

Mathematics

Advanced GCE A2 7890 - 2

Advanced Subsidiary GCE AS 3890 - 2

Mark Schemes for the Units

June 2008

3890-2/7890-2/MS/R/08

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This report on the Examination provides information on the performance of candidates which it is hoped will be useful to teachers in their preparation of candidates for future examinations. It is intended to be constructive and informative and to promote better understanding of the syllabus content, of the operation of the scheme of assessment and of the application of assessment criteria.

Reports should be read in conjunction with the published question papers and mark schemes for the Examination.

OCR will not enter into any discussion or correspondence in connection with this Report.

© OCR 2008

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:	0870 770 6622
Facsimile:	01223 552610
E-mail:	publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890) Advanced GCE Pure Mathematics (7891) Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEMES FOR THE UNITS

Unit/ContentPage

4721 Core Mathematics 1	1
4722 Core Mathematics 2	6
4723 Core Mathematics 3	10
4724 Core Mathematics 4	13
4725 Further Pure Mathematics 1	17
4726 Further Pure Mathematics 2	21
4727 Further Pure Mathematics 3	24
4728 Mechanics 1	31
4729 Mechanics 2	33
4730 Mechanics 3	35
4731 Mechanics 4	38
4732 Probability & Statistics 1	42
4733 Probability & Statistics 2	46
4734 Probability & Statistics 3	487
4735 Statistics 4	510
4736 Decision Mathematics 1	543
4737 Decision Mathematics 2	598
Grade Thresholds	643

1	(i)	<i>n</i> = -2	B1	
	(ii)	<i>n</i> = 3	B1 1	
	(iii)		M1	$\sqrt{4^3}$ or $64^{\frac{1}{2}}$ or $\left(4^{\frac{1}{2}}\right)^3$ or $\left(4^3\right)^{\frac{1}{2}}$ or
				$4 \times \sqrt{4}$ with brackets correct if used
		$n = \frac{3}{2}$	A1	
		-	2	
2	(i)		M1	$y = (x \pm 2)^2$
		$y = (x-2)^2$	A1	
	(ii)	$y = -(x^3 - 4)$	B1	oe
			1	
3	(i)	$\sqrt{2 \times 100} = 10\sqrt{2}$	B1	
		$12 12\sqrt{2}$ -	<u></u>	
	(ii)	$\frac{12}{\sqrt{2}} = \frac{12\sqrt{2}}{2} = 6\sqrt{2}$	B1	
			1	
	(iii)		M1	Attempt to express $5\sqrt{8}$ in terms of $\sqrt{2}$
		$10\sqrt{2} - 3\sqrt{2} = 7\sqrt{2}$	A1 2	
4		$v = x^{\frac{1}{2}}$		
-		$2y^2 - 7y + 3 = 0$	M1*	Use a substitution to obtain a quadratic or
		(2y-1)(y-3) = 0	M1dep	factorise into 2 brackets each containing $x^{\frac{1}{2}}$ Correct method to solve a quadratic
		$y = \frac{1}{2}, y = 3$	A1	
		2	M1	Attempt to square to obtain x
		$x = \frac{1}{4}, x = 9$	A1	
			SR If f given 5	irst M1 not gained and 3 and ½ as final answers, award B1

4721 Core Mathematics 1

5		M1	Attempt to differentiate
		A1	$kx^{-\frac{1}{2}}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^{-\frac{1}{2}} + 1$	A1	
	$=4\left(\frac{1}{\sqrt{9}}\right)+1$	M1	Correct substitution of $x = 9$ into their
$\frac{dy}{dr}$	$=\frac{7}{3}$	A1	$\frac{7}{2}$ only
uл	5	5	5
6 (i)	(x-5)(x+2)(x+5)	B1	$x^2 - 3x - 10$ or $x^2 + 7x + 10$ or $x^2 - 25$
	$=(x^2-3x-10)(x+5)$	M1	seen Attempt to multiply a quadratic by a linear
	$= x^3 + 2x^2 - 25x - 50$	<u>A1</u>	factor
(ii)		3	
	-5 -2 -50 -50		
	1	B1 B1√ B1	+ve cubic with 3 roots (not 3 line segments) (0, -50) labelled or indicated on y-axis (-5, 0) $(-2, 0)$ $(5, 0)$ labelled or indicated
		3	on <i>x</i> -axis and no other <i>x</i> - intercepts
7 (i)	8 < 3x - 2 < 11	M1	2 equations or inequalities both dealing with all 3 terms resulting in $a \le kx \le h$
	10 < 3x < 13	A1	10 and 13 seen
	$\frac{10}{3} < x < \frac{13}{3}$	A1	
		3	
(ii)	$x(x+2) \ge 0$	M1 A1	Correct method to solve a quadratic $0, -2$
	$x \ge 0, x \le -2$	M1 A1 4	Correct method to solve inequality

8	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 2kx + 1$	B1	One term correct
			B 1	Fully correct
			2	
	(ii)	$3x^2 - 2kx + 1 = 0$ when $x = 1$	M1	their $\frac{dy}{dx} = 0$ soi
		3 - 2k + 1 = 0	M1	$x = 1$ substituted into their $\frac{dy}{dx} = 0$
		<i>k</i> = 2	A1√ 3	
	(iii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x - 4$	M1	Substitutes $x = 1$ into their $\frac{d^2 y}{dx^2}$ and looks at sign
		When $x = 1$, $\frac{d^2 y}{dr^2} > 0$: min pt	A1	States minimum CWO
			2	
	(iv)	$3x^2 - 4x + 1 = 0$	M1	their $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
		(3x-1)(x-1) = 0	M1	correct method to solve 3-term quadratic
		$x = \frac{1}{3}, x = 1$		
		$x = \frac{1}{2}$	A1	WWW at any stage
		5	3	

9	(i)		B 1	$(x-2)^2$ and $(y-1)^2$ seen
		$(x-2)^2 + (y-1)^2 = 100$	B 1	$(x\pm 2)^2 + (y\pm 1)^2 = 100$
		$x^2 + y^2 - 4x - 2y - 95 = 0$	B1	correct form
			3	
	(ii)	$(5-2)^2 + (k-1)^2 = 100$	M1	x = 5 substituted into their equation
		$(k-1)^2 = 91$ or $k^2 - 2k - 90 = 0$	A1	correct, simplified quadratic in k (or y)
				obtained
		$k = 1 + \sqrt{91}$	A1	cao
	·		3	
	(111)	distance from $(-3, 9)$ to $(2, 1)$		$U_{1} = (u_{1} - u_{2})^{2} + (u_{2} - u_{2})^{2}$
		$=\sqrt{(2-3)^2 + (1-9)^2}$	MI	Uses $(x_2 - x_1) + (y_2 - y_1)$
		$=\sqrt{25+64}$	A1	
		$=\sqrt{89}$	D 1	
		$\sqrt{89} < 10$ so point is inside	BI	compares their distance with 10 and makes
			3	
	(iv)	gradient of radius $=\frac{9-1}{2}$	M1	uses $\frac{y_2 - y_1}{y_1 - y_1}$
		8-2		$x_2 - x_1$
		$=\frac{4}{3}$	A1	oe
		3		
		gradient of tangent $= -\frac{3}{4}$	B1√	oe
		$y-9 = -\frac{3}{2}(x-8)$	M1	correct equation of straight line through $(8, 9)$
		y = 4		
		3		any non-zero gradient
		$y-9 = -\frac{5}{4}x + 6$		
		$v = -\frac{3}{2}r + 15$	A1	oe 3 term equation
		$y = -\frac{4}{4}x + 15$		
			5	
			2	

10 (i)	$2(x^2 - 3x) + 11$	B 1	<i>p</i> = 2
	$=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]+11$	B1	$q = -\frac{3}{2}$
	$=2\left(x-\frac{3}{2}\right)^{2}+\frac{13}{2}$	M1	$r = 11 - 2q^2$ or $\frac{11}{2} - q^2$
		A1	$r = \frac{13}{2}$
		4	
(ii)	$\left(\frac{3}{2},\frac{13}{2}\right)$	B 1√	
		B1√ 2	
(iii)	36-4×2×11	M1	uses $b^2 - 4ac$
	= -52	A1 2	
(iv)	0 real roots	B1 1	cao
(v)	$2x^2 - 6x + 11 = 14 - 7x$	M1*	substitute for x/y or attempt to get an equation in 1 variable only
	$2x^2 + x - 3 = 0$	A1	obtain correct 3 term quadratic
	(2x+3)(x-1) = 0	M1de	ep correct method to solve 3 term quadratic
	$x = -\frac{3}{2}, x = 1$	A1	
	$y = \frac{49}{2}, y = 7$	A1	
		5	SR If A0 A0, one correct pair of values, spotted or from correct factorisation www B1

4722 Core Mathematics 2

1		$(2-3x)^6 = 2^6 + 6.2^5 \cdot (-3x) + 15.2^4 \cdot (-3x)^2$	M1	Attempt (at least) first two terms - product of binomial coefficient and powers of 2 and (-
)3 <i>x</i>	$= 64 - 576x + 2160x^2$	A1 M1 A1	Obtain $64 - 576x$ Attempt third term - binomial coefficient and powers of 2 and (-) $3x$ Obtain $2160x^2$
	OR		M1 A1 A1 A1	Attempt expansion involving all 6 brackets Obtain 64 Obtain $-576x$ Obtain $2160x^2$
	SR	if the expansion is attempted in descending order, $4860x^4$, $-2916x^5$, $729x^6$, and the required	I terms are never seen, then B1 B1 B1 for
2	(i)	$u_{2} = \frac{2}{3}$ $u_{3} = \frac{-1}{2}$ $u_{4} = 3$	B1 B1√ 3	Obtain correct u_2 B1 \checkmark Obtain correct u_3 from their u_2 Obtain correct u_4 from their u_3
	(ii)	sequence is periodic / cyclic / repeating	B1 1	Any equivalent comment
3	(i)	$\frac{1}{2} \times 8^2 \times \theta = 48$ Hence $\theta = 1.5$ radians	M1 A1 2	State or imply $(\frac{1}{2}) 8^2\theta = 48$ Obtain $\theta = 1.5$ (or 0.477π), or equiv
	(ii)	area = $48 - \frac{1}{2} \times 8^2 \times \sin 1.5$ = $48 - 31.9$ = 16.1	M1* M1d* A1 3	Attempt area of Δ using (1/2) $8^2 \sin \theta$ Attempt 48 – area of Δ Obtain 16.1 cm ²
4	(i)	f(3) = 27a - 36 - 21a + 12 = 0	M1*	Attempt f(3)

6a = 24	M1d*	Equate attempt at $f(3)$ to 0 and attempt to solve Obtain $a = 4$
$u \rightarrow 0R$	AI	
	M1*	Attempt complete division / matching coeffs
	M1d*	Equate remainder to 0
	<u>A1</u>	Obtain $a = 4$
	3	
(ii) $f(-2) = -32 - 16 + 56 + 12$	M1	Attempt f(-2)
= 20	A1√	Obtain 20 (or $6a - 4$, following their <i>a</i>)
	2	

June 2008

5	(i)	$\int x \mathrm{d}y = \int ((y-3)^2 - 2) \mathrm{d}y$	B1	Show $x = y^2 - 6y + 7$ convincingly
		$= \int (y^2 - 6y + 7) \mathrm{d}y \mathbf{A.G.}$	B1	State or imply that required area = $\int x dy$
		$3 + \sqrt{(2+2)} = 5$, $3 + \sqrt{(14+2)} = 7$	B1	Use $x = 2$, 14 to show new limits of $y = 5$, 7
	(ii)	$\left[\frac{1}{3}y^3 - 3y^2 + 7y\right]_5^7$	M1	Integration attempt, with at least one
te	rm	$-(^{343})$ 147 + 40) $(^{125})$ 75 + 25)		aarraat
		-(73-147+49)-(73-75+55)	A1	All three terms correct
		$= 16^{1}/_{3} - 1^{2}/_{3}$	M1	Attempt $F(7) - F(5)$
		$= 14^{2}/_{3}$	A1 4	Obtain 14 $^{2}/_{3}$, or exact equiv
6	(i)	$ABC = 360 - (150 + 110) = 100^{\circ}$ A.G.	B1 1	Show convincingly that angle ABC is 100°
	(ii)	$CA^2 = 15^2 + 27^2 - 2 \times 15 \times 27 \times \cos 100^0$	M1	Attempt use of correct cosine rule
		= 1094.655 CA = 33.1	A1 2	Obtain 33.1 km
	(iii)	$\frac{\sin C}{15} = \frac{\sin 100}{331} \qquad \text{or} \qquad \frac{\sin A}{27} = \frac{\sin 100}{331}$	 M1	Attempt use of sine rule to find angle C or A
		$C = 26.5^{\circ}$ $A = 53.5^{\circ}$ Hence bearing is 263°	A1√ A1 A1√ 4	(or equiv using cosine rule) Correct unsimplified eqn, following their <i>CA</i> Obtain $C = 26.5^{\circ}$ or $A = 53.5^{\circ}$ (allow 53.4°) Obtain 263 or 264 (or 290° – their angle <i>C</i> /210 + their angle <i>A</i>)
7	(a)	$\int (x^5 - x^4 + 5x^3) dx$	M1	Expand brackets and attempt integration, or
		J		other valid integration attempt
		$= \frac{1}{6}x^{6} - \frac{1}{5}x^{5} + \frac{5}{4}x^{4} (+c)$	A1	Obtain at least one correct term
			A1	Obtain a fully correct expression
			B1	For $+c$, and no \int or dx (can be given in
			4	(b)(i) if not given here)
	(b)	(i) $-6x^{-3}(+c)$	M1 A1 2	Obtain integral of the form kx^{-3} Obtain $-6x^{-3}$ (+ <i>c</i>)
		(ii) $\left[-6x^{-3}\right]_{2}^{\infty}$	B1*	State or imply that $F(\infty) = 0$ (for kx^n , $n - 1$)
		$= \frac{3}{4}$	B1d*	Obtain ³ / ₄ (or equiv)

Q	(i)		M1	Attempt skatch of exponential graph (1 st guad)
0	(1)	↑ /	1111	if a set in 2 nd and the set has a set of the set of t
				- If seen in 2 quad must be approx correct
			Al	Correct graph in both quadrants
			B1	State or imply (0, 2) only
			3	
	(ii)	$8^x = 2 \times 3^x$		
	()	$\log_{2} 8^{x} = \log_{2} (2 \times 3^{x})$	M1	Form equation in x and take logs (to any
				consistent base or no base) – could use log
		$u \log \theta = \log \theta + u \log \theta$	N/1	$U_{ab} \log a^{b} = h \log a$
		$x \log_2 8 - \log_2 2 + x \log_2 3$	IVII N#1	Use $\log a = b \log a$
			MI	Use $\log ab = \log a + \log b$, or equiv with $\log a/b$
		$3x = 1 + x \log_2 3$	M1	Use $\log_2 8 = 3$
		$x (3 - \log_2 3) = 1$, hence $x = \frac{1}{3 - \log_2 3}$ A.G.	A1	Show given answer correctly
	OR	$8^x = 2 \times 3^x$		
		$2^{3x} = 2 \times 3^{x}$	M1	Use $8^x = 2^{3x}$
		$2^{(3x-1)} = 3^x$	M1	Attempt to rearrange equation to $2^k = 3^x$
		$1 \log 2^{(3x-1)} - \log 2^x$	M1	Take logg (to any base)
		$\log_2 2^{-1} = \log_2 3$	IVII N#1	$\frac{1}{2}$
		$(3x-1)\log_2 2 = x\log_2 3$	NI I	Use $\log a = b \log a$
		$x (3 - \log_2 3) = 1$, hence $x = \frac{1}{3 - \log_2 3}$ A.G.	A1	Show given answer correctly
			5	
9	(a) (i) $2\sin x \cdot \frac{\sin x}{5} - 5 = \cos x$	M1	Use $\tan x \equiv \frac{\sin x}{\cos x}$
		$2 + 2$ z^2 z^2		cosx
		$2\sin x - 5\cos x = \cos x$		2
		$2 - 2\cos^2 x - 5\cos x = \cos^2 x$	M1	Use $\sin^2 x \equiv 1 - \cos^2 x$
		$3\cos^2 x + 5\cos x - 2 = 0$	<u>A1</u>	Show given equation convincingly
			3	
	(ii)	$(3\cos x - 1)(\cos x + 2) = 0$	M1	Attempt to solve quadratic in cosx
	. /	$\cos x = \frac{1}{3}$	M1	Attempt to find x from root(s) of quadratic
		r = 1.23 rad	A1	Obtain 1 23 rad or 70 5°
		r = 5.05 rad	A 1 1	Obtain 5.05 rad or 280° (or $2\pi/360^{\circ}$ - their
		x = 5.05 rad	AIV	solution) $(012\pi/500)$ - then
				SD. D1 D1 for an $autor(a)$ only
				SK: DI DI IOI answei(s) only
			4	
	(b)	$0.5x0.25x\{\cos 0+2(\cos 0.25+\cos 0.5+\cos 0.75)+\cos 1\}$	M1	Attempt <i>y</i> -coords for at least 4 of the correct 5 <i>x</i> -coords
			M1	Use correct trapezium rule, any h, for their v
				values to find area between $r = 0$ and $r = 1$
			M1	Correct h (soi) for their y values
		0.927	111	Obtain 0.927
		≈ 0.83 /	AI	Obtain 0.83 /
			4	

