic

4772 Decision Mathematics 2

1.

2.
(i) e.g. (Decisions could be in other order.)

Drive down for 2 lots of 4 weeks

Jane could save money if she spent less than $£ 10000$ on a car
(iii) EMV - expected monetary value - probabilistically weighted cash values
Utility measure is an alternative.
3.
(a) (i)

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	∞	14	11	24
$\mathbf{2}$	14	∞	15	∞
$\mathbf{3}$	11	15	∞	12
$\mathbf{4}$	24	∞	12	∞

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	1	2	3	4
$\mathbf{2}$	1	2	3	4
$\mathbf{3}$	1	2	3	4
$\mathbf{4}$	1	2	3	4

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	∞	14	11	24
$\mathbf{2}$	14	28	15	38
$\mathbf{3}$	11	15	22	12
$\mathbf{4}$	24	38	12	48

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	1	$\mathbf{2}$	3	4
$\mathbf{2}$	1	1	3	1
$\mathbf{3}$	1	2	1	4
$\mathbf{4}$	1	1	3	1

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	28	14	11	24
$\mathbf{2}$	14	28	15	38
$\mathbf{3}$	11	15	22	12
$\mathbf{4}$	24	38	12	48

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	2	$\mathbf{2}$	3	4
$\mathbf{2}$	1	1	3	1
$\mathbf{3}$	1	2	1	4
$\mathbf{4}$	1	1	3	1

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	22	14	11	23
$\mathbf{2}$	14	28	15	27
$\mathbf{3}$	11	15	22	12
$\mathbf{4}$	23	27	12	24

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	3	2	3	3
$\mathbf{2}$	1	1	3	3
$\mathbf{3}$	1	2	1	4
$\mathbf{4}$	3	3	3	3

	$\mathbf{1}$			
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	22	14	11	23
$\mathbf{2}$	14	28	15	27
$\mathbf{3}$	11	15	22	12
$\mathbf{4}$	23	27	12	24

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	3	2	3	3
$\mathbf{2}$	1	1	3	3
$\mathbf{3}$	1	2	1	4
$\mathbf{4}$	3	3	3	3

(ii) 13421

64
$\Rightarrow 134321$
M1 A1
B1
B1
(iii) $27+11+14=52$

TSP solution has length between 52 and 64
(b) e.g. 1312341 length $=87$

One repeated arc \rightarrow Eulerian

M1 A1
M1 A1
M1 A1 A1
B1
4.
(i) Let a be the number of tonnes of A produced ...
Max $\quad a+b+c$
st $\quad 3 a+2 b+5 c<60$
$5 a+6 b+2 c<50$
(ii) e.g.

P	a	b	c	s_{1}	$\mathrm{~s}_{2}$	RHS
1	-1	-1	-1	0	0	0
0	3	2	5	1	0	60
0	5	6	2	0	1	50
1	-0.4	-0.6	0	0.2	0	12
0	0.6	0.4	1	0.2	0	12
0	3.8	5.2	0	-0.4	1	26
1	>0	0	0	>0	>0	15
0		0	1			10
0	$19 / 26$	1	0	$-2 / 26$	$5 / 26$	5

Make 5 tonnes of B and 10 tonnes of C
(iii) \& (iv) e.g.

A	P	a	b	c	s_{1}	$\mathrm{~s}_{2}$	$\mathrm{~s}_{3}$	art	RHS
1	0	1	0	0	0	0	-1	0	8
0	1	-1	-1	-1	0	0	0	0	0
0	0	3	2	5	1	0	0	0	60
0	0	5	6	2	0	1	0	0	50
0	0	1	0	0	0	0	-1	1	8
1	0	0	0	0	0	0	0	-1	0
0	1	0	-1	-1	0	0	-1	1	8
0	0	0	2	5	1	0	3	-3	36
0	0	0	6	2	0	1	5	-5	10
0	0	1	0	0	0	0	-1	1	8
	1	0	2	0	0	0.5	1.5		13
	0	0	-13	0	1	-2.5	-4.5		11
	0	0	3	1	0	0.5	2.5		5
	0	1	0	0	0	0	-1		8

Make 8 tonnes of A and 5 tonnes of C

M1 A1
B1
B1
B1

M1 initial tableau
A1

M1 pivot
A1

M1
A1

B1 interpretation

B1 new constraint
M1 surplus +
A1 artificial
B1 new objective

M1
A1

B1

B1 interpretation

4773 Decision Mathematics Computation

1.