10 (i)	$u_{15} = 2 + 14 \ge 0.5$	M1	Attempt use of $a + (n-1)d$
	= 9 km	A1	Obtain 9 km
		2	
(ii)	$u_{20} = 2 \ge 1.1^{19} = 12.2$	B1	State, or imply, $r = 1.1$
		M1	Attempt u_{20} , using $a r^{n-1}$
	$u_{19} = 2 \ge 1.1^{18} = 11.1$	A1	Obtain $u_{20} = 12.2$, and obtain $u_{19} = 11.1$
OR			
-		B1	State, or imply, $r = 1.1$
		M1	Attempt to solve $ar^{n-1} = 12$
		A1	Obtain $n = 20$ (allow $n \ge 20$)
		3	
(iii)	$2(1.1^n - 1)$ 200	B1	State or imply $S_N = 2(1.1^n - 1)$
. ,	(1.1-1) > 200		(1.1-1)
	$1.1^n > 11$	M1	Link (any sign) their attempt at S_N (of a GP)
			to 200 and attempt to solve
	$n > \frac{\log 11}{\log 11}$	A1	Obtain 26, or 25.2 or better
	n > 25.2 is Day 26	A 1	Conclude $n = 26$ only or equiver 26
	n > 25.2 ie Day 20	4	Conclude $n = 20$ only, of equiveg Day 20
(iv)	$swum = 2 \times 30 = 60 \text{ km}$	<u>B1</u>	Obtain 60 km, or 2 x 30km
. ,	$run = \frac{1}{2} \times 30 \times (4 + 29 \times 0.5)$	M1	Attempt sum of AP, $d = 0.5$, $a = 2$, $n = 30$
	= 277.5 km		
	$cycle = 2(1.1^{30} - 1)$	M1	Attempt sum of GP, $r = 1.1$, $a = 2$, $n = 30$
	(1.1-1)		1
	= 329.0 km		
	total = 666 km	A1	Obtain 666 or 667 km
		4	

9

4723 Core Mathematics 3

1	<u>Eithe</u>	er: Obtain $x = 0$ Form linear equation with signs of $4x$ and $3x$ different State $4x - 5 = -3x + 5$ Obtain $\frac{10}{7}$ and no other non-zero value(s)	B1 M1 A1 A1	ignoring errors in working ignoring other sign errors or equiv without brackets or exact equiv
	<u>Or</u> :	Obtain $16x^2 - 40x + 25 = 9x^2 - 30x + 25$	B1	or equiv
		Attempt solution of quadratic equation	M1	at least as far as factorisation or use of formula
		Obtain $\frac{10}{7}$ and no other non-zero value(s)	A1	or exact equiv
		Obtain 0	B1 4	ignoring errors in working
2	(i)	Show graph indicating attempt at reflection in $y = x$	M1	with correct curvature and crossing negative <i>v</i> -axis and positive <i>x</i> -axis
		Show correct graph with x-coord 2 and y-coord -3 indicated	A1 2	,
	(ii)	Show graph indicating attempt at reflection in <i>x</i> -axis	<u>M</u> 1	with correct curvature and crossing each negative axis
		Show correct graph with x-coord -3 indicated and y-coord -4 indicated ISC: Incorrect curve earning M0 but both correct intercer	A1 A1	pated B1]
		[Se. meoreer curve carning wo but both correct intercep	3	
3		Attempt use of product rule	M1	+ form
		Obtain $2x \ln x + x^2 \cdot \frac{1}{x}$	A1	or equiv
		Substitute e to obtain 3e for gradient Attempt eqn of straight line with numerical gradient	A1 M1	or exact (unsimplified) equiv allowing approx values
		Obtain $y - e^2 = 3e(x - e)$	A1 √	or equiv; following their gradient provided obtained by diffn attempt; allow approx values
		Obtain $y = 3ex - 2e^2$	A1 6	in terms of e now and in requested form
4	(i)	Differentiate to obtain form $kx(2x^2 + 9)^n$	M1	any constant <i>k</i> ; any $n < \frac{5}{2}$
		Obtain correct $10x(2x^2+9)^{\frac{3}{2}}$	A1	or (unsimplified) equiv
		Equate to 100 and confirm $x = 10(2x^2 + 9)^{-\frac{3}{2}}$	A1 3	AG; necessary detail required
	(ii)	Attempt relevant calculations with 0.3 and 0.4	M1	
		Obtain at least one correct value	A1	$x \qquad f(x) \qquad x - f(x) \qquad f'(x)$
				$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		Obtain two correct values and conclude appropriately	A1	noting sign change or showing 0.3 < f(0.3) and $0.4 > f(0.4)$ or showing gradients either side of 100
			3	

(iii	Obtain correct first iterate	B1	
	Carry out correct process Obtain 0 3553	MI A1	answer required to exactly 4 dp
		3	
	$[0.3 \rightarrow 0.35953 \rightarrow 0.35497 \rightarrow 0.25575 \rightarrow 0.25528 \rightarrow 0.25575 \rightarrow 0.25575 \rightarrow 0.25528 \rightarrow 0.25526$	0.35534	$\rightarrow 0.35531;$
	$0.33 \rightarrow 0.35373 \rightarrow 0.35328 \rightarrow 0.4 \rightarrow 0.35146 \rightarrow 0.35563 \rightarrow 0.45563 \rightarrow 0.45562 \rightarrow 0.45762 \rightarrow 0.05762 \rightarrow 0.05762 \rightarrow 0.05762 \rightarrow 0.05762 \rightarrow 0.05762 \rightarrow 0.05762 \rightarrow 0.00770 \rightarrow 0$	0.35529	$\rightarrow 0.35532$]
5 (a)	Obtain expression of form $\frac{a \tan \alpha}{b + c \tan^2 \alpha}$	M1	any non-zero constants <i>a</i> , <i>b</i> , <i>c</i>
	State correct $\frac{2 \tan \alpha}{1 - \tan^2 \alpha}$	A1	or equiv
	Attempt to produce polynomial equation in $\tan \alpha$	M1	using sound process
	Obtain at least one correct value of $\tan \alpha$	A1	$\tan \alpha = \pm \sqrt{\frac{4}{5}}$
	Obtain 41.8	A1	allow 42 or greater accuracy; allow 0.73
	Obtain 138.2 and no other values between 0 and 180 [SC: Answers only 41.8 or B1: 138.2 or	Al and no	allow 138 or greater accuracy
		6	
(b)	(i) State $\frac{7}{6}$	B1	
		1	
(ii)Attempt use of identity linking $\cot^2 \beta$ and $\csc^2 \beta$	M1	or equiv retaining exactness; condone sign
	Obtain ¹³	A1	or exact equiv
	36	2	or officer equit
6	Integrate $k_1 e^{nx}$ to obtain $k_2 e^{nx}$	M1	any constants involving π or not; any n
	Obtain correct indefinite integral of their $k_1 e^{nx}$	A1	
	Substitute limits to obtain $\frac{1}{6}\pi(e^3-1)$ or $\frac{1}{6}(e^3-1)$	A1	or exact equiv perhaps involving e ⁰
	Integrate $k(2x-1)^n$ to obtain $k'(2x-1)^{n+1}$	M1	any constants involving π or not; any n
	Obtain correct indefinite integral of their $k(2x-1)^n$	A1	
	Substitute limits to obtain $\frac{1}{18}\pi$ or $\frac{1}{18}$	A1	or exact equiv
	Apply formula $\int \pi y^2 dx$ at least once	B1	for $y = e^{3x}$ and/or $y = (2x - 1)^4$
	Subtract, correct way round, attempts at volumes	M1	allow with π missing but must involve
y^2			
	Obtain $\frac{1}{6}\pi e^3 - \frac{2}{9}\pi$	A1 9	or similarly simplified exact equiv
7 (i)	State $4 = 42$	R1	
/ (I)	State $k = \frac{1}{2}$	B1	or 0.11 or greater accuracy
	Attempt correct process for finding <i>m</i>	M1	involving logarithms or equiv
	Obtain $\frac{1}{9}\ln 2$ or 0.077	A1	or 0.08 or greater accuracy
		4	
(ii)	Attempt solution for <i>t</i> using either formula Obtain 11.3	M1 A1 2	using correct process (log'ms or T&I or or greater accuracy; allow 11.3 ± 0.1
 (iii) Differentiate to obtain form Be^{mt}	M1	where <i>B</i> is different from <i>A</i>
,	Obtain $3.235e^{0.077t}$	A1√	or equiv; following their A and m
	Obtain 47.9	A1 3	allow 48 or greater accuracy

8	(i)	Show at least correct $\cos \theta \cos 60 + \sin \theta \sin 60$ or $\cos \theta \cos 60 - \sin \theta \sin 60$ Attempt expansion of both with exact numerical	B1	
		values attempted	M1	and with $\cos 60 \neq \sin 60$
		Obtain $\frac{1}{2}\sqrt{3}\sin\theta + \frac{5}{2}\cos\theta$	A1	or exact equiv
		2 2	3	
	(ii)	Attempt correct process for finding R Attempt recognisable process for finding α	M1 M1	whether exact or approx allowing sin / cos muddles
		Obtain $\sqrt{7}\sin(\theta + 70.9)$	A1 3	allow 2.65 for <i>R</i> ; allow 70.9 ± 0.1 for α
	(iii)	Attempt correct process to find any value of θ + their α Obtain any correct value for θ + 70.9 Attempt correct process to find θ + their α in 3rd quadrant Obtain 131 [SC for solutions with no working shown: Correct and	M1 A1 M1 A1	-158, -22, 202, 338, or several values including this or greater accuracy and no other bly B4: 131 with other answers B21
			4	
9	(i)	Attempt use of quotient rule	*M1	or equiv; allow u / v muddles
		Obtain $\frac{75-15x^2}{(x^2+5)^2}$	A1	or (unsimplified) equiv; this M1A1
				available at any stage of question
		Equate attempt at first derivative to zero and rearrange to solvable form	M1	dep *M
		Obtain $x = \sqrt{5}$ or 2.24	A1	or greater accuracy
		Recognise range as values less than <i>y</i> -coord of st pt	M1	allowing < here
		Obtain $0 \le y \le \frac{3}{2}\sqrt{5}$	A1 6	any notation; with \leq now; any exact equiv
	(ii)	State $\sqrt{5}$	B1√	following their <i>x</i> -coord of st pt; condone
			1	answer $x \ge \sqrt{5}$ but not inequality with k
	(iii)	Equate attempt at first derivative to -1 and attempt simplification	*M1	and dependent on first M in part (i)
		Obtain $x^4 - 5x^2 + 100 = 0$	A1	or equiv involving 3 non-zero terms
		Attempt evaluation of discriminant or equiv	M1	dep *M
		Obtain –375 or equiv and conclude appropriately	A1 4	

4724 Core Mathematics 4

1	(a)	$2x^2 - 7x - 4 = (2x+1)(x-4)$ or		
		$3x^2 + x - 2 = (3x - 2)(x + 1)$	B 1	
		$\frac{2x+1}{2x+1}$ as final answer; this answer only	B 1	Do not ISW
		3x-2	2	
	(b)	For correct leading term x in quotient	 B1	Identity method
		For evidence of correct division process	M1	$\overline{M1: x^{3} + 2x^{2} - 6x - 5} = Q(x^{2} + 4x + 1) + R$
		Quotient = $x - 2$	A1	M1: $Q = ax + b$ or $x + b$, $R = cx + d$ & ≥ 2 ops
				[N.B. If $Q = x + b$, this $\Rightarrow 1$ of the 2 ops]
		Remainder = $x - 3$	A1	A2: $a = 1, b = -2, c = 1, d = -3$ SR: <u>B</u> 1 for two
			4	
2		Parts with correct split of $u = \ln x$, $\frac{dv}{dx} = x^4$	*M1	obtaining result $f(x) + /-\int g(x) dx$
		$\frac{x^5}{5}\ln x - \int \frac{x^5}{5} \cdot \frac{1}{x}(dx)$	A1	
		$\frac{x^5}{10}$ ln r - $\frac{x^5}{10}$	A 1	
		$\frac{1}{5}$ m x $\frac{1}{25}$	AI	
		Correct method with the limits	dep*I	M1 Decimals acceptable here
		$\frac{4e^{\circ}}{25} + \frac{1}{25}$ ISW (Not '+c')	A1	Accept equiv fracts; like terms amalgamated
		23 23	5	
3	(i)	$\frac{\mathrm{d}}{\mathrm{d}x}(x^2y) = x^2 \frac{\mathrm{d}y}{\mathrm{d}x} + 2xy \text{ or } \frac{\mathrm{d}}{\mathrm{d}x}(xy^2) = 2xy \frac{\mathrm{d}y}{\mathrm{d}x} + y^2$	*B1	
		Attempt to solve their differentiated equation for $\frac{dy}{dx}$	dep*I	M1
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2 - 2xy}{x^2 - 2xy} \text{ only}$	A1	WWW AG Must have intermediate line &
			3	could imply -0 on 1 line
	(ii)(4	Attempt to solve only $v^2 - 2rv = 0$ & derive $v - 2r$	R1	AC Any effort at solving $r^2 - 2ry = 0 \rightarrow B0$
	(11)(4	Clear indication why $y = 0$ is not acceptable	B1	Substituting $v = 2x \rightarrow B0$ B0
			2	
	(b)	Attempt to solve $y = 2x$ simult with $x^2y - xy^2 = 2$	M1	
		Produce $-2x^3 = 2 \text{ or } y^3 = -8$	A1	AEF
		(-1, -2) or $x = -1, y = -2$ only	A1	
			3	

	$\mathbf{r} = (3\mathbf{i} + 2\mathbf{j} + 3\mathbf{k} \text{ or } \mathbf{i} + 3\mathbf{j} + 4\mathbf{k}) + t(-2\mathbf{i} + \mathbf{j} + \mathbf{k} \text{ or } 2\mathbf{i} - \mathbf{j} - \mathbf{j})$	k) A1	'r' must be ' r' but need not be bold Check other formats, e.g. $ta + (1-t)b$
(ii)	State/imply that their \mathbf{r} and their $-2\mathbf{i} + \mathbf{j} + \mathbf{k}$ are perpendicular*NConsider scalar product = 0detection	И1 р*М	N.B.This *M1 is dep on M1 being earned in (i) 1
	Obtain $t = -\frac{1}{6}$ or $\frac{1}{6}$ or $-\frac{5}{6}$ or $\frac{5}{6}$ A	1	
	Subst their t into their equation of AB M	1	
	Obtain $\frac{1}{6}(16i + 13j + 19k)$ AEF A	1. 5	Accept decimals if clear
(i)	$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - \frac{1}{8}x^2$ ignoring x^3 etc	B2	2 SR Allow B1 for $1 - \frac{1}{2}x + kx^2$, $k \neq -\frac{1}{8}$ or 0
	$(1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2$ ignoring x^3 etc	B2	2. SR Allow B1 for $1 - \frac{1}{2}x + kx^2$, $k \neq \frac{3}{8}$ or 0
	Product = $1 - x + \frac{1}{2}x^2$ ignoring x^3 etc	B1	AG ; with (at least) 1 intermediate step (cf x^2)
		5	
(ii)	$\sqrt{\frac{5}{9}}$ or $\frac{\sqrt{5}}{3}$ seen	B1	
	$\frac{37}{49}$ or $1 - \frac{2}{7} + \frac{1}{2} \left(\frac{2}{7}\right)^2$ seen	B1	
	$\frac{\sqrt{5}}{3} \approx \frac{37}{49} \Longrightarrow \sqrt{5} \approx \frac{111}{49}$	B1	AG
		3	
(i)	Produce at least 2 of the 3 relevant equations in t and s Solve for t and s (t s) = (4 - 3) AEF	M M * A	1 + 2t = 12 + s, 3t = -4s, -5 + 4t = 5 - 2s
	Subst $(4, -3)$ into suitable equation(s) & show consistence	cy de	p*A1 Either into "3 rd " eqn or into all 3 coordinates. N.B. Intersection coords not asked for
(::)	Mathad for finding magnitude of any sector	*1	$\frac{1}{\sqrt{20}} = \frac{1}{\sqrt{21}}$
(11)	Method for finding scalar product of any 2 vectors	••N *N	11 Expect $\sqrt{29}$ and $\sqrt{21}$ 11 Expect -18
	Using $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} \mathbf{b} }$ AEF for the correct 2 vectors	de	p*M1 Should be $-\frac{18}{\sqrt{20}\sqrt{21}}$
	 a 0 137 (136.8359) or 43.2(43.164)	A1	$\sqrt{29} \sqrt{21}$ 2.39 (2.388236) or 0.753(0.75335) rads
	(ii) (i) (i) (ii)	$\mathbf{r} = (3\mathbf{i} + 2\mathbf{j} + 3\mathbf{k} \text{ or } \mathbf{i} + 3\mathbf{j} + 4\mathbf{k}) + t(-2\mathbf{i} + \mathbf{j} + \mathbf{k} \text{ or } 2\mathbf{i} - \mathbf{j} - \mathbf{j} - \mathbf{i})$ (ii) State/imply that their \mathbf{r} and their $-2\mathbf{i} + \mathbf{j} + \mathbf{k}$ are perpendicular (and their $-2\mathbf{i} + \mathbf{j} + \mathbf{k}$ are perpendicular (box) Consider scalar product = 0 (consider scalar product = 0) (conside	$\mathbf{r} = (3\mathbf{i} + 2\mathbf{j} + 3\mathbf{k} \text{ or } \mathbf{i} + 3\mathbf{j} + 4\mathbf{k}) + t(-2\mathbf{i} + \mathbf{j} + \mathbf{k} \text{ or } 2\mathbf{i} - \mathbf{j} - \mathbf{k}) \text{ AI}$ (ii) State/imply that their \mathbf{r} and their $-2\mathbf{i} + \mathbf{j} + \mathbf{k}$ are perpendicular $*\mathbf{M1}$ I Consider scalar product $= 0$ dep*M Obtain $t = -\frac{1}{6}$ or $\frac{1}{6}$ or $-\frac{5}{6}$ or $\frac{5}{6}$ A1 Subst their t into their equation of AB M1 Obtain $\frac{1}{6}(16\mathbf{i} + 13\mathbf{j} + 19\mathbf{k})$ AEF A1 (i) $(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - \frac{1}{8}x^2$ ignoring x^3 etc B2 $(1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2$ ignoring x^3 etc B1 (ii) $\sqrt{\frac{5}{9}}$ or $\sqrt{\frac{5}{3}}$ seen B1 $\frac{37}{49}$ or $1 - \frac{2}{7} + \frac{1}{2}(\frac{2}{7})^2$ seen B1 $\frac{\sqrt{5}}{3} \approx \frac{37}{49} \Rightarrow \sqrt{5} \approx \frac{111}{49}$ B1 (i) Produce at least 2 of the 3 relevant equations in t and s M Solve for t and s (t, s) = (4, -3) AEF $*Subst (4, -3) into suitable equation(s) & show consistency de(ii) Method for finding magnitude of any vector *MMethod for finding scalar product of any 2 vectors *MUsing \cos \theta = \frac{\mathbf{a}.\mathbf{b}}{ \mathbf{a} \mathbf{b} } AEF for the correct 2 vectors de(137 (136.8359) or 43.2(43.164) A1$

7	(i)	Correct (calc) method for dealing with $\frac{1}{\sin x}$ or $(\sin x)^{-1}$	M1	
		Obtain $-\frac{\cos x}{\sin^2 x}$ or $-(\sin x)^{-2} \cos x$	A1	
		Show manipulation to $-\operatorname{cosec} x \cot x$ (or vice-versa)	A1 3	WWW AG with ≥ 1 line intermed working
	(ii)	Separate variables, $\int (-) \frac{1}{\sin x \tan x} dx = \int \cot t dt$	M1	or $\int \frac{1}{\sin x \tan x} dx = \int (-) \cot t dt$
		Style: For the M1 to be awarded, dx and dt must appear of	on corre	ect sides or there must be $\int sign on both sides$
		$\int -\csc x \cot x dx = \csc x (+c)$	A1	or $\int \operatorname{cosec} x \operatorname{cot} x \mathrm{d}x = -\operatorname{cosec} x$
		$\int \cot t dt = \ln \sin t \text{or} \ln \sin t \qquad (+c)$	B1	or $\int -\cot t dt = -\ln \sin t \operatorname{or} -\ln \sin t $
		Subst $(t, x) = \left(\frac{1}{2}\pi, \frac{1}{6}\pi\right)$ into their equation containing 'c'	M1	and attempt to find 'c'
		$\operatorname{cosec} x = \ln \sin t + 2 \text{ or } \ln \left \sin t \right + 2$	A1	WWW ISW; cosec $\frac{\pi}{6}$ to be changed to 2
0	(*)	((i + 1) + D - 2)	5	
8	(1)	A(t+1)+B=2t $A=2$	MI A1	<u>Beware</u> : correct values for A and/or B can be obtained from a wrong identity
		B = -2	A1	<u>Alt method:</u> subst suitable values into given
			3	expressions
	(ii)	Attempt to connect dx and dt dx = t dt s.o.i. AEF	M1 A1	But not just $dx = dt$. As AG, look carefully.
		$x + \sqrt{2x - 1} \rightarrow \frac{t^2 + 1}{2} + t = \frac{(t + 1)^2}{2}$ s.o.i.	B1	Any wrong working invalidates
		$\int \frac{2t}{\left(t+1\right)^2} \mathrm{d}t$	A1	AG WWW The 'dt' must be present
			4	
	(iii)	$\int \frac{1}{t+1} \mathrm{d}t = \ln(t+1)$	B1	Or parts $u = 2t$, $dv = (t+1)^{-2}$ or subst $u = t+1$
		$\int \frac{1}{(t+1)^2} \mathrm{d}t = -\frac{1}{t+1}$	B1	
		Attempt to change limits (expect 1 & 3) and use $f(t)$	M1	or re-substitute and use 1 and 5 on $g(x)$
		$\ln 4 - \frac{1}{2}$	A1	AEF (like terms amalgamated); if A0 A0 in (i),
			4	then final A0

9	(i)	$A: \theta = \frac{1}{2}\pi (\text{accept } 90^\circ)$	B1	
		$B: \theta = 2\pi (\text{accept } 360^\circ)$	B2	SR If B0 awarded for point <i>B</i> , allow B1 SR for
			3	any angle s.t. $\sin \theta = 0$
	(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\frac{\mathrm{d}x}{\mathrm{d}\theta}}$	M1	or $\frac{dy}{d\theta} \cdot \frac{d\theta}{dx}$ Must be used, not just quoted
		$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 2 + 2\cos 2\theta$	B1	
		$2 + 2\cos 2\theta = 4\cos^2 \theta$ with ≥ 1 line intermed work	*B1	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4\cos\theta}{2+2\cos2\theta} \qquad \text{s.o.i.}$	A1	This & previous line are interchangeable
		$= \sec \theta$	dep*A	1 WWW AG
	(iii)	Equating sec θ to 2 and producing at least one value of θ	M1	degrees or radians
		$(x=) -\frac{2}{3}\pi - \frac{\sqrt{3}}{2}$	A1	'Exact' form required
		$(y=)-2\sqrt{3}$	A1 3	'Exact' form required

4725 Further Pure Mathematics 1

	B1 Two elements correct
	2 All four elements correct
(ii) EITHER	B1 Both diagonals correct
$\frac{1}{3}\begin{pmatrix} 2 & -1 \\ -5 & 4 \end{pmatrix}$	B1 Divide by determinant
	2
<i>UK</i>	 B1 Solve sim. eqns. 1st column correct B1 2nd column correct
2 (i) 5 0.927 or 53.1°	 B1 Correct modulus B1 Correct argument, any equivalent form 2
(ii)(a)	B1 Circle centre $A(3, 4)$ B1 Through O , allow if centre is $(4, 3)$
(b) $A(3,4)$	$\frac{2}{B1}$ Half line with $\pm ve$ slope
	B1 Starting at (3, 0)
	B1 Parallel to <i>OA</i> , (implied by correct arg shown 3
$\frac{1}{3 (i) \frac{r}{(r+1)!}}$	M1 Common denominator of $(r + 1)!$ or $r!(r + 1)$
3 (i) $\frac{r}{(r+1)!}$	M1 Common denominator of $(r + 1)!$ or $r!(r + 1)$ A1 Obtain given answer correctly
3 (i) $\frac{r}{(r+1)!}$ (ii) $1-\frac{1}{(n+1)!}$	M1Common denominator of $(r + 1)!$ or $r!(r + 1)$ A1Obtain given answer correctly2M1M1Express terms as differences using (i)
3 (i) $\frac{r}{(r+1)!}$ (ii) $1 - \frac{1}{(n+1)!}$	M1Common denominator of $(r + 1)!$ or $r!(r + 1)$ A1Obtain given answer correctly2M1Express terms as differences using (i)A1At least 1 st two and last term correctM1Show raise correctling
3 (i) $\frac{r}{(r+1)!}$ (ii) $1 - \frac{1}{(n+1)!}$	M1Common denominator of $(r + 1)!$ or $r!(r + 1)$ A1Obtain given answer correctly2M1Express terms as differences using (i)A1At least 1 st two and last term correctM1Show pairs cancellingA1Correct answer a.e.f.
3 (i) $\frac{r}{(r+1)!}$ (ii) $1 - \frac{1}{(n+1)!}$	M1Common denominator of $(r + 1)!$ or $r!(r + 1)$ A1Obtain given answer correctly2M1Express terms as differences using (i)A1At least 1 st two and last term correctM1Show pairs cancellingA1Correct answer a.e.f.4
$ \frac{3 (i) \frac{r}{(r+1)!}}{(ii) 1 - \frac{1}{(n+1)!}} $ 4	M1Common denominator of $(r + 1)!$ or $r!(r + 1)$ A1Obtain given answer correctly2M1Express terms as differences using (i)A1At least 1 st two and last term correctM1Show pairs cancellingA1Correct answer a.e.f.4B1Establish result is true, for $n = 1$ (or 2 or 3)M1Attempt to multiply A and A ⁿ , or vice versaM1Correct process for matrix multiplicationA1Obtain $\frac{1}{2}(3^{n+1} - 1)$ A1Statement of Induction conclusion only

5			M1 M1	Express as difference of two series Use standard results
		$\frac{1}{4}n^2(n+1)^2 - \frac{1}{6}n(n+1)(2n+1)$	A1	Correct unsimplified answer
			M1	Attempt to factorise
			A1	At least factor of $n(n+1)$
		$\frac{1}{12}n(n+1)(3n+2)(n-1)$	A1	Obtain correct answer
		12	6	
6	(i)	3 – i	B1	Conjugate stated
	(ii)	EITHER	M1	Use sum of roots
	()		A1	Obtain correct answer
			M1	Use sum of pairs of roots
			A1	Obtain correct answer
			M1	Use product of roots
		a = -8, b = 22, c = -20	A1	Obtain correct answers
		OP	<u>0</u> M1	Attempt to find a quadratic factor
		0X	NI I A 1	Obtain correct factor
			AI M1	Expand linear and quadratic factors
		a = -8, b = 22, c = -20	A1A1	1A1 Obtain correct answers
		<i>UK</i>	M1	Substitute 1 imaginary & the real root into ean
			M1	Fouste real and imaginary parts
			M1	Attempt to solve 3 eans
		a = -8, b = 22, c = -20	A1A	IA1 Obtain correct answers
7	(i)		B1	Enlargement (centre <i>O</i>) scale factor 6
	(ii)		B1	Reflection
			B1	Mirror line is $y = x$
			2	
	(iii)		B1	Stretch in <i>y</i> direction
	. /		B1	Scale factor 6, must be a stretch
			2	,
	(iv)			Rotation
	(17)		R1	36.9° clockwise or equivalent
			2	

8	$\alpha + \beta = -k$	B1	State or use correct value
	$\alpha\beta = 2k$	B1	State or use correct value
		M1	Attempt to express sum of new roots in terms of $\alpha + \beta$, $\alpha\beta$
	$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$	A1	Obtain correct expression
	$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{1}{2}(k-4)$	A1	Obtain correct answer a.e.f.
	$\alpha'\beta' = 1$	B 1	Correct product of new roots seen
	$x^2 - \frac{1}{2}(k-4)x + 1 = 0$	B1ft	Obtain correct answer, must be an eqn.
	2	7	
			Alternative for last 5 marks
		M1	Obtain expression for $u = \frac{\alpha}{\beta}$ in terms of k and
			α or k and β
		A1	Obtain a correct expression
		A1	rearrange to get α in terms of u
		M1	Substitute into given equation
		A1	Obtain correct answer
9 (i)		M1	Attempt to equate real and imaginary parts of $(x + iy)^2$ and $5 + 12i$
	$x^2 - y^2 = 5$ and $xy = 6$	A1	Obtain both results
		M1	Eliminate to obtain a quadratic in x^2 or y^2
	$\pm(3+2i)$	M1	Solve a 3 term quadratic & obtain x or y
		A1 5	Obtain correct answers as complex nos.
(ii)	5 – 12i	B1B1 2	Correct real and imaginary parts
(iii)		<u>M1</u>	Attempt to solve a quadratic equation
. ,	$x^2 = 5 \pm 12i$	A1	Obtain correct answers
	$x = \pm (3 \pm 2i)$	A1A1	Each pair of correct answers a.e.f
		-4	

10 (i)	M1	Find value of det AB
	<u>A1</u>	Correct value 2 seen
	2	
(ii)	M1	Show correct process for adjoint entries
	A1	Obtain at least 4 correct entries in adjoint
	B 1	Divide by their determinant
$(0 \ 3 \ -1)$		
$(\mathbf{AB})^{-1} = \frac{1}{2} \begin{bmatrix} 0 & -1 & 1 \end{bmatrix}$	A1	Obtain completely correct answer
$2 \begin{vmatrix} 2 & 6-3a & a-6 \end{vmatrix}$		
	4	
(iii) EITHER	<u>L</u> M1	State or imply $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$
()	A1	Obtain $\mathbf{B}^{-1} = (\mathbf{AB})^{-1} \times \mathbf{A}$
	M1	Correct multiplication process seen
	A1	Obtain three correct elements
$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$		
$\mathbf{B}^{-1} = \begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$	A1	All elements correct
$\begin{bmatrix} 1 & 1 & 2 \\ -6 & 2 & -2 \end{bmatrix}$		
	5	
OR	<u>M</u> 1	Attempt to find elements of B
	A1	All correct
	M1	Compact musicas for D ⁻¹

- M1 Correct process for B A1 3 elements correct
- A1 All elements correct

4726 Further Pure Mathematics 2

1		Write as $\frac{A}{r-2a} + \frac{Bx+C}{r^2+a^2}$	M1	Accept C=0
		Get $2ax = A(x^2+a^2) + (Bx+C)(x-2a)$ Choose values of x and/or equate coeff. Get $A = \frac{4}{5}, B = \frac{-4}{5}, C = \frac{2}{5}a$	A1√ M1 A1 A1 5	Follow-on for <i>C</i> =0 Must lead to at least one of their <i>A</i> , <i>B</i> , <i>C</i> For two correct from correct working only For third correct
2		- (Ť) - (B1 B1	Get (4,0), (3,0), (-2,0) only Get $(0,\sqrt{5})$ as "maximum"
			B1 B1 5	Meets x-axis at 90 ⁰ at all crossing points Use $-2 \le x \le 3$ and $x \ge 4$ only Symmetry in Ox
3		Quote/derive $dx = \frac{2}{1+t^2} dt$	B 1	
		Replace all x and dx from their expressions Tidy to $2/(3t^2+1)$ Get k tan ⁻¹ (At) Get $k = \frac{2}{3}\sqrt{3}$, $A = \sqrt{3}$ Use limits correctly to $\frac{2}{9}\sqrt{3\pi}$	M1 A1 M1 A1√ A1 6	Not $dx=dt$; ignore limits Not $a/(3t^2+1)$ Allow $A=1$ if from $p/(t^2+1)$ only Allow $k=a/\sqrt{3}$ from line 3; AEEF AEEF
4	(i)		B1	Correct $y = x^2$
			B1 B1 3	Correct shape/asymptote Crossing (0,1)
	(ii)	Define sech $x = 2/(e^x + e^{-x})$ Equate their expression to x^2 and attempt to simplify Clearly get A.G.	B1 M1 A1 3	AEEF
	(iii)	Cobweb Values > and then < root	B1 B1 2	Only from cobweb

5	(i)	Factorise to $\tan^{n-2}x(1+\tan^2x)$	B1	Or use $\tan^n x = \tan^{n-2} x \cdot \tan^2 x$
		Clearly use $1+\tan^2 = \sec^2$	M1	Allow wrong sign
		Integrate to $\tan^{n-1}x/(n-1)$	A1	Quote or via substitution
		Use limits and tidy to A.G.	Al	Must be clearly derived
			4	
	(ii)	Get $3(I_4 + I_2) = 1, I_2 + I_0 = 1$	B1	Write down one correct from reduction
				formula
		Attempt to evaluate I_0 (or I_2)	M1	$I_2 = a \tan x + b, a, b \neq 0$
		Get $\frac{1}{4}\pi$ (or 1 - $\frac{1}{4}\pi$)	A1	
		Replace to $\frac{1}{4}\pi - \frac{2}{3}$	A1	
			4	
6	(i)	Attempt to use N-R of correct form with clear $f'(x)$ used	M1	
		Get 2.633929, 2.645672	A1	For one correct to minimum of 6 d.p.
			A1√	For other correct from their x_2 in correct NR
			3	
	(ii)	$\sqrt{7}$	<u>B1</u>	Allow \pm
			1	
	(iii)	Get $e_1 = 0.14575$, $e_2 = 0.01182$	B1√	From their values
		Get $e_3 = 0.00008$	B1√	
		Verify both ≈ 0.00008	B1	From 0.000077 or 0.01182 ³ /0.14575 ²
			3	
7	(i)	Attempt quotient/product on bracket	M1	
		$\operatorname{Get} -3/(2+x)^2$	A1	May be implied
		Use Formulae Booklet or derive from $tanh y = (1-x)/(2+x)$	M1	Attempt $tanh^{-1}$ part in terms of x
		Get -3 1	A11	From their results above
		$\frac{1}{(2+x)^2} \cdot \frac{1}{1-((1-x)/(2+x))^2}$		Tom then results above
		Clearly tidy to A G	A1	
		Get $f''(x) = 2/(1+2x)^2$	B1	cao
			6	
			SC	Use reasonable in definition M1
			20	Get $v = \frac{1}{2} \ln((1-k)/(1+k))$ for $k = \frac{(1-x)}{(1+2x)} A1$
				Tidy to $y=\frac{1}{2}\ln(3/(1+2x))$ A1
				Attempt chain rule M1
				Clearly tidy to A.G. A1
				Get $f''(x)$ B1
	(ii)	Attempt $f(0)$, $f'(0)$ and $f''(0)$	M1	From their differentiation
	. ,	Get $\tanh^{-1} \frac{1}{2}$, -1 and 2	A1√	
		Replace $\tanh^{-1} \frac{1}{2} = \frac{1}{2} \ln 3 (=\ln \sqrt{3})$	B 1	Only
		Get $\ln\sqrt{3} - x + x^2$	A1	-
			4	
			SC 1	Use standard expansion from $\frac{1}{2}\ln 3 - \frac{1}{2}\ln(1+2x)$