(i) $\mathrm{XA}+\mathrm{XB}+\mathrm{XE}+\mathrm{XF}>=1$

Indicator variables correspond to matrix column A (or row A) entries which are less than or equal to 5 .
Ensures that at least one such indicator is 1.
(ii) Min $X A+X B+X C+X D+X E+X F$
st $\quad X A+X B+X E+X F>=1$
$X A+X B+X E+X F>=1$
$X C+X F>=1$
$X D+X E>=1$
$X A+X B+X D+X E+X F>=1$
$X A+X B+X C+X E+X F>=1$
(iii) 2 centres, at $\mathrm{F} \& D$ or $\mathrm{E} \& \mathrm{C}$ or $\mathrm{E} \& \mathrm{~F}$
(iv) e.g. add $X F=0$ to force solution E and C
(v) Three solutions are $F \& D, E \& C, E \& F$.
(vi) Problem is unimodular (or convincing argument). In the interests of efficiency (and parsimony).

> M1 A1 ">" OK

B1 indicator vars
B1 <= 5
B1
B1
M1
A3 (-1 each error/ omission)
allow (correct) reduced set
of inequalities
M1 A1 A1
M1 A1
B1
B1
B1
2.

3.

$\begin{aligned} & X 51+X 54+X 56=10 \\ & X 65+X 67=10 \\ & X 73+X 76=10 \\ & X 21+X 51=10 \\ & X 12+X 32+X 42=10 \\ & X 23+X 43+X 73=10 \\ & X 24+X 34+X 54=10 \\ & X 15+X 45+X 65=10 \\ & X 56+X 76=10 \\ & X 37+X 67=10 \end{aligned}$	M1 demand A1 constraints
OBJECTIVE FUNCTION VALUE 1) $\quad 310.0000$	M1 run
VARIABLE VALUE REDUCED COST X12 0.000000 0.000000 X15 10.000000 0.000000 X21 0.000000 0.000000 X23 10.000000 0.000000	
$\begin{array}{lll}\mathrm{X} 24 & 0.000000 & 0.000000\end{array}$	A1 results
X32 0.0000000 .000000	
$\begin{array}{ll}\text { X34 } & 10.000000 \\ 0.000000\end{array}$	
X37 $0.000000 \quad 6.000000$	
X42 10.000000 0.000000	
X43 0.0000000 .000000	
X45 0.0000000 .000000	
$\begin{array}{lll}\mathrm{X} 51 & 10.000000 & 0.000000\end{array}$	
X54 0.0000000 .000000	
X56 $0.000000 \quad 6.000000$	
X65 0.0000000 .000000	
X67 10.0000000 .000000	
X73 0.0000000 .000000	B1 interpretation
$\begin{array}{ll}\mathrm{X} 76 & 10.000000\end{array}$	
Cost $=310$ by sending 10 from W1 to S5, \ldots etc.	

4.

(a) Auxiliary equation:

$$
\begin{aligned}
& 2 \lambda^{2}-3 \lambda+1=0 \\
& (2 \lambda-1)(\lambda-1)=0 \\
& \lambda=1 \text { or } 1 / 2 \\
& u_{n}=A+B(1 / 2)^{n} \\
& 5=A+B \\
& 3=A+1 / 2 B \\
& u_{n}=1+4(1 / 2)^{n} \\
& u_{2}=2, \quad u_{3}=1.5, \quad u_{10}=1.003906 \\
& u_{1000000} \approx 1
\end{aligned}
$$

(b)(i) \& (ii)

0	5
1	3
2	4.5
3	8.75
4	13.625
5	16.6875
6	16.40625
7	12.92188
8	7.976563
9	4.042969
10	3.087891
11	5.588867
12	10.29541
13	14.85425
14	16.98596
15	15.62469
16	11.45108
17	6.551926
18	3.376808
19	3.513287
20	6.893122

(iii) Limited wrt to (very) long-term

M1 A1
M1
A1
B1 B1

B1
B1

M1 A1

B1 B1
B1

M1
A1

A1 3.087891

A1 6.893122

B1

4776 Numerical Methods

1

x	3	3.5
$f(x)$	0.5	-0.8

$$
\begin{aligned}
\text { root }= & (3 \times(-0.8)-3.5 \times 0.5) /(-0.8-0.5) \\
& =\quad .192308(3.192,3.19)
\end{aligned}
$$

[M1A1A1]
$(-) \mathrm{mpe}$ is $3.5-3.192308=0.307602(0.308,0.31)$

1	2			
3	1	-1		
5	5	4	5	
7	k	$k-5$	$k-9$	$k-14$
9	2	$2-k$	$7-2 k$	$16-3 k$

[M1A1A1A1]

h	$\mathrm{f}(2+\mathrm{h})$	$\mathrm{f}(2-\mathrm{h})$
0.2	.494507	.867869
0.1	.323418	.010586
0.05	.241636	.085281

$\mathrm{f}^{\prime}(2)$	
.566594	
.564163	-0.00243
.563555	-0.00061

derivatives [M1A1A1A1] differences
[M1A1]
differences reducing by a factor 4 so next estimate about 1.56340 .