8	(i)	Attempt to solve $r = 0$ Get $\alpha = \frac{1}{4}\pi$	M1 A1 2	From correct method; ignore others; allow θ
	(ii) (a)Get $1 - \sin((2k+1)\pi - 2\theta)$ Expand as $\sin(A+B)$		M1 M1	Attempt $f(\frac{1}{2}(2k+1)\pi - \theta)$, leading to 2θ here Or discuss periodicity for general k
		Use k as integer so $\sin(2k+1)\pi = 0$, And $\cos(2k+1)\pi = -1$	A1	Needs a clear explanation
		(b) Quote $\frac{1}{4}(2k+1)\pi$	B1	For general answer or 2 correct (ignore other answers given)
		Select or give $k = 0, 1, 2, 3$	B1 2	For all 4 correct in $0 \le \theta \le 2\pi$
(iii) roughly			B1 Correct shape; 2 branches only,	
			B1 B1 B1	Clear symmetry in correct rays Get max. $r = 2$ At $\theta = \sqrt[3]{4\pi}$ and $\sqrt[7]{4\pi}$; both required (allow correct answers not in $0 \le \theta < 2\pi$ here)
9	(i)	Attempt to use parts Divide out $x/(1+x)$ Correct answer $x\ln(1+x) - x + \ln(1+x)$ Limits to correct A.G.	M1 M1 A1 <u>A1</u>	Two terms, one yet to be integrated Or use substitution
			4 SC SC	Quote $\int \ln x dx$ M1Clear use of limits to A.G.A1Attempt to diff ate by product ruleM1Clear use of limits to A.G.A1
	(ii)	(a)Use sum of areas of rect.< Area under curve (between limits 0 and 70)	B1	
		Areas = 1x heights = 1(ln2 + ln3 + ln70)	B1	Areas to be specified
	(1	b)Explain use of 69 Explain first rectangle Areas as above > area under curve	B1 B1 B1 3	Allow diagram or use of left shift of 1 unit
	(c) Show/quote $\ln 2 + \ln 3 + \dots \ln 70 = \ln 70!$ Use $N = 69$, 70 in (i)	B1 M1	No other numbers; may be implied by 228.39 or 232.65 seen; allow 228.4, 232.6 or 232.7
_		Get 228.3, 232.7	A1 3	

4726

4727 Further Pure Mathematics 3

1 (a)(i)	e, r^3, r^6, r^9	M1 A1 2	For stating e, r^m (any $m \dots 2$), and 2 other different elements in terms of e and r For all elements correct
(ii)	r generates G	B1 1	For this or any statement equivalent to: all elements of G are included in a group with e and r OR order of $r >$ order of all possible proper subgroups
(b)	m, n, p, mn, np, pm	B1	For any 3 orders correct
		B1 2	For all 6 correct and no extras (Ignore 1 and <i>mnp</i>)
		5	
2	METHOD 1		
	$[1, 3, 2] \times [1, 2, -1]$ n = k[-7, 2, -1] OP Tr = 2n + 5 = 6 (-17)	M1	For attempt to find normal vector, e.g. by finding vector product of correct vectors, or Cartesian equation For correct vector <i>OR</i> LHS of equation
	$\mathbf{n} = \kappa_{1} - 7, 3, -1 O 7x - 3y + z = c \ (= 17)$	M1√	For using correct vectors for line and plane ft from normal
	$\theta = \sin^{-1} \frac{1}{\sqrt{1^2 + 4^2 + 1^2}} \sqrt{7^2 + 3^2 + 1^2}$	M1* M1	For using scalar product of line and plane vectors For calculating both moduli in denominator
	$\theta = \sin^{-1} \frac{6}{\sqrt{18}\sqrt{59}} = 10.6^{\circ}$	A1√ (*dep)	For scalar product. f.t. from their numerator
	(10.609°, 0.18517)	A1 7	For correct angle
	METHOD 2		
	[1, 3, 2] × [1, 2, -1]	M1	For attempt to find normal vector, e.g. by finding vector product of correct vectors, or Cartesian equation
	$\mathbf{n} = k[-7, 3, -1] OR 7x - 3y + z = c$	Al	For correct vector OR LHS of equation
	$ x-3y+z=1\rangle$	MIN M1	for attempting to find KHS of equation f.t. from n or LHS of equation
	$d = \frac{ 21-12+2-17 }{\sqrt{2}} = \frac{6}{\sqrt{50}}$	MI	e.g.
	$\sqrt{7^2 + 3^2 + 1^2}$ $\sqrt{59}$	A1√	(3, 4, 2), to the plane For correct distance. f.t. from equation
	$\frac{6}{\sqrt{59}}$	M1	For using trigonometry
	$\theta = \sin^{-1} \frac{\sqrt{33}}{\sqrt{1^2 + 4^2 + 1^2}} = 10.6^{\circ}$	A1	For correct angle
	(10.609°, 0.18517)		
		7	
3 (i)	$\frac{\mathrm{d}z}{\mathrm{d}x} = 1 + \frac{\mathrm{d}y}{\mathrm{d}x}$	M1	For differentiating substitution (seen or implied)
	$\frac{dz}{dx} - 1 = \frac{z+3}{z-1} \implies \frac{dz}{dx} = \frac{2z+2}{z-1} = \frac{2(z+1)}{z-1}$	A1 A1 3	For correct equation in <i>z</i> AEF For correct simplification to AG
(ii)	$\int \frac{z-1}{z+1} dz = 2 \int dx$	B1	For $\int \frac{z-1}{z+1} (dz)$ and $\int (1) (dx)$ seen or implied
	$\Rightarrow \int 1 - \frac{2}{z+1} dz OR \int 1 - \frac{2}{u} du = 2x \ (+c)$	M1	For rearrangement of LHS into integrable form <i>OR</i> substitution e.g. $u = z + 1$ or $u = z - 1$
	$\Rightarrow z - 2\ln(z+1) OR z+1 - 2\ln(z+1) = 2r(+c)$	A1	For correct integration of LHS as $f(z)$
	$\Rightarrow -2\ln(x+y+1) = x-y+c$	A1 4	For correct general solution AEF

7

4	(i)	$\cos^5 \theta = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^5$	B1		For $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ seen or implied
		$\cos^5 \theta = \frac{1}{32} \left(e^{i\theta} + e^{-i\theta} \right)^5$	M1		For expanding $(e^{i\theta} + e^{-i\theta})^5$. At least 3 terms and
					2 binomial coefficients required <i>OR</i> reasonable attempt at expansion in stages
	$\cos^5 \theta$	$= \frac{1}{32} \left(e^{5i\theta} + e^{-5i\theta} + 5 \left(e^{3i\theta} + e^{-3i\theta} \right) + 10 \left(e^{i\theta} + e^{-2i\theta} \right) \right)$	iθ))	A1	For correct binomial expansion
		$\cos^5 \theta = \frac{1}{16} (\cos 5\theta + 5\cos 3\theta + 10\cos \theta)$	M1 A1	5	For grouping terms and using multiple angles For answer obtained correctly AG
	(ii)	$\cos\theta = 16\cos^5\theta$	B1		For stating correct equation of degree 5
		$\Rightarrow \cos \theta = 0, \cos \theta = \pm \frac{1}{2}$	M1		<i>OR</i> $1 = 16 \cos^4 \theta$ AEF For obtaining at least one of the values of $\cos \theta$ from $\cos \theta = k \cos^5 \theta$ <i>OR</i> from $1 = k \cos^4 \theta$
		$\Rightarrow \theta = \frac{1}{2}\pi, \ \frac{1}{3}\pi, \ \frac{2}{3}\pi$	A1 A1	4	A1 for any two correct values of θ A1 for the 3rd value and no more in 0,, θ ,, π
			9		Ignore values outside 0, θ , π

5	(i)	METHOD 1		
		Lines meet where		
		$(x =) k + 2\lambda = k + \mu$	M1	For using parametric form to find where lines meet
		$(y =) -1 - 5\lambda = -4 - 4\mu$	A1	For at least 2 correct equations
		$(z =) 1 - 3\lambda = -2\mu$		
			M1	For attempting to solve any 2 equations
		$\Rightarrow \lambda = -1, \mu = -2$	A1	For correct values of λ and μ
			B1	For attempting a check in 3rd equation
			A 1	<i>OR</i> verifying point of intersection is on both lines
		$\Rightarrow (k-2, 4, 4)$	Al	b For correct point of intersection (allow vector)
				SR For finding $\lambda OR \mu$ and point of intersection, but no check, award up to M1 A1 M1 A0 B0 A1
		METHOD 2		
		$[0, 3, 1] \cdot [2, -5, -3] \times [1, -4, -2]$		For using $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}$ with appropriate vectors (division
		$d = \frac{ \mathbf{b} \times \mathbf{c} }{ \mathbf{b} \times \mathbf{c} }$		by $ \mathbf{b} \times \mathbf{c} $ is not essential)
		d = c[0, 3, 1], [-2, 1, -3] = 0	B1	and showing $d = 0$ correctly
		\rightarrow lines intersect		
		Lines meet where		
		$(x =) (k+) 2\lambda = (k+)\mu$	M1	For using parametric form to find where lines meet
		$(y =) -1 - 5\lambda = -4 - 4\mu$	A1	For at least 2 correct equations
		$(z =) 1 - 3\lambda = -2\mu$		
			M1	For attempting to solve any 2 equations
		$\Rightarrow \lambda = -1, \mu = -2$	A1	For correct value of $\lambda OR \mu$
		\Rightarrow $(k-2, 4, 4)$	A1	For correct point of intersection (allow vector)
		METHOD 3		
		e.g. $x-k = \frac{2(y+1)}{-5} = \frac{y+4}{-4}$	M1	For solving one pair of simultaneous equations
		$\Rightarrow y = 4$	A1	For correct value of x , y or z
		$\frac{z-1}{-3} = \frac{y+1}{-5}$	M1	For solving for the third variable
		x = k - 2 OR z = 4	A1	For correct values of 2 of x , y and z
		$x-k = \frac{z}{-2}$ checks with $x = k-2, z = 4$	B1	For attempting a check in 3rd equation
		\Rightarrow $(k-2, 4, 4)$	A1	For correct point of intersection (allow vector)
	(ii)	METHOD 1		
		$\mathbf{n} = [2, -5, -3] \times [1, -4, -2]$	M1	For finding vector product of 2 directions
		$\mathbf{n} = c[-2, 1, -3]$	A1	For correct normal
				SR Following Method 2 for (i),
		(1, 1, 1) OP(1, 4, 0) OP(-1, 4, 4)	M1	award MI AIV for n , f.t. from their n For substituting a point in LUS
		(1, -1, 1) OR (1, -4, 0) OR (-1, 4, 4)	A1 4	4 For correct equation of plane AEF cartesian
		$\rightarrow 2x - y + 5z = 0$		
		METHOD 2	MI	Equation of the constitution of the constituti
		$\mathbf{r} = [1, -1, 1] + \lambda[2, -3, -3] + \mu[1, -4, -2]$	MI	For using vector equation of plane $(OR [1, -4, 0] \text{ for} a)$
		$x = 1 + 2\lambda + \mu$	Λ 1	For writing 3 linear equations
		$y = -1 - 5\lambda - 4\mu$	AI	r or writing 5 mical equations
		$z = 1 - 3\lambda - 2\mu$	M 1	For eliminating) and u
		$\rightarrow 2\pi$ $y + 2\pi = 6$		For eliminating Λ and μ
		$\rightarrow 2x - y + 3z = 0$		For correct equation of plane ALF cartesian
			10	

6	(i)	When <i>a</i> , <i>b</i> have opposite signs,	M1		For considering sign of $a b OR b a $
		$a b = \pm ab$, $b a = \mp ba \implies a b \neq b a $	A1	2	For showing that $a b \neq b a $
	(ii)	$(a \circ b) \circ c = (a b) \circ c = a b c OR a bc $	M1		Note that $ x = \sqrt{x^2}$ may be used For using 3 distinct elements and simplifying
	$a \circ ($	$(b \circ c) = a \circ (b c) = a b c = a b c OR a bc $	A1 M1	1	$(a \circ b) \circ c \ OR \ a \circ (b \circ c)$ For obtaining correct answer For simplifying the other bracketed expression For obtaining the same answer
	(iii)		B1*	7	For stating $e = \pm 1$ OR no identity
		EITHER $a \circ e = a \mid e \mid = a \implies e = \pm 1$	M1		For attempting algebraic justification of $+1$ and -1 for e
		$OR e \circ a = e a = a$ $\Rightarrow e = 1 \text{ for } a > 0, \ e = -1 \text{ for } a < 0$	A1		For deducing no (unique) identity
		Not a group	B1 (*dep)	For stating not a group
			10	4	

7 (i)	ω•			Polar or cartesian values of ω and ω^2 may be used anywhere in this question
	$\omega^2 \bullet$ 1	B1	1	For showing 3 points in approximately correct positions
				Allow ω and ω^2 interchanged, or unlabelled
(ii)	EITHER $1 + \omega + \omega^2$ = sum of roots of cubic = 0 $OR \omega^3 = 1 \Rightarrow (\omega - 1)(\omega^2 + \omega + 1) = 0$	M1 A1	2	For result shown by any correct method AG
	$\Rightarrow 1 + \omega + \omega^{2} = 0 \text{ (for } \omega \neq 1)$ OR sum of G.P.			
	$1+\omega+\omega^2 = \frac{1-\omega}{1-\omega} \left(=\frac{1-\omega}{1-\omega}\right) = 0$			
	OR shown on Argand diagram or explained in terms of vectors OR			Reference to vectors in part (i) diagram may be made
	$1 + \operatorname{cis} \frac{2}{3}\pi + \operatorname{cis} \frac{4}{3}\pi = 1 + \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) + \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)$	i = 0		
(iii) (a)	$(2+\omega)(2+\omega^2) = 4+2(\omega+\omega^2)+\omega^3$	M1		For using $1 + \omega + \omega^2 = 0$ OR values of ω , ω^2
	= 4 - 2 + 1 = 3	A1	2	For correct answer
(b)	$\frac{1}{2+\omega} + \frac{1}{2+\omega^2} = \frac{2+(\omega+\omega^2)+2}{3} = 1$	M1 A1√	2	For combining fractions <i>OR</i> multiplying top and bottom of 2 fractions by complex conjugates For correct answer ft from (a)
(iv)	For the cubic $x^3 + px^2 + qx + r = 0$			2.0. convertant and not not notif (a)
	METHOD 1			
	$\sum \alpha = 2 + 1 = 3 (\Rightarrow p = -3)$	M1		For calculating two of $\sum \alpha$, $\sum \alpha \beta$, $\alpha \beta \gamma$
	$\sum \alpha \beta = \frac{2}{2+\omega} + \frac{2}{2+\omega^2} + \frac{1}{3} = \frac{7}{3} \ (=q)$	M1		For calculating all of $\sum \alpha$, $\sum \alpha \beta$, $\alpha \beta \gamma$ <i>OR</i> all of <i>p</i> , <i>q</i> , <i>r</i>
	$\alpha\beta\gamma = \frac{2}{3} \left(\Rightarrow r = -\frac{2}{3} \right)$	A1		For at least two of $\sum \alpha$, $\sum \alpha \beta$, $\alpha \beta \gamma$ correct (or values of <i>p</i> , <i>q</i> , <i>r</i>)
	$\Rightarrow 3x^3 - 9x^2 + 7x - 2 = 0$	A1	4	For correct equation CAO
	METHOD 2 $\left(x-2\right)\left(x-\frac{1}{2+\omega}\right)\left(x-\frac{1}{2+\omega^{2}}\right) = 0$ $x^{3} + \left(-2-\frac{1}{2+\omega}-\frac{1}{2+\omega^{2}}\right)x^{2}$	M1		For multiplying out LHS in terms of ω or cis $\frac{1}{3}k\pi$
	$+\left(\frac{1}{\left(2+\omega\right)\left(2+\omega^{2}\right)}+\frac{2}{2+\omega}+\frac{2}{2+\omega^{2}}\right)x$			
	$-\frac{2}{\left(2+\omega\right)\left(2+\omega^2\right)}=0$	M1		For simplifying, using parts (ii), (iii) or values of ω
	$\Rightarrow x^3 - 3x^2 + \frac{7}{3}x - \frac{2}{3} = 0$	A1		For at least two of p , q , r correct
	$\Rightarrow 3x^3 - 9x^2 + 7x - 2 = 0$	A1		For correct equation CAO
		1	1	

8 (i)	$m^2 + 1 = 0 \implies m = \pm i$	M1		For stating and attempting to solve correct auxiliary
	$\Rightarrow C.F.$ (y =) $Ce^{ix} + De^{-ix} = A\cos x + B\sin x$	A1	2	For correct C.F. (must be in trig form) SR If some or all of the working is omitted, award full credit for correct answer
(ii)(a)	$y = p(\ln \sin x) \sin x + qx \cos x$	M1		For attempting to differentiate P.I. (product rule needed at least once)
$\frac{\mathrm{d}y}{\mathrm{d}x} = p\frac{\mathrm{c}}{\mathrm{s}}$	$\frac{\cos x}{\sin x}\sin x + p(\ln \sin x)\cos x + q\cos x - qx\sin x$	A1		For correct (unsimplified) result AEF
$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -$	$p\sin x - p(\ln\sin x)\sin x + \frac{p\cos^2 x}{\sin x}$	A1		For correct (unsimplified) result AEF
	$-2q\sin x - qx\cos x$			
	$-p\sin x + \frac{p\cos^2 x}{\sin x} - 2q\sin x \equiv \frac{1}{\sin x}$	M1		For substituting their $\frac{d^2 y}{dx^2}$ and y into D.E.
		M1		For using $\sin^2 x + \cos^2 x = 1$
	$\Rightarrow p - 2(p+q)\sin^2 x \equiv 1$	A1	6	For simplifying to $AG (= may be =)$
(b)		M1		For attempting to find p and q by equating coefficients of constant and $\sin^2 x$ <i>AND/OR</i> giving value(s) to x (allow any value for x including 0)
	p = 1, q = -1	A1	2	For both values correct
(iii)	G.S. $y = A\cos x + B\sin x + (\ln \sin x)\sin x - x\cos x$	В1√		For correct G.S. f.t. from their C.F. and P.I. with 2 arbitrary constants in C.F. (allow given form of P.I. if <i>p</i> and <i>q</i> have not been found)
	cosec x undefined at $x = 0, \pi, 2\pi$	M1		For considering domain of $\operatorname{cosec} x \ OR \ \sin x \neq 0$
	$OR \sin x > 0$ in $\ln \sin x$			$OR \ln \sin x$ term
	$\Rightarrow 0 < x < \pi$	A1	3	For stating correct range CAO SR Award B1 for correct answer with justification omitted or incorrect
			-	

4728 Mechanics 1

1(i)	900a = 600 - 240	M1	N2L with difference of 2 forces, accept 360		
	$a = 0.4 \text{ ms}^{-2}$ AG	A1			
		[2]			
(ii)	9 = 5 + 0.4t	MI	v = u + 0.4t or $v = u + (cv 0.4)t$		
	t = 10 s	Al	(1)		
	$9^2 = 5^2 + 2x0.4s$	MI	or $s=(u+v)t/2$ or $s=ut+0.5xcv(0.4)t^2$		
	s = 70 m				
		[4]			
2(i)	Resolves a force in 2 perp. directions	M1*	Uses vector addition or subtraction		
2(1)	Lises Pythagoras $R^2 =$	D*M	Uses cosine rule $R^2 =$		
	$(14\sin 30)^2 +$		$11 = 0.5 \text{ cosine rule } \text{K}^2 = 14^2 + 12^2 = 0.5 \text{ cosine rule } \text{K}^2 = 0.5 \text{ cosine rule } \text{Cosine rule } \text{K}^2 = 0.5 \text{ cosine rule } \text{Cosine rule } Cosi$		
	$(12+14\cos^3)^2$	A1	2x14x12cos150		
	{or $R^2 = (12\sin 30)^2 + (14+12\cos 30)^2$ }				
	R = 25.1 AG	A1	cso (Treat $R^2 = 14^2 + 12^2 + 2x14x12cos30$		
(ii)		[5]	as correct)		
()	Trig to find angle in a valid triangle	M1	Angle should be relevant		
	tanB=7/24.1,sinB=7/25.1,cosB=24.1/25.1	A1	sinB/14 = sin150/25.1. Others possible.		
	B = 016, (0)16.1° or (0)16.2°	A1	Cosine rule may give (0)16.4, award A1		
		[3]			
		-			
3(i)	a = 6/5	M1	Acceleration is gradient idea, for portion of graph		
	$a = 1.2 \text{ ms}^{-2}$	A1	Accept 6/5		
(ii)		[2]			
	$s = (6x10/2)$ {or $(6x5/2)$	MI	Area under graph idea or a formula used correctly		
()	X_2 X_4	MI	Double {Quadruple} journey		
(111)	s = 60 m	A1 [2]			
		[3] M1	y=y+at idea t not equal to 17 (excent $y=1$ 2t 24)		
	y = -6 + 1.2(17 - 15)	$\Delta 1$	$0 = x + cy(1, 2)(20, 17)$ $y^2 - 2 4y - 21 6 = 0$ etc		
	$v = -3.6 \text{ ms}^{-1}$	A1	SR v=3 6 neither A1 but give both A1 if final answer		
	v 5.0 ms	[3]	ziven is -3.6		
L					
4(i)		M1	Difference of 2 horizontal components, both < 15		
	$F = 15\sin 50 - 15\sin 30 = 3.99 N$	A1	Not 4 or 4.0		
	Left	B1	Accept reference to 30 degree string		
		[3]	May be given in ii if not attempted in i		
(ii)		M1	Equating 4 vertical forces/components		
	$R = f(30, 15\cos 50, 15\cos 30)$	Al	30g is acceptable		
	$R = 30-15\cos 50-15\cos 30$	Al	=/.36(/8), treat 30g as a misread		
	$\mu = 3.99/7.36(78)$		Using $F = \mu R$, with $cv(3.99)$ and $cv(7.36(78))$		
	$\mu = 0.341 \text{ of } 0.342 \text{ of } 0.343$	[5]	Accept 0.54 from correct work, e.g. 4/7.4		
L		[2]			
5(i)	2400x5 - 3600x3	B1	Award if g included		
5(1)	2400x + 3600x	B1	Award if g included		
	2400x5 - 3600x3 = 2400v + 3600v	M1	Equating momentums (award if g included)		
	$v = 0.2 \text{ ms}^{-1}$	A1	Not given if g included or if negative.		
	В	B1			
		[5]			
(ii)(a)	+/-(-2400v + 3600v)	Bĺ	No marks in(ii) if g included		
	2400x5 - 3600x3 = -2400v + 3600v	M1	Equating momentums if "after" signs differ		
	$v = 1 ms^{-1}$	A1	Do not accept if - sign "lost"		
(b)	I = 2400 x (5+/-1) or 3600 x (3+/-1)	M1	Product of either mass and velocity change		
	$I = 14400 \text{ kgms}^{-1}$	A1	Accept -14400		
		[5]			

6(i)	$x = 0.01t^4 - 0.16t^3 + 0.72t^2.$			
	v = dx/dt	M1 Uses differentiation, ignore +c		
	$y = 0.04t^3 - 0.48t^2 + 1.44t$	Δ1	or $y = 4(0.01t^3) - 3(0.16t^2) + 2(0.72t)$	
	$v(2) = 1.29 \text{ mg}^{-1}$	A 1	Evidence of evaluation needed	
	V(2) = 1.28 ms AG		Evidence of evaluation needed	
		[3]		
(ii)	a = dv/dt	M1	Uses differentiation	
	$a = 0.12t^2 - 0.96t + 1.44$	A1	or $a = 3(0.04t^2) - 2(0.48t) + 1.44$	
	$t^2 - 8t + 12 = 0$ AG	Δ1	Simplifies $0.12t^2 - 0.96t + 1.44 = 0$ (or verifies the roots	
	i - 0i + 12 = 0 AU		$\sin \beta \sin \beta$	
		[3]	of QE make acceleration zero)	
(iii)	(t-2)(t-6) = 0	M1	Solves quadratic (may be done in ii if used to find v(6))	
	t=2	A1	Or Factorises v into 3 linear factors M1	
	t = 6	A1	$v = 0.04t(t-6)^2$ A1 <i>Identifies</i> t=6 A1	
	$v(6) = 0 m e^{-1}$	D1	Evidence of evaluation needed	
	V(0) = 0 ms		Evidence of evaluation needed	
		[4]	~	
(iv)		B1	Starts at origin	
		B1	Rises to single max, continues through single min	
		B1	Minimum on t axis, non-linear graph	
	Away from Λ	R1	8	
	$AD = 0.01 + c^4 = 0.1 + c^3 + 0.72 + c^2$	[4]		
(v)	$AB = 0.01x6^{2} - 0.16x6^{2} + 0.72x6^{2}$	MI	Or integration of $v(t)$, with limits 0, 6 or substitution,	
	AB = 4.32 m	A1	using cv(6) from iii	
		[2]		
L	1			
7(i)	$(\mathbf{P}-)0.2\mathbf{v}0.8225$	M1	Not $F = 0.2x0.8aas45$ or $0.2x0.8ain.45$ unloss followed	
/(1)	(K=)0.2x9.8c0845		Not $F = 0.2x9.8c0845$ of $0.2x9.8sin 45$ unless followed	
	$F=1xR=1x.2x9.8\cos 45=1.386 N$ AG	AI	by (eg) $Fr = Ix F = 1.386$ when MIA1	
		[2]		
(ii)	Any 1 application of N2L // to plane	M1	Must use component of weight	
()	with correct mass and number of forces			
	$0.4a = 0.2a \sin 45 \pm 0.2a \sin 45 \pm 1.38(502)$	Δ 1		
	$0.4a = 0.2g \sin 43 \pm 0.2g \sin 43 \pm 1.56(392)$	AI		
	$a = 3.465 \text{ ms}^2$ AG	AI		
	0.2a = 0.2gsin45 - T or		Accept with 3.465 (or close) instead of a	
	0.2a = T + [0.2gsin45 - 1.38(592)]	M1	Accept omission of [term] for M1	
	T = 0.693 N	A1	Accept 0.69	
		[5]	·····	
	OB	[3]		
	OK			
	Any 1 application of N2L // to plane			
	with correct mass and number of forces		Must use component of weight	
	0.2a = 0.2gsin45 - T or	M1	Either correct	
	0.2a = T + [0.2gsin45 - 1.38(592)]	Δ1	Both correct Accept omission of [term] for A1 only	
	$\begin{bmatrix} 0.2u & 1 \\ 0.2g \\ 0.5u \\ 0$	111 M1	Bour confect. Accept of assion of [term] for Art only	
	= 2 465 = -2			
	$a = 3.465 \text{ ms}^2$ AG	Al		
	T = 0.693 N	A1		
(iii)	$v^2 = 2 \times 3.465 \times 0.5$	M1	Using $v^2 = 0^2 + 2xcv(3.465)s$	
()	$y = 1.86 \text{ ms}^{-1}$	Δ1		
	1.00 115	[2]		
		[4]		
(iv)	For Q			
	(0.2)a = (0.2)gsin45 - (1)(0.2)gcos45.	M1	Attempting equation to find a for Q	
	a=0 [AG]	A1	Accept from 0.2gsin45 - 1.386	
	T = (3/1.86) = 1.6(12)	B1	Accept 2 sf	
	For D	51	receipt = br	
	$\frac{1011}{2 - 0.9 \sin 45}$	D1	(02	
	a = 9.85 In45	ы		
	$2.5 = 1.86(14)t + 0.5 \times (9.8 \sin 45)t^2$	M1	Using $2.5 = cv(1.86)t + 0.5cv(6.93)t^2$ [not 9.8 or 3.465]	
	t = 0.6(223)	A1	Accept 1sf	
	time difference $1.612 - 0.622 = 0.99(0)$ s	A1	Accept art 0.99 from correct work	
		[7]	T T T T T T T T T T T T T T T T T T T	
1	1	L L / J		

.

4729 Mechanics 2

1	200cos35°	B1			
	$200\cos 35^{\circ} \ge d = 5000$	M1			
	d = 30.5 m	A1 3			3
		•			
2	$0.03R = \frac{1}{2} \times 0.009(250^2 - 150^2)$	M1	$150^2 = 250^2 + 2a \ge 0.03$		
	0.03R	B1	$a = \pm 2x10^6/3$ or $\pm 666,667$	(A1)	
	either K.E.	B1	F = 0.009a	(M1)	
	R = 6000 N	A1 4	unit errors		4

3 (i)	D = 12000/20	B1	
	12000/20=k x 20 + 600 x 9.8 x 0.1	M1	
	k = 0.6	A1 3	AG
(ii)	$16000/v = 0.6v + 600 \ge 9.8 \ge 0.1$	M1	
	$0.6 v^2 + 588v - 16000 = 0$	M1	attempt to solve quad. (3 terms)
	$v = 26.5 \text{ m s}^{-1}$	A1 3	
(iii)	$16000/32 - 0.6 \ge 32 = 600a$	M1	
		A1	
	$a = 0.801 \text{ m s}^{-2}$	A1 3	0.80 or 0.8 9

4 (i)	$0 = 35\sin\theta x t - 4.9t^2$	M1	$R=u^2\sin 2\theta/g$ only ok if proved
	$t = 35\sin\theta/4.9 \qquad 50\sin\theta/7$	A1	or $70\sin\theta/g$ aef
	$R = 35\cos\theta x t$ aef	B1	
			their t
	$R = 35^2 \sin\theta . \cos\theta / 4.9$	M1	
			eliminate t
	$R = 125 \sin 2\theta$	A1 5	
			AG
(ii)	$110 = 125 \sin 2\theta$	M1	
	$\theta = 30.8^{\circ} \text{ or } 59.2^{\circ}$	A1+1	
	t = 3.66 s or 6.13 s	A1+1 5	10

5 (i)	3/8 x 3 (1.125)	B1		c.o.m. hemisphere	
	$0.53d = 5x0.02 + (10 + 3/8x3) \ge 0.5$	M1		0.53e=3x5/8x0.5+8x0.02+13x.01	
		A1		0.53f=3x3/8x0.5-5x0.02-10x0.01	
	d = 10.7	A1	4	AG (e = 2.316 f = 0.684)	
(ii)	Attempt to calc a pair relevant to P,G	M1		distance / angle	
	OP=0.9 (pair), $p=73.3^{\circ} q=16.7^{\circ} r=76.9^{\circ}$	A1		not a complimentary pair	
	(77.2°) , s=13.1°(12.8°) AC=0.86,				
	BC=0.67, AD=10.4 BD=10.2				
	r > p, $s < q$, $p + s < 90$,	M1		make relevant comparison	
	0.67 < 0.86, 10.2 < 10.4			0.7 < 0.9 (OG $< OP$) $10.7 < 10.9$	
	it is in equilibrium	A1	4		8

_

6 (i)	$T\cos 60^{\circ} = S\cos 60^{\circ} + 4.9$ $T\sin 60^{\circ} + S\sin 60^{\circ} = 0.5 \text{ x } 3^{2}/0.4$	M1 A1 M1 A1	Resolving vertically nb for M1: (must be components – all 4 cases) Res. Horiz. mr ω^2 ok if $\omega \neq 3$ If equal tensions 2T=45/4 M1 only	
	$(S + 9.8)\sin 60^\circ + S\sin 60^\circ = 45/4$	M1		
	S = 1.60 N	A1		
	T = 11.4 N	A1 7		
(ii)	$T\cos 60^\circ = 4.9$	M1	Resolving vertically (component)	
	T = 9.8	A1		
	$T\sin 60^\circ = 0.5 \ge 0.4\omega^2$	A1	Resolving horiz. (component)	
	$\omega = 6.51 \text{ rad s}^{-1}$	A1 5	or 6.5	12
7 (i)	$u = 3 \text{ m s}^{-1}$	B1		
	6 = 2x + 3y	M1		
		A1		
	e = (y - x)/3	A1	$(e = \frac{2}{3})$ (equs must be consistent)	
	y = 2	A1 6	AG	
(ii)	$v_h = 2$ $v_i^2 = 2 \times 9.8 \times 4$	B1 M1	or (B1) $\frac{1}{2}$ mx2 ² (B1) $\frac{1}{2}$ mxy ²	
	$v_v = 8.85$ (14 $\sqrt{10/5}$)	A1		
			(B1) mx9.8x4	
	speed = $(8.85^2 + 2^2)$ 9.08 m s ⁻¹		$v = v(2^2 + 2x9.8x4)$	
	$\tan^{-1}(8.85/2)$	M1	or $\cos^{-1}(2/9.08)$	
	77.3° to horizontal	A1 7	12.7° to vertical	13
8 (i)	$com of \Delta 3 cm right of C$	B1		
	$(48+27)\overline{x} = 48x4 + 27x11$	M1		
	- - 6.52	AI A1		
	x = 0.52 com of Δ 2 cm above AD	B1		
	$(48+27)\overline{y} = 48x3 + 27x2$	M1		
	- 2.64	A1 A1 8		
(ii)	y = 2.04 14F	B1	can be implied e.g. $7/\sin 30^\circ$ F	
(11)	$3g\cos 30^{\circ} \times 6.52$	B1	7.034 (AG) or (6.52-2.64tan 30°)	
	$3gsin 30^{\circ} \times 2.64$	B1	52.0° (GAH) or (above) $x \cos^2 20^{\circ}$	
	5g5m50 X 2.04		$(5.00) \times \cos 30^{\circ}$ (4.33)	
	14F=3gcos30°x6.52-3gsin30°x2.64	M1	$14F = 3x9.8x7.034x\cos 52.0^{\circ}$	
1	F = 9.09 N	A1 5		13