4
$f(x)=x^{3}-25 \quad f^{\prime}(x)=3 x^{2}$
$x_{r+1}=x_{r}-\left(x_{r}^{3}-25\right) / 3 x_{r}^{2} \quad$ (a.g.)
[M1A1A1]

r	0	1	2	3
x_{r}	4	3.1875	.945197	2.92417
diffs		-0.8125	-0.2423	-0.02103
ratios			.298219	.086783

differences reducing at an increasing rate (hence faster than first order)

5 (i) $0.001369352 \quad$ (accept 0.0013694)
(ii) $\quad \sin 86^{\circ}=0.997$
$\sin 85^{\circ}=0.996$
564
195
$\sin 86^{\circ}-\sin 86^{\circ}=0.001369$
(iii) $2 \times 0.0784591 \times 0.00872654$
$=0.00136935$
(iv) Rounding has different effects in the two expressions (may be implied)

First method involves subtraction of nearly equal numbers and so loses accuracy

6 (i)

h	M	T
2	2.763547	2.425240
1	2.677635	2.594393
0.5	2.656743	2.636014

mid-point: trapezium:
[M1A1A1]
[M1A1A1A
(ii)

$$
\begin{array}{lrr}
\text { M: } & 2.763547 & \text { diffs } \\
& 2.677635 & -0.08591
\end{array}
$$

$2.656743-0.02089$ reducing by a factor 4 (may be implied)
Differences in T reduce by a factor 4 , too
[M1A1E1]
[B1]
[subtotal 4]
(iii)

M	T	S	
2.763547	2.425240	2.650778	
2.677635	2.594393	2.649888	-0.00089033

Differences in S reducing fast e.g by a factor of (about) 16

7 (i) Eg: graph of x^{2} and $4+1 / x$ for $x>0$ showing single intersection
Change of sign to find interval $(2,3)$ - i.e. $a=2$

r	0	1	2	3	4	5
x_{r}	2.5	2.097618	2.115829	2.114859	2.11491	2.114907
	2.1149 secure to 4 dp					

[M1A1A1]
(ii) The iteration gives positive values only.

r	0	1	2	3	4	5
x_{r}	-2	-1.87083	-1.86158	-1.86087	-1.86081	-1.86081

-1.8608 secure to 4 dp
(iii) Eg $\begin{array}{rrrrrrr}r & 0 & 1 & 2 & 3 & 4 \\ & x_{r} & -0.5 & -1.41421 & -1.81463 & -1.85713 & -1.86052\end{array}$
not converging to required root (converging to previous root)
[M1A1]
Eg $\quad x_{r+1}=1 /\left(x_{r}^{2}-4\right)$

r	0	1	2	3	4	5
x_{r}	-0.5	-0.26667	-0.25452	-0.25412	-0.2541	-0.2541

-0.2541 secure to $4 d p$

4777 Numerical Computation

1 Eg: $\mathrm{e}_{\mathrm{r}+1}$ is approximately ke_{r}
[E2]
(i)

Uses $\mathrm{y}_{0}=\alpha+\mathrm{e}_{0}, \quad \mathrm{y}_{1}=\alpha+\mathrm{ke}_{0}, \quad \mathrm{y}_{2}=\alpha+\mathrm{k}^{2} \mathrm{e}_{0} \quad$ or equivalent
Convincing algebra to eliminate k hence given result
(ii) Convincing re-arrangment
[A1]

extrap							
y_{0}	y_{1}	y_{2}	(new yo)	new y_{1}	new y_{2}	extrap	once
1	0.908662	0.917409	0.916644	0.916648	0.916647	0.916647	twice
					4 or 5 sf lo	ks secure	