4730 Mechanics 3

1	(i) $T = (1.35mg)(3 - 1.8) \div 1.8$	B1		
	[0.9 mg = ma]	M1		For using $T = ma$
	Acceleration is 8.82ms ⁻²	A1	3	
	(ii) Initial EE =			
	$(1.35 \text{mg})(3 - 1.8)^2 \div (2 \text{x} 1.8)$	B1		
	$[\frac{1}{2} \text{ mv}^2 = 0.54 \text{mg}]$	M1		For using $\frac{1}{2}$ mv ² = Initial EE
	Speed is 3.25ms ⁻¹	A1	3	
r				
2	(i)	M1		For using NEL vertically
	Component is 8esin27°	A1		
	Component is 2.18ms ⁻¹	A1	3	
	(ii) Change in velocity vertically =			
	$8\sin 27^{\circ}(1+e)$	B1ft		ft $8\sin 27^\circ$ + candidate's ans. in (i)
		/		For using $ I = m x$ change in
	$ \mathbf{l} = 0.2 \ge 5.81$	MI		velocity
		110	2	ft incorrect ans. in (i) providing
	Magnitude of Impulse is 1.16 kgms	Alft	3	both M marks are scored.
2				For using the minerals of
3				For using the principle of
		M1		i direction
	$0.8 \times 12 \cos 60^{\circ} = 0.8 + 2 b$			I direction
	$0.0 \times 12 \times 000 = 0.0 \times 120$	M1		For using NEI
	$0.75 \times 12 \cos 60^\circ = b - a$	A1		TOT USING IVEL
	0.75X1200500 0 u	111		For eliminating b: depends on at
	[4 8 = 0 8a + 2(a + 4 5)]	DM1		least one previous M mark
	a = -1.5	A1		
	Comp. of vel. perp. to l.o.c. after impact is			
	12sin60°	B1		
				For correct method for speed or
		M1		direction
	The speed of A is 10.5ms ⁻¹	A1ft		ft $v^2 = a^2 + 108$
				Accept $\theta = 81.8^{\circ}$ if θ is clearly
				and appropriately indicated:
	Direction of A is at 98.2° to l.o.c.	A1ft	10	ft tan ⁻¹ θ = (12sin60°)/ a)

4	(i) $[mgsin \alpha - 0.2mv = ma]$	M1		For using Newton's second law
	$5\frac{dv}{dt} = 28 - v$			
	dt	A1		AG
				For separating variables and
	$\left[\int \frac{1}{28 - v} dv = \int dt\right]$	M1		integrating
	$(C) - 5\ln(28 - v) = t$	A1		
		M1		For using $v = 0$ when $t = 0$
				ft for $\ln[(28 - v)/28] = t/A$ from
	$\ln[(28 - v)/28] = -t/5$	A1ft		C + Aln(28 - v) = t previously
	$[28 - v = 28e^{-t/5}]$	M1		For expressing v in terms of t
				ft for $v = 28(1 - e^{t/A})$ from
	$v = 28(1 - e^{-t/5})$	A1ft	8	$\ln[(28 - v)/28] = t/A$ previously
	(ii)			For using $a = (28 - v(t))/5$ or $a =$
				$d(28 - 28e^{-t/5})$ dt and substituting
	$[a = 28e^{-2}/5]$	M1		t = 10.
				ft from incorrect v in the form
	Acceleration is 0.758ms ⁻²	A1ft	2	$a + be^{ct}$ ($b \neq 0$); Accept 5.6/ e^2
5	(i)			For taking moments about B or
				about A for the whole or
				For taking moments about X for
				the whole and using $R_A + R_B =$
		M1		280 and $F_A = F_B$
	$1.4R_A = 150x0.95 + 130x0.25$ or			
	$1.4R_{\rm B} = 130x1.15 + 150x0.45$ or			
	$1.2F - 0.9(280 - R_B) + 0.45x150 - 1.2F +$			
	$0.5R_{\rm B}$	Al		
	$-0.25 \times 130 = 0$			
	$R_A = 125N$	Al		AG
	$R_{\rm B} = 155 \rm N$	BI		
	(11)			For taking moments about X for
	1 OF 150 0 45 + 0 0D	MI		XA or XB
	$1.2F_{\rm A} = -150x0.45 + 0.9R_{\rm A}$ or	. 1		
	$1.2F_{\rm B} = 0.5K_{\rm B} - 130x0.25$	Al		E (1.05D 01.05)/0
	$F_A \text{ or } F_B = 37.5 \text{N}$	Alft		$F_{\rm B} = (1.25R_{\rm B} - 81.25)/3$
	$F_B \text{ or } F_A = 3/.5N$	BItt	4	
	(III) Horizontal component is 37.5N to the	D10		It $H = F$ or $H = 56.25 - 0.75V$ or
	Іеп	BII		12H = 325 + 5V
	[X D 150]	14		For resolving forces on XA
	$[Y + K_A = 150]$	MI	2	vertically
1	vertical component is 25N upwards	Altt	3	$\pi 3V = 225 - 4H \text{ or } V = 2.4H - 65$

6 (i)				For applying Newton's second law
[0.36-0	0.144x = 0.1a]	M1		
$\ddot{x} = 3.6 - 1.44x$	x	A1		
$\ddot{v} = -1.44 v \rightarrow$	SHM or			
$d^{2}(n-25)/d$	$4^2 - 144(x - 25)$ SUD4	B1		
a (x-2.5)/a	l = -1.44(x - 2.3) - SHM			
		M1		For using $T = 2\pi / n$
Of period 5.24s		A1	5	AG
(ii) Amplitu	de is 0.5m	B1		
	2	M1		For using $v^2 = n^2(a^2 - y^2)$
$0.48^2 = 1.2^2 (0.5^2)$	$-y^2$	Alft		
Possible values a	re 2.2 and 2.8	Al	4	
$(111) [t_0 = (sin^{-1}0.6)]$	$(5)/1.2; t_1 = (\cos^2 0.6)/1.2]$	MI		For using $y = 0.5 \sin 1.2t$ to find t_0 or y
t = 0.52625	0 77 2 7	A 1		= $0.5\cos 1.2t$ to find t_1
$t_0 = 0.53625 \dots 0$	or $t_1 = 0.7/27$	AI		Principal value may be implied
(a) [2(sin ⁻¹ 0.6)/1.2 or	$\pi (\pi - 2\cos^{-1} 0.6)/1.21$	M1		For using $\Delta t = 2t_0$ or
	$[(n - 2\cos 0.0)/1.2]$	IVI I		$\Delta t = T/2 - 2t_1$
Time interval is I	1.07s	Alft		ft incorrect t_0 or t_1
(b)				From $\Delta t = T/2 - 2t_0$ or $\Delta t = 2t_1$; ft
Time interval is 1	550	D14	5	2.62 - ans(a) or
I ime interval is i	1.558	BIII	3	incorrect t_0 or t_1
7 (i)		M1		For using KE gain = PE loss
$\frac{1}{2}$ mv ² = mga(1 -	$-\cos \theta$)	A1		
$aw^2 = 2g(1 - cos)$	θ)	B1	3	AG From $v = wr$
(ii)	2			For using Newton's second law
				radially (3 terms required) with accel
		M1		$= v^2/r \text{ or } w^2 r$
$mv^2/a = mg\cos\theta$	$-R \text{ or maw}^2 = mg\cos\theta - R$	A1		
_	-			For eliminating v^2 or w^2 ; depends on
$[2mg(1-\cos\theta)]$	$= mg\cos\theta - R$]	DM1		at least one previous M1
$R = mg(3\cos\theta) -$	-2)	A1ft	4	ft sign error in N2 equation
(iii)				For using Newton's second law
$[masin \mathbf{A} = m(ac$	cel) or			
	01			tangentially or
				differentiating
	$2a(\dot{\theta})\ddot{\theta} = 2g\sin\theta(\dot{\theta})$]	M1		tangentially or differentiating $aw^2 = 2g(1 - \cos\theta)$ wrt t
	$2a(\dot{\theta})\ddot{\theta} = 2g\sin\theta(\dot{\theta})$	M1 A1		tangentially or differentiating $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t
Accel. $(=a\ddot{\theta}) =$	$2a(\dot{\theta})\ddot{\theta} = 2g\sin\theta(\dot{\theta})$ $g\sin\theta$	M1 A1		tangentially or differentiating $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t
Accel. $(=a\ddot{\theta}) = [\theta = \cos^{-1}(2/3)]$	$2a(\dot{\theta})\ddot{\theta} = 2g\sin\theta(\dot{\theta})$] gsin θ	M1 A1 M1		tangentially or differentiating $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t For using R = 0
Accel. $(=a\ddot{\theta}) = [\theta = \cos^{-1}(2/3)]$	$2a(\dot{\theta})\ddot{\theta} = 2g\sin\theta(\dot{\theta})$] gsin θ	M1 A1 M1		tangentially or differentiating $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t For using R = 0 ft from incorrect R of the form
Accel. $(=a\ddot{\theta}) = [\theta = \cos^{-1}(2/3)]$	$2a(\dot{\theta})\ddot{\theta} = 2g\sin\theta(\dot{\theta})$ $g\sin\theta$	M1 A1 M1		tangentially or differentiating $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t For using R = 0 ft from incorrect R of the form mg(Acos +B), A \neq 0, B \neq 0;
Accel. $(=a\ddot{\theta}) =$ $[\theta = \cos^{-1}(2/3)]$ Acceleration is 7	$2a(\dot{\theta})\ddot{\theta} = 2g\sin\theta(\dot{\theta})$ $g\sin\theta$ $.30ms^{-2}$	M1 A1 M1 A1ft	4	tangentially or differentially or $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t For using R = 0 ft from incorrect R of the form mg(Acos +B), A \neq 0, B \neq 0; accept g $\sqrt{5}$ /3
Accel. $(=a\ddot{\theta}) =$ $[\theta = \cos^{-1}(2/3)]$ Acceleration is 7 (iv)	$2a(\dot{\theta})\ddot{\theta} = 2g\sin\theta(\dot{\theta})$ $g\sin\theta$ $.30ms^{-2}$	M1 A1 M1 A1ft	4	tangentially or differentially or $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t For using R = 0 ft from incorrect R of the form mg(Acos +B), A \neq 0, B \neq 0; accept g $\sqrt{5}$ /3 For using rate of change =
Accel. $(=a\ddot{\theta}) =$ [$\theta = \cos^{-1}(2/3)$] Acceleration is 7. (iv)	$2a(\dot{\theta})\ddot{\theta} = 2g\sin\theta(\dot{\theta})$ $g\sin\theta$ $.30ms^{-2}$	M1 A1 M1 A1ft M1	4	tangentially or differentially or $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t For using R = 0 ft from incorrect R of the form mg(Acos +B), A \neq 0, B \neq 0; accept g $\sqrt{5}$ /3 For using rate of change = (dR/d θ)(d θ /dt)
Accel. $(=a\ddot{\theta}) =$ [$\theta = \cos^{-1}(2/3)$] Acceleration is 7. (iv) dR/dt = (-3mosin	$2a(\dot{\theta})\ddot{\theta} = 2g\sin\theta(\dot{\theta})$ $g\sin\theta$ $.30ms^{-2}$ $\theta)\sqrt{2g(1-\cos\theta)/a}$	M1 A1 M1 A1ft M1	4	tangentially or differentially or $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t For using R = 0 ft from incorrect R of the form mg(Acos +B), A \neq 0, B \neq 0; accept g $\sqrt{5}$ /3 For using rate of change = (dR/d θ)(d θ /dt) ft from incorrect R of the form
Accel. $(=a\ddot{\theta}) =$ [$\theta = \cos^{-1}(2/3)$] Acceleration is 7 (iv) dR/dt = (-3mgsin	$2a(\dot{\theta})\ddot{\theta} = 2g\sin\theta(\dot{\theta})$ $g\sin\theta$ $.30ms^{-2}$ $\theta)\sqrt{2g(1-\cos\theta)/a}$	M1 A1 M1 A1ft M1 A1ft	4	tangentially or differentially or $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t For using R = 0 ft from incorrect R of the form mg(Acos +B), A \neq 0, B \neq 0; accept g $\sqrt{5}/3$ For using rate of change = (dR/d θ)(d θ /dt) ft from incorrect R of the form mg(Acos +B), A \neq 0
Accel. $(=a\ddot{\theta}) =$ [$\theta = \cos^{-1}(2/3)$] Acceleration is 7. (iv) dR/dt = (-3mgsin	$2a(\dot{\theta})\ddot{\theta} = 2g\sin\theta(\dot{\theta})$ $g\sin\theta$ $.30ms^{-2}$ $\theta)\sqrt{2g(1-\cos\theta)/a}$	M1 A1 M1 A1ft M1 A1ft M1	4	tangentially or differentially or differentiating $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t For using R = 0 ft from incorrect R of the form mg(Acos +B), A \neq 0, B \neq 0; accept g $\sqrt{5}$ /3 For using rate of change = (dR/d θ)(d θ /dt) ft from incorrect R of the form mg(Acos +B), A \neq 0 For using cos θ =2/3
Accel. $(=a\ddot{\theta}) =$ [$\theta = \cos^{-1}(2/3)$] Acceleration is 7. (iv) dR/dt = (-3mgsin	$2a(\dot{\theta})\ddot{\theta} = 2g\sin\theta(\dot{\theta})$ $g\sin\theta$ $30ms^{-2}$ $\theta)\sqrt{2g(1-\cos\theta)/a}$	M1 A1 M1 A1ft M1 A1ft M1	4	tangentially or differentially or differentiating $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t For using R = 0 ft from incorrect R of the form mg(Acos +B), A \neq 0, B \neq 0; accept g $\sqrt{5}$ /3 For using rate of change = (dR/d θ)(d θ /dt) ft from incorrect R of the form mg(Acos +B), A \neq 0 For using cos θ =2/3 Any correct form of \dot{R} with
Accel. $(=a\ddot{\theta}) =$ [$\theta = \cos^{-1}(2/3)$] Acceleration is 7 (iv) dR/dt = (-3mgsin	$2a(\dot{\theta})\ddot{\theta} = 2g\sin\theta(\dot{\theta})$ $g\sin\theta$ $.30ms^{-2}$ $\theta)\sqrt{2g(1-\cos\theta)/a}$ $\sqrt{10g} Ns^{-1}$	M1 A1 M1 A1ft M1 A1ft M1	4	tangentially or differentially or differentiating $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t For using R = 0 ft from incorrect R of the form mg(Acos +B), A \neq 0, B \neq 0; accept g $\sqrt{5}$ /3 For using rate of change = (dR/d θ)(d θ /dt) ft from incorrect R of the form mg(Acos +B), A \neq 0 For using cos θ =2/3 Any correct form of \dot{R} with cos θ =2/3 used: ft with from
Accel. $(=a\ddot{\theta}) =$ [$\theta = \cos^{-1}(2/3)$] Acceleration is 7. (iv) dR/dt = (-3mgsin Rate of change is	$2a(\dot{\theta})\ddot{\theta} = 2g\sin\theta(\dot{\theta})]$ $g\sin\theta$ $.30ms^{-2}$ $\theta)\sqrt{2g(1-\cos\theta)/a}$ $-mg\sqrt{\frac{10 g}{3a}}Ns^{-1}$	M1 A1 M1 A1ft M1 A1ft M1	4	tangentially or differentially or differentiating $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t For using R = 0 ft from incorrect R of the form mg(Acos +B), A \neq 0, B \neq 0; accept g $\sqrt{5}$ /3 For using rate of change = (dR/d θ)(d θ /dt) ft from incorrect R of the form mg(Acos +B), A \neq 0 For using cos θ =2/3 Any correct form of \dot{R} with cos θ =2/3 used; ft with from incorrect R of the form mg(Acos