x	y_{0}	y_{1}	y_{2}	$\left(\right.$ new $\left.\mathrm{y}_{0}\right)$	new y_{1}	new y_{2}	extrap	
1.1	1	0.908662	0.917409	0.916644	0.916648	0.916647	0.916647	
1.2	0.916647	0.845937	0.859662	0.856936	0.85695	0.856947	0.856948	set up
1.3	0.856948	0.799744	0.815042	0.811814	0.81184	0.811833	0.811835	SS
1.4	0.811835	0.763904	0.780556	0.776263	0.876302	0.776288	0.776292	[M2A2]
1.5	0.776292	0.734953	0.752555	0.747298	0.747351	0.747329	0.747335	
1.6	0.747335	0.7108	0.729213	0.723043	0.72311	0.723076	0.723087	values
1.7	0.723087	0.690112	0.70934	0.702258	0.70234	0.702292	0.70231	[A3]
1.8	0.70231	0.671996	0.692131	0.684095	0.684194	0.684128	0.684155	
1.9	0.684155	0.655831	0.677026	0.667954	0.668075	0.667985	0.668023	
2	0.668023	0.641175	0.663627	0.653402	0.65355	0.653427	0.653483	
						3 or 4 sflooks secure		[A1]

$2 \mathrm{~T}_{\mathrm{n}}-\mathrm{I}=\mathrm{A}_{2} \mathrm{~h}^{2}+\mathrm{A}_{4} \mathrm{~h}^{4}+\mathrm{A}_{6} \mathrm{~h}^{6}+\ldots$
(i)
$\mathrm{T}_{2 \mathrm{n}}-\mathrm{I}=\mathrm{A}_{2}(\mathrm{~h} / 2)^{2}+\mathrm{A}_{4}(\mathrm{~h} / 2)^{4}+\mathrm{A}_{6}(\mathrm{~h} / 2)^{6}+\ldots$
[M1A1]
$4\left(T_{2 n}-I\right)-\left(T_{n}-I\right)=b_{4} h^{4}+b_{6} h^{6}+\ldots$
[M1]
$4 T_{2 n}-T_{n}-3 I=b_{4} h^{4}+b_{6} h^{6}+\ldots$
$\left(4 T_{2 n}-T_{n}\right) / 3-I=B_{4} h^{4}+B_{6} h^{6}+\ldots$
($T_{n}{ }^{*}=\left(4 T_{2 n}-T_{n}\right) / 3$ has error of order h^{4} as given)
$\mathrm{T}_{\mathrm{n}}{ }^{* *}=\left(16 \mathrm{~T}_{2 \mathrm{n}}{ }^{*}-\mathrm{T}_{\mathrm{n}}{ }^{*}\right) / 15$ has error of order h^{6}
(ii)

x	$\mathrm{f}(\mathrm{x})$	T	T*	T**	(${ }^{* * * \text {) }}$	
0	0					
2	3.523188	3.523188				
1	0.731059	2.492653	2.149141			
0.5	0.155615					f:
1.5	1.839543	2.243905	2.160989	2.161779		
0.25	0.035136					T:
0.75	0.382038					
1.25	1.214531					T^{*} :
1.75	2.609105	2.182155	2.161572	2.161611	2.161608	
0.125	0.0083					$T^{* *}$
0.375	0.083344					
0.625	0.254435					answer:
0.875	0.540367					
1.125	0.955439					
1.375	1.509072					
1.625	2.206199					
1.875	3.048173	2.166744	2.161606	2.161609	2.161609	

[subtotal 9]
(iii) $\quad k \quad 1$
$\begin{array}{ll}0.25 & 0.002847\end{array}$
$\begin{array}{ll}0.5 & 0.024686\end{array}$
$0.75 \quad 0.089495$
0.225935
$1.25 \quad 0.466242$
$\begin{array}{ll}1.5 & 0.845007\end{array}$
1.751 .398068
$2 \quad 2.161609$

accept 1.57	evidence of t\&e
or 1.58	result:
(or in between)	

modify SS
[M2]
values of I
[A2]

graph

[G2]
[subtotal 6]
[M2]
[A1]

Maximum about ($0.8,0.23$) root about 1.8
[A1A1A1]
(ii) Eg:
$h=0.01$ gives (p, q) as $(0.77,0.22743)$ hence $(0.77,0.23)$
$h=0.01$ gives root as between 1.87 and 1.88 accept either
[M2]
[A1A1]
[A1]
[subtotal5]
(iii) Eg:

s	h	x	y	k 1	k 2	k 3	k 4
1	0.01	0	0	0.01	0.009	0.009025	0.008621
1	0.01	0.01	0.009112	0.008618	0.008314	0.008319	0.008065
1	0.01	0.02	0.017437	0.008065	0.007844	0.007847	0.007649
1	0.01	0.03	0.025286	0.007649	0.007468	0.00747	0.007303
1	0.01	0.04	0.032757	0.007303	0.007147	0.007148	0.007002