4731 Mechanics 4

1	By conservation of angular momentum $1.5 \times 21 + I_G \times 36 = 1.5 \times 28 + I_G \times 34$	M1 A1A1	Give A1 for each side of the equation $r_1 + f(28 - 21) = L_1(26 - 24)$
	$I_G = 5.25 \text{ kg m}^2$	A1 4	$01 \ 1.5(28 - 21) = I_G(30 - 34)$
2 (i)	Using $\omega_1^2 = \omega_0^2 + 2\alpha\theta$, $0^2 = 8^2 + 2\alpha(2\pi \times 16)$	M1	
	$\alpha = -\frac{1}{\pi} = -0.318$	A1 2	Accept $-\frac{1}{\pi}$
	Angular deceleration is 0.318 rad s ⁻²		
(ii)	Using $\omega_1^2 = \omega_0^2 + 2\alpha\theta$, $\omega^2 = 8^2 + 2\alpha(2\pi \times 15)$	M1	or $0^2 = \omega^2 + 2\alpha(2\pi)$
	$\omega = 2 \text{ rad s}^{-1}$	A1 ft	ft is $\sqrt{64-60\pi \alpha }$ or $\sqrt{4\pi \alpha }$
		2	Allow A1 for $\omega = 2$ obtained using $\theta = 16$ and $\theta = 15$ (or $\theta = 1$)
(iii)	Using $\omega_1 = \omega_0 + \alpha t$, $0 = \omega + \alpha t$	M1	or $2\pi = 0t - \frac{1}{2}\alpha t^2$
	$t = 2\pi = 6.28 \text{ s}$	A1 ft 2	ft is $\frac{\omega}{ \alpha }$ or $\sqrt{\frac{4\pi}{ \alpha }}$ Accept 2π
3	$A = \int_0^3 (2x + x^2) \mathrm{d}x$	M1	Definite integrals may be evaluated by calculator (i.e with no working shown)
	$=\left[x^2 + \frac{1}{3}x^3 \right]_0^3 = 18$	A1	
	$A\overline{x} = \int_0^3 x(2x+x^2) \mathrm{d}x$	M1	
	$= \left[\frac{2}{3}x^3 + \frac{1}{4}x^4 \right]_0^3 = \frac{153}{4} = 38.25$	M1	Integrating and evaluating (dependent on previous M1)
	$\overline{x} = \frac{38.25}{18} = \frac{17}{8} = 2.125$	A1	
	$A\overline{y} = \int_{0}^{3} \frac{1}{2} (2x + x^{2})^{2} dx$	M1	or $\int_{0}^{15} \left(3 - (\sqrt{y+1} - 1)\right) y \mathrm{d}y$
	$= \int_0^3 (2x^2 + 2x^3 + \frac{1}{2}x^4) \mathrm{d}x$	M1	Arranging in integrable form
	$= \left[\frac{2}{3}x^3 + \frac{1}{2}x^4 + \frac{1}{10}x^5 \right]_0^3 = 82.8$	M1	Integrating and evaluating SR If ½ is missing, then M0M1M140
	$\overline{y} = \frac{82.8}{18} = 4.6$	A1 9	can be earned for \overline{y}

4 (i)	VA 50° 10 10 10 10 10 10 10 10 10 10	B1	Correct velocity triangle
	$w^2 = 6.3^2 + 10^2 - 2 \times 6.3 \times 10 \cos 50^\circ$	M1	
	$w = 7.66 \text{ m s}^{-1}$	A1	
	$\frac{\sin \alpha}{6.3} = \frac{\sin 50^{\circ}}{w}$ $\alpha = 39.04^{\circ} \qquad (\beta = 90.96^{\circ})$	M1	This mark cannot be earned from work done in part (ii)
	Bearing is $205 - \alpha = 166^{\circ}$	A1 5	
	OR $\begin{pmatrix} 6.3 \sin 75 \\ 6.3 \cos 75 \end{pmatrix} - \begin{pmatrix} 10 \sin 25 \\ 10 \cos 25 \end{pmatrix} = \begin{pmatrix} 1.859 \\ -7.433 \end{pmatrix}$ M1A1 M1		Finding magnitude or direction
	$w = \sqrt{1.859^2 + 7.433^2} = 7.66$ A1 Bearing is $180 - \tan^{-1} \frac{1.859}{7.433} = 166^{\circ}$ A1		
(ii)	As viewed from B	B1 ft	Diagram showing path of A as viewed from B May be implied Or B1 for a correct (ft) expression for d^2 in terms of t
	$d = 2500 \sin 14.04$	M1	or other complete method
	= 607 m	A1	Accept 604.8 to 609
		3	<i>SR</i> If $\beta = 89^{\circ}$ is used, give A1 for 684.9 to 689.1

5 (i)	$V = \int_{a}^{4a} \pi(ax) \mathrm{d}x$	M1	(Omission of π is an accuracy error)
	$\int_{a} = \left[\frac{1}{2} \pi a x^{2} \right]^{4a} = \frac{15}{2} \pi a^{3}$	M1	
	Hence $m = \frac{15}{2}\pi a^3 \rho$	M1	
	$I = \sum_{n=1}^{\infty} \frac{1}{2} (\rho \pi y^2 \delta x) y^2 = \int_{\infty}^{\infty} \frac{1}{2} \rho \pi y^4 dx$	M1 A1	For $\int y^4 dx$
	$=\int_{a}^{4a}\frac{1}{2}\rho\pi a^{2}x^{2}\mathrm{d}x$	A1 ft	Substitute for y^4 and correct limits
	$= \left[\frac{1}{6} \rho \pi a^2 x^3 \right]_a^{4a} = \frac{21}{2} \rho \pi a^5$	A1	
	$=\frac{7}{5}(\frac{15}{2}\pi a^{3}\rho)a^{2}=\frac{7}{5}ma^{2}$	A1 (ag) 8	
(ii)	MI about axis, $I_A = \frac{7}{5}ma^2 + ma^2$	M1	Using parallel axes rule
	$=\frac{12}{5}ma^2$	A1	
	Period is $2\pi \sqrt{\frac{I}{mgh}}$	M1	
	$=2\pi\sqrt{\frac{\frac{12}{5}ma^2}{mga}}=2\pi\sqrt{\frac{12a}{5g}}$	A1 ft 4	ft from any <i>I</i> with $h = a$
6 (i)	$I = \frac{1}{3}m\{a^2 + (\frac{3}{2}a)^2\} + m(\frac{1}{2}a)^2$	M1 M1	MI about perp axis through centre
	$=\frac{13}{12}ma^2 + \frac{1}{4}ma^2 = \frac{4}{3}ma^2$	A1 (ag)	Using paraner axes rule
(ii)	By conservation of energy	M1	Equation involving KE and PE
	$\frac{1}{2}(\frac{4}{3}ma^2)\omega^2 - \frac{1}{2}(\frac{4}{3}ma^2)\frac{9g}{10a} = mg(\frac{1}{2}a - \frac{1}{2}a \times \frac{3}{5})$	A1	
	$\frac{2}{3}ma^2\omega^2 - \frac{3}{5}mga = \frac{1}{5}mga$		
	$\omega^2 = \frac{6g}{5a}$	A1 (ag) 3	
(iii)	$mg\cos\theta - R = m(\frac{1}{2}a)\omega^2$	M1	Acceleration $r\omega^2$ and three terms
	$mg \times \frac{3}{5} - R = \frac{3}{5}mg$	A1	(one term must be R) SR $ma \cos \theta + R = m(\frac{1}{2}a)\omega^2 \implies R = 0$
	R = 0	A1 (ag)	earns M1A0A1
	$mg(\frac{1}{2}a\sin\theta) = I\alpha$	M1A1	Applying $L = I\alpha$
	$\alpha = \frac{3g}{10a}$	A1	
	$mg\sin\theta - S = m(\frac{1}{2}a)\alpha$	M1A1	Acceleration $r\alpha$ and three terms
	$S = \frac{4}{5}mg - \frac{3}{20}mg$		(one term must be S) or $S(\frac{1}{2}\alpha) = I_C \alpha = \frac{13}{2}ma^2\alpha$
	$=\frac{13}{20}mg$	A1 9	

7 (i)	U = 3mgx + 2mg(3a - x)	B1B1	Can be awarded for terms listed
	$+\frac{mg}{2a}(x-a)^2+\frac{2mg}{2a}(2a-x)^2$	B1B1	separately
	$=\frac{mg}{2a}(3x^2 - 8ax + 21a^2)$	M1	Obtaining $\frac{dU}{dr}$
	$\frac{\mathrm{d}U}{\mathrm{d}x} = 3mg - 2mg + \frac{mg}{a}(x-a) - \frac{2mg}{a}(2a-x)$	A1	(or any multiple of this)
	$=\frac{3mgx}{a}-4mg$		
	When $x = \frac{4}{3}a$, $\frac{dU}{dx} = 4mg - 4mg = 0$		
1	so this is a position of equilibrium	A1 (ag)	
	$\frac{\mathrm{d}^2 U}{\mathrm{d}x^2} = \frac{3mg}{a}$	M1	
	>0, so equilibrium is stable	A1 (ag) 9	
(ii)	KE is $\frac{1}{2}(3m)v^2 + \frac{1}{2}(2m)v^2$	M1A1	
	Energy equation is $U + \frac{5}{2}mv^2 = \text{constant}$		
	Differentiating with respect to t	M1	Differentiating the energy equation
	$\left(\frac{3mgx}{a} - 4mg\right)\frac{dx}{dt} + 5mv\frac{dv}{dt} = 0$	A1 ft	(with respect to t or x)
	$\frac{3gx}{a} - 4g + 5\frac{d^2x}{dt^2} = 0$	A1 ft	
	Putting $x = \frac{4}{3}a + y$, $\frac{3gy}{a} + 5\frac{d^2y}{dt^2} = 0$	M1A1 ft	Condone \ddot{x} instead of \ddot{y} Award ML avan if KE is missing
	$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = -\frac{3g}{5a}y$		Awara mi even y KE is missing
	Hence motion is SHM	A1 (ag)	Must have $\ddot{y} = -\omega^2 y$ or other
	with period $2\pi \sqrt{\frac{5a}{3g}}$	A1 9	satisfactory explanation

4732 Probability & Statistics 1

	renaiise o	ver-rounding only once in <u>paper</u> .		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1(i)	(a) -1	B1	allow \approx -1 or close to -1
				not "strong corr'n", not -0.99
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(b) 0	B1 2	allow ≈ 0 or close to 0
(ii) $\begin{array}{c} 4 & 3 & 2 & 1 & \text{or } 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 & 4 & 2 & 1 & 3 \\ 2d^{2} & (=14) & \text{MI} & \text{MI} & \text{Dep MI} & \text{or } s_{m} = 32.^{10}t_{10} & s_{m} = 30.^{10}t_{14} \\ 1 & -\frac{52d^{2}}{14} & -\frac{52d^{2}}{14} & -\frac{52d^{2}}{15} & -\frac{5d}{11} &$				not "no corr'n"
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(ii)	4 3 2 1 or 1 2 3 4	M1	Ranks attempted, even if opp
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			A1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Σd^2 (= 14)	M1	Dep M1 or $S_{xy} = 23^{-100}/_4$ or $S_{xx} = S_{yy} = 30^{-100}/_4$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$1 - \underline{-6\Sigma d^2}$	M1	$Dep \ 2^{nd} M1 \qquad S_{xy}/\sqrt{(S_{xx}S_{yy})}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		4(4 ² -1)		
Total 7 <th></th> <th>= -0.4 oe</th> <th>A1 5</th> <th></th>		= -0.4 oe	A1 5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total		7	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2(i)	$\frac{2}{C_2 \times 8} C_3$	M1	$^{7}C_{2} \times {}^{8}C_{3}$ or 1176 : M1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$^{15}C_{5}$	M1	$(Any C \text{ or } P)^{15}C_5$: M1 $(dep < 1)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				or $\frac{7}{12} \times \frac{6}{12} \times \frac{8}{12} \times \frac{7}{12} \times \frac{6}{12}$ or 0.0392; M1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			4.1 2	$\times^{\circ}C_2$ or $\times 10$: M1 (dep ≥ 4 probs mult)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$= \frac{56}{143}$ or $\frac{1176}{3003}$ or 0.392 (3sfs)	AI 3	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(**)	$\frac{1}{2}$	2.61	$112\leftrightarrow 3$, treat as MR max M1M1
Image: space spa	(11)	$3! \times 2!$ or $P_3 \times P_2$ not in denom	MI	BABAB seen: MI
Total NB $^{-7}2_{12} = 12$: M0A0 3(i)(a) 0.9368 or 0.937 B1 1 (b) 0.7799 0.5230 or $^{8}C_{5} \ge 0.45^{3} \ge 0.55^{5}$ M1 Allow 0.9368 0.7799 (c) 0.7799 seen All 2 M1 Allow 0.9368 0.7799 (c) 0.7799 seen M1 All 2 M1 All 2 (c) 0.7799 seen M1 All 2 M1 All 2 (ii) 0.691 (3 sfs) (not 1 - 0.0885) M1 All 2 (iii) 2 ³¹ / ₇₂ or ¹⁷⁸ / ₁₀ to 2.43 (3 sfs) B1 1 remotified or wrong or extra: M1 (iii) 1/20 x ¹ / ₁₀ or 1/200 or 0.005 M1 All 3 (iii) E(X) = 0 + 50x_{1/10}^{1} + 500x_{1/20}^{1} or 0 M1 M1 dep All 3 (iii) E(X) = 0 + 50x_{1/10}^{1} + 500x_{1/20}^{1} or 0 M1 All 4 All 4 $x = 20, 70, 520$ M1A1 $20x^{17/_{20} + 70x_{1/10}^{1} + 520x_{1/20}^{1} = 20$ <th></th> <th>= 12</th> <th>AI 2</th> <th>120-12: MIA0</th>		= 12	AI 2	120-12: MIA0
1 otal 5 3(i)(a) 0.9368 or 0.937 B1 1 (b) 0.7799 0.5230 or $^8C_5 \times 0.45^3 \times 0.55^5$ M1 Allow 0.9368 -0.7799 (c) 0.7799 seen M1 M1 M1 I term omitted or wrong or extra: M1 - 0.0885 (not 1 - 0.0885) M1 A1 2 (ii)(a) $^{10}C_2 \times (7)_{12}^8 \times (^{5}/_{12})^2$ seen M1 A1 1 (iii) $^{10}C_2 \times (7)_{12}^8 \times (^{5}/_{12})^2$ seen M1 A1 2 (iii) $^{1/2}_{20} \times ^{1/1_{10}} x (^{5}/_{12})^2$ seen M1 M1 M1 $^{10}C_2 \times (7)_{12}^8 \times (^{5}/_{12})^2$ or 0.43 (3 sfs) B1 1 NB $^{12}/_5 = 2.4$: B0 7 total 9 9 9 9 9 4(i) $^{1/2_{00}} x^{1/_{10}} or 1/_{20}$ or 0.005 M1 M1 M1 dep $a = ^{1}/_{000} or 0.01 A1 3 0 or eg 20 goes: 2 \times f_{0.50} + f_{5.00} + $	T ()			NB $^{-}/_{2!} = 12$: M0A0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Total	0.027	5	
(b) $0.7/99 - 0.5230$ or 0.2568 or 0.257 AI 2 (c) 0.7799 seen 0.0885 (not $1 - 0.0885$) = 0.691 (3 sfs) AI 2 (ii) $(a) = \frac{1^{10}C_2 x}{(7_{12})^8 x} (\frac{7_{12}}{(2})^2 \text{ seen} + \frac{1}{(2})^2 (\frac{1}{(2})^2 - \frac{1}{(2})^2 - \frac{1}{(2})^2 + \frac{1}{(2})^2 - \frac{1}{(2})^2 + \frac{1}$	<u>3(1)(a)</u>	0.9368 or 0.937	BI I	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(b)	$0.7/99 = 0.5230$ or $C_5 \times 0.45^{\circ} \times 0.55^{\circ}$	MI	Allow 0.9368 – 0.7799
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		= 0.2569 or 0.2568 or 0.257	AI 2	⁸ C v0 45 ³ 0 55 ⁵ ⁸ C v0 45 ⁴ 0 55 ⁴ ⁸ C v 0 45 ⁵ v 0 55 ³ M2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(c)	0.7/99 seen	MI	$C_5 \times 0.45 \times 0.55 + C_4 \times 0.45 \times 0.55 + C_3 \times 0.45 \times 0.55^{\circ}$: M2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-0.0885 (not $1 - 0.0885$)	MI	I term offitted of wrong of extra. Wr
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u></u>	= 0.691 (3 SIS)	AI 3	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(II)(a)	$C_2 \times (7_{12})^{\circ} \times (7_{12})^{\circ}$ seen	MI	or 0.105 seen, but not 18 w for A1
(b) $2^{-7}/_{72}$ or $1^{-7}/_{72}$ or 2.43 (3 sts) B1 1 NB $^{-7}/_{5} = 2.4$: B0 Total 9 4(i) $1^{-1}/_{20}$ x $1^{-1}/_{10}$ or $1^{-1}/_{200}$ or 0.005 x 2 = 1^{-100} or 0.01 M1 M1 dep A1 or eg 20 goes: $2 \times f0.50 + f5.00$ = $f6.00$ (ii) E(X) = $0 + 50x^{1/}_{10} + 50x^{1/}_{20}$ = $30p$ = $f0.30$ or $3^{-1}/_{10}$ M1 A1 or eg 20 goes: $2 \times f0.50 + f5.00$ = $f6.00$ (iii) E(X) = $0 + 50x^{1/}_{10} + 520x^{1/}_{20}$ = $50p$ or 0.50 or 0.5 M1 A1 at a at a A1 4 $x = 20, 70, 520$ = $50p$ or 0.50 or 0.5 M1A1 $20 \times 1^{-7}/_{20} + 70 \times 1^{-1}/_{10} + 520 \times 1^{-1}/_{20}$: M1 = 50 M1A1 $x \times (x - 50), (x - 500)$: M1A1 $x \times 1^{-7}/_{20} + (x - 50) \times 1^{-1}/_{10} + (x - 500) \times 1^{-1}/_{20} = 20$: M1 x = 50 M1A1 x = 50		= 0.105 (3 SIS)	AI Z	ND^{12} 24 D0
Iotal 9 4(i) $\frac{1}{20} \times \frac{1}{10}$ or $\frac{1}{200}$ or 0.005 MI $\times 2$ $= \frac{1}{100}$ or 0.01 MI (ii) $E(X) = 0+50x^{1}/_{10}+500x^{1}/_{20}$ or $0+0.5x^{1}/_{10}+5x^{1}/_{20}$ MI $= 30p$ $= f0.30$ or $^{3}/_{10}$ MI Charge "30p" + 20p or 0.3 + 0.2 MI or eg 20 goes: $2 \times f0.50 + f5.00$ $= 50p$ or 0.50 or 0.5 MI $x = 20, 70, 520$ condone muddled units eg $0.3 + 20$ A1 4 $x = 20, 70, 520$ MI A1 $20 \times \frac{17}{20} + 70 \times \frac{1}{10} + 520 \times \frac{1}{20}$ MI $x, (x - 50), (x - 500)$ $x = 10$ $x = 50$ $x = 1$ Ignore "f" or "p"	(b)	$2^{27}/_{72}$ or 2.43 (3 sts)	BII	$NB^{-1}/_{5} = 2.4$: B0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l otal		9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4(1)	$\frac{1}{20} \times \frac{1}{10} \text{ or } \frac{1}{200} \text{ or } 0.005$	MI	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$X = \frac{1}{2}$ and 0.01	Mildep	
(ii) $ \begin{array}{c} (x)^{-0+30X/10+30X/20} & \text{of} \\ 0+0.5x^{1}/_{10}+5x^{1}/_{20} \\ = 30p & = \pounds 0.30 \text{ or }^{3}/_{10} \\ \text{Charge "30p" + 20p & or 0.3 + 0.2} \\ = 50p & \text{or } 0.50 \text{ or } 0.5 \end{array} $ MI AI AI AI AI AI AI AI AI AI A	(**)	$\frac{1}{100} = \frac{1}{100} = \frac{1}$	AI 3	
$= 30p = \pm 0.30 \text{ or } ^{3}_{10}$ Charge "30p" + 20p or 0.3 + 0.2 = 50p or 0.50 or 0.5 $A1 4$	(11)	$D(x) = 0+50x/_{10}+500x/_{20}$ or $0+0.5x^{1}/_{10}+5x^{1}/_{20}$		-6600
Charge "30p" + 20p or $0.3 + 0.2$ = 50p or 0.50 or 0.5 A1 4 A1 4		$= 30p = f0.30 \text{ or }^{3}/10$	AI M1	-10.00 ("f6 00" + 20 × f0 20) ÷ 20
$= 50p \text{ or } 0.50 \text{ or } 0.5$ $A1 4$ $x = 20, 70, 520 \qquad : \text{ M1A1} \\ 20 \times \frac{17}{20} + 70 \times \frac{1}{10} + 520 \times \frac{1}{20} : \text{ M1} \\ = 50 \qquad \text{A1}$ $x, (x - 50), (x - 500) \qquad : \text{ M1A1} \\ x \times \frac{17}{20} + (x - 50) \times \frac{1}{10} + (x - 500) \times \frac{1}{20} = 20 : \text{M1} \\ \text{M1} \\ x = 50 \qquad : \text{A1}$ Ignore "£" or "p"		Charge " $30p$ " + 20p or 0 3 + 0 2	1111	$(1000 + 20 \times 10.20) + 20$
$= 50p \text{ or } 0.50 \text{ or } 0.5$ $x = 20, 70, 520 : M1A1$ $20 \times {}^{17}/_{20} + 70 \times {}^{1}/_{10} + 520 \times {}^{1}/_{20} : M1$ $= 50 A1$ $x, (x - 50), (x - 500) : M1A1$ $x \times {}^{17}/_{20} + (x - 50) \times {}^{1}/_{10} + (x - 500) \times {}^{1}/_{20} = 20 :$ $M1$ $x = 50 A1$ Ignore "£" or "p"			A1 /	condone initiatica antis eg 0.5 + 20
$x^{-200, 70, 520} + 70^{-1/10} + 520^{-1/20} : M1$ $= 50$ $x, (x - 50), (x - 500) : M1A1$ $x^{-17/20} + (x - 50)^{-1/10} + (x - 500)^{-1/20} = 20 :$ $M1$ $x = 50$ $I = 10$ $X = 50$ $X = 10$		= 50p or 0.50 or 0.5		r = 20, 70, 520 · M1A1
$= 50$ $x, (x - 50), (x - 500)$ $M1A1$ $x^{17}/_{20} + (x - 50)^{1}/_{10} + (x - 500)^{1}/_{20} = 20$ $M1$ $x = 50$ $I = 10$ $X = 50$ $X = 10$		1		$20 \times \frac{17}{20} + 70 \times \frac{1}{10} + 520 \times \frac{1}{20} \times \frac{11111}{100}$
$x, (x - 50), (x - 500) : M1A1$ $x^{17/20} + (x - 50)^{1/10} + (x - 500)^{1/20} = 20:$ M1 $x = 50 : A1$ Ignore "f" or "p"				= 50 A1
$\begin{array}{l} x, (x - 50), (x - 500) & : M1A1 \\ x \times {}^{17}\!/_{20} + (x - 50) \times {}^{1}\!/_{10} + (x - 500) \times {}^{1}\!/_{20} = 20 : \\ M1 \\ x = 50 & : A1 \\ \text{Ignore "f." or "p"} \end{array}$				
$x^{\times 17}/_{20} + (x-50)^{\times 1}/_{10} + (x-500)^{\times 1}/_{20} = 20:$ M1 x = 50 : A1 Ignore "£" or "p"				x (x-50) (x-500) · M1A1
$ \begin{array}{c} \text{M1} \\ \text{x} = 50 \\ \text{Ignore "£" or "p"} \end{array} $				$x^{17}/_{20} + (x-50) \times \frac{1}{10} + (x-500) \times \frac{1}{20} = 20$
x = 50 : A1 Ignore "£" or "p"				M1
Ignore "£" or "p"				x = 50 · A1
Ignore "£" or "p"				
				Ignore "£" or "p"
Total 7	Total		7	