Mods
 [M3]
 t \& e
 [M3]

$s=0.715, h=0.01$ gives root closest to $x=1 \quad$ accept 0.71 to 0.72
$Q=\Sigma\left(y-a-b x-c x^{2}\right)^{2}$
[M1]
$\mathrm{dQ} / \mathrm{da}=0$ gives
other equations:

$$
\Sigma x y=a \Sigma x+b \Sigma x^{2}+c \Sigma x^{3}
$$

as given
$\Sigma x^{2} y=a \Sigma x^{2}+b \Sigma x^{3}+c \Sigma x^{4}$
[B1]
[subtotal 5]
roughly

parabolic
(quadratic) in shape

(iii) | x | y | xy | $\mathrm{x}^{2} \mathrm{y}$ | x^{2} | x^{3} | x^{4} |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 1.02 | 0 | 0 | 0 | 0 | 0 |
| | 0.5 | 2.08 | 1.04 | 0.52 | 0.25 | 0.125 |
| | 1 | 2.73 | 2.73 | 2.73 | 1 | 1 |
| | 0.0625 | | | | | |
| | 1.5 | 3.14 | 4.71 | 7.065 | 2.25 | 3.375 |
| | 2 | 2.87 | 5.74 | 11.48 | 4 | 8 |
| | 5.0625 | | | | | |
| | 2.5 | 2.22 | 5.55 | 13.875 | 6.25 | 15.625 |
| | 1.43 | 4.29 | 12.87 | 9 | 16 | |
| | $\mathbf{1 0 . 5}$ | $\mathbf{1 5 . 4 9}$ | $\mathbf{2 4 . 0 6}$ | $\mathbf{4 8 . 5 4}$ | $\mathbf{2 2 . 7 5}$ | $\mathbf{5 5 . 1 2 5}$ |
| | | | | $\mathbf{1 4 2 . 1 8 7 5}$ | | |

[subtotal 3]

Grade Thresholds

Advanced GCE MEI Mathematics 38957895 June 2008 Examination Series

Unit Threshold Marks

Unit		Maximum	A	B	C	D	E	U
All units	UMS	100	80	70	60	50	40	0
4751	Raw	72	61	53	45	37	30	0
4752	Raw	72	55	48	41	34	28	0
4753	Raw	72	59	52	46	40	33	0
4753/02	Raw	18	15	13	11	9	8	0
4754	Raw	90	75	67	59	51	43	0
4755	Raw	72	60	51	42	34	26	0
4756	Raw	72	57	51	45	39	33	0
4757	Raw	72	50	44	38	33	28	0
4758	Raw	72	58	50	42	34	26	0
4758/02	Raw	18	15	13	11	9	8	0
4761	Raw	72	57	48	39	30	22	0
4762	Raw	72	56	48	40	33	26	0
4763	Raw	72	53	45	37	29	21	0
4764	Raw	72	55	47	40	33	26	0
4766	Raw	72	53	45	38	31	24	0
4767	Raw	72	57	49	41	33	26	0
4768	Raw	72	56	49	42	35	28	0
4769	Raw	72	57	49	41	33	25	0
4771	Raw	72	58	51	44	37	31	0
4772	Raw	72	51	44	37	31	25	0
4773	Raw	72	51	44	37	30	24	0
4776	Raw	72	57	49	41	34	26	0
4776/02	Raw	18	14	12	10	8	7	0
4777	Raw	72	54	46	39	32	25	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{7 8 9 5 - 7 8 9 8}$	600	480	420	360	300	240	0
$\mathbf{3 8 9 5 - 3 8 9 8}$	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	\mathbf{U}	Total Number of Candidates
$\mathbf{7 8 9 5}$	42.5	63.7	79.2	90.7	97.5	100	9600
$\mathbf{7 8 9 6}$	58.0	78.2	89.2	95.3	98.7	100	1539
$\mathbf{7 8 9 7}$	73.5	85.3	88.2	100	100	100	34
$\mathbf{7 8 9 8}$	27.8	52.8	61.1	77.8	91.7	100	36
$\mathbf{3 8 9 5}$	30.5	46.0	60.6	73.6	83.7	100	12767
$\mathbf{3 8 9 6}$	49.7	68.6	81.4	90.0	95.2	100	2039
$\mathbf{3 8 9 7}$	82.1	88.5	92.3	97.4	100	100	78
$\mathbf{3 8 9 8}$	47.8	52.2	69.6	87.0	95.7	100	23

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