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise over-rounding only once in paper.

42

5(i)	$\frac{12}{22} \times \frac{11}{21}$	M1	or ${}^{12}C_2 / {}^{22}C_2$
	$= \frac{2}{7}$ oe or 0.286 (3 sfs)	A1 2	
(ii)	$\frac{7}{15} \times \frac{6}{14} \times \frac{8}{13}$ or $\frac{8}{65}$ oe	M1	Numerators any order $C_2 \times {}^8C_1$:M1
	× 3 oe	M1	3 x prod any 3 probs (any C or P) $^{15}C_3$:M1
	$= {}^{24}/_{65}$ or 0.369 (3 sfs)	A1 3	(dep <1)
			$\begin{array}{r} 1-({}^{8}\!/_{15}x^{7}\!/_{14}x^{6}\!/_{13}+3^{8}\!/_{15}x^{7}\!/_{14}x^{7}\!/_{13}+{}^{7}\!/_{15}x^{6}\!/_{14}x^{5}\!/_{13}) & : \\ M2 & \\ \text{one prod omitted or wrong: M1} \end{array}$
(iii)	x x - 1 1	M1	x x x 1 = x x 1 = x x - 1 1
	$\frac{1}{45} \times \frac{1}{44} = \frac{1}{15}$ oe		not $\frac{1}{45} \times \frac{1}{44} = \frac{1}{15}$ or $\frac{1}{45} \times \frac{1}{45} = \frac{1}{15}$ or $\frac{1}{45} \times \frac{1}{45} = \frac{1}{15}$
	$x^{2} - x - 132 = 0$ or $x(x - 1) = 132$	A1	oe
	(n + 12)(n + 11) = 0		ft 3-term QE for M1
	(x - 12)(x + 11) = 0 or $x = 1 + \frac{1}{2} + $	M1	condone signs interchanged
	$\frac{01x - \frac{1 \pm \sqrt{(1 - 4 + (-132))}}{2}}{2}$		allow one sign error
	No. of $Y_s = 12$	A1 4	Not $x = 12$ or -11 ans 12 from less wking, eg $12 \times 11 = 132$
			or T & I: full mks
			Some incorrect methods:
			$\frac{x}{45} \times \frac{x-1}{44} = \frac{1}{15}$ oe M1
			$x^2 + x = 132$ A0
			x = 11 M1A0
			$12 \times 11 - 122$ M1A1M1
			r = 12 and (or "or") 11 A0
			$\lambda = 12$ and (01 01) 11 A0
			NB 12 from eg 12.3 rounded, check method
Total		9	

(i)(b) Total unknown or totals poss diff or Y13 may be smaller or similar or size of pic chart may differ not "N10 or 1F may be less" not "N13 may be larger" (b) B&W does not show frequencies oe B1 1 of B&W shows spread or shows miks of M1ger range (b) Fegnerally higher or median higher F ingher on average or F better mks F lQR is above M1QR I mk about spread (or range or IQR) or about skewness. F generally higher or median higher F higher on average or F better mks F lQR is above M1QR not M have hiest and lowest mks (c) Advantage: R&W shows med or Qs or IQR or range or hiest & lowest or key values B1 2 (d) Advantage: R&W shows med or Qs or IQR or range or hiest & lowest or key values B1 2 (e) Advantage: R&W shows med or Qs or IQR or range or hiest & lowest or key values B1 2 (f) Advantage: R&W shows med or Qs or IQR or range or hiest & lowest or key values B1 2 (f) Advantage: R&W whot show freqs B&W whot show meda B&W whot show meda B&W whot show meda B&W works worked class (allow mode) hist shows a stribution better can cale mean from hist shows stribution better can cale mean from hist	6(i)(a)	256	B1 1	
(b) Total unknown or totals poss diff or Y13 may be smaller or similar or size of pic chart may differ B1 1 ic if correct seen, ignore extras. or on of students per degree may differ not "no. of F may be less" not "N'13 may be legger". (ii)(a) B&W does not show frequencies oe B1 1 reduct shows spread or shows mks or M Iger range. (b) Image: (b) Image: I				(i)(b) & (ii)(abc): ISW
(b) Total unknown or totals poss diff B1 1 pic chart shows only proportions or or size of pic chart may differ not "no of F may be less" not "N1 any be may be less" (ii)(a) B&W does not show frequencies oe B1 1 ink about overall standard, based on median or on F's IQR being "higher" (b) Ink about spread or shows mks or M [ger range Ink about overall standard, based on median or on F's IQR being "higher" (b) F generally higher or median higher Ink about spread (or range or IQR) or about skewness. F generally higher or median higher Ink about spread (or range or IQR) or about skewness. F nore compact B1 Int about spread (or range or IQR) or about skewness. (c) Advanage: B1 2 (c) Advanage: B4 W shows med or Qs or IQR or range or hiest & lowest or key values B1 2 (c) Advanage: B4 W shows incore not show frequencies or hiest whow since or data sets not B4W shows site or calculate or easier to read not B4W shows second at a glance not B4W shows site or calculate or easier to read (b) Disadvantage: B4W loses info' B4W shows site or calculate or easier to read B4W shows move info B4W shows site or data sets not B4W shows site or calculate or easier to read not B4W shows sift a data data canor B4W does not give ind				ie if correct seen, ignore extras
or Y13 may be smaller or similar or size of pie chart may differ may differ more of F may be less" not "No. of F may be less" not "No. of F may be less" not "Y.13 may be larger". (ii)(a) B&W does not show frequencies oe B1 1 or B&W shows spread or shows mks or M lger range. (b) I mk about overall standard, based on median or on F's IQR being "higher" 1 mk about overall standard, based on median or on F's IQR being "higher" (b) I mk about overall standard, based on median or on F's IQR being "higher" 1 mk about spread (or range or IQR) or about skewness. (b) F generally higher or median higher I mk about spread (or range or IQR) or about skewness. I must be comparison, not just figures Examples: not F higher on average or I better mks B1 B1 not M have hiest and lowest mks (c) Advantage: B4 B1 2 condone F +ve skew (c) Advantage: B4 B1 2 not B&W shows skewness not B&W shows spread nor the	(b)	Total unknown or totals poss diff	B1 1	pie chart shows only proportions oe
or size of pie chart may differ not "no. of F may be less" not "No. of F may be less" not "No. of F may be less" not "Y13 may be larger" (ib) B&W does not show frequencies oe B1 1 or B&W shows spread or shows mks or M Iger range (b) Imk about overall standard, based on median or on F's 1QR being "higher" Imk about overall standard, based on median or on F's 1QR being "higher" (b) F generally higher or median higher F higher on average or F better mks F 1QR is above M IQR Imk about spread (or range or IQR) or about skewness. F more compact M wide(r) range or gter IQR or gter variation or gter variance or more spread or less consistent M evenly spread or F skewed B1 (c) Advantage: B&W shows med or Qs or IQR or range or hiest & lowest or key values B1 B1 Not B&W shows skewness not B&W shows stess info" B&W shows less info" B&W shows less info" B&W shows med if can give false impression hist shows freq or fals B1 B1 Disadvantage: B&W to show mode B&W: outifier can give false impression hist shows med or false impression hist shows freq or fals B1 B1 102 x 51 + 26 x 59 + 128 + 22 (3 sfs) B1 2 (iii) 102 x 51 + 26 x 59 + 128 + 52.6 (3 sfs) B1 2		or Y13 may be smaller or similar		or no. of students per degree may differ
(ii)(a) B&W does not show frequencies oe BI 1 or SW shows spread or shows mks or M Iger range. (b) I mk about spread or shows mks or M Iger range. 1 mk about spread (or range or IQR) or about skewness. (b) I mk about spread (or range or IQR) or about skewness. 1 mk about spread (or range or IQR) or about skewness. F generally higher or median higher F higher on average or F better mks F IQR is above M IQR BI 1 F more compact M wide(r) range or gter Variation or fis text set wet where the vertice or more spread or F skewed BI 2 (c) Advantage: B&W shows les info' BI 2 condone F +ve skew (c) Advantage: B&W shows les info' BI 2 not B&W shows skewness not B&W salver to compare data sets not B&W shows spread not B&W shows streat as elsen not B&W shows spread for each mark not bits shows freqs or fds hist shows freqs or fd		or size of pie chart may differ		not "no. of F may be less"
 (ii)(a) B&W does not show frequencies oe B1 1 or B&W shows spread or shows mks or M Iger range. (b) Ink about overall standard, based on median or on F's IQR being "higher" Ink about spread (or range or IQR) or about skewness. must be overall, not indiv mks must be overall standard, based on median or on F's IQR being "higher" I mk about spread (or range or IQR) or about skewness. must be overall, not indiv mks must be comparison, not just figures Examples: not F higher mean F more compact M wide(r) range or gter Variation or g				not "Y13 may be larger"
(b)range I mk about overall standard, based on median or on F's IQR being "higher"(b)I mk about overall standard, based on median or on F's IQR being "higher"I mk about spread (or range or IQR) or about skewness.F generally higher or median higher F higher on average or F better mks F IQR is above M IQRF more compact M wide(r) range or gter IQR or gter variation or gter variance or more spread or less consistent M evenly spread or F skewedB1(c)Advantage: B&W shows med or Qs or IQR or nange or hiest & lowest or key values(c)Advantage: B&W shows med or Qs or IQR or range or hiest & lowest or key valuesB1Disadvantage: B&W to show mode B&W to show mode <b< th=""><th>(ii)(a)</th><th>B&W does not show frequencies oe</th><th>B1 1</th><th>or B&W shows spread or shows mks or M lger</th></b<>	(ii)(a)	B&W does not show frequencies oe	B1 1	or B&W shows spread or shows mks or M lger
 (b) I mk about overall standard, based on median or on F's IQR being "higher" I mk about overall standard, based on median or on F's IQR being "higher" I mk about skewness. must be overall, not indiv mks must be comparison, not just figures Examples: not F higher on average or F better mks F IQR is above M IQR F more compact M wide(r) range or gter IQR or gter variance or more spread or less consistent M evenly spread or F skewed B1 Int & Advantage: B&W shows med or Qs or IQR or range or hiest & lowest or key values Advantage: B&W shows med or Qs or IQR or range or hiest & lowest or key values Disadvantage: B&W loses info' B&W not show mode B&W shows med or Qs or IQR or range or hiest & lowest or key values Disadvantage: B&W loses info' B&W whows stere or calculate or easier to read not B&W shows mean not B&W shows spread not B&W whows spread not B&W does not give indiv (or raw) data not B&W does not give indiv (or raw) data not B&W does not show mean B&W does not fact as (allow mode) hist shows freqs or fds hist shows freqs or fds hist shows more info hist shows freqs or fds hist shows more info hist shows freqs or fds hist shows mean from hist B1 2 allow adv of hist as disadv of B&W. or 5202 + 1534 or 6736 allow adv of hist as disadv of B&W. 				range
(c) Advantage: B&W shows med or Qs or IQR or range or hiest & lowest or key values B1 I mk about spread (or range or IQR) or about skewness. (c) Advantage: B&W shows med or Qs or IQR or range or hiest & lowest or key values B1 I or B&W shows skewness not B hist shows spread not B&W shows steer to calculate or easier to read not B&W shows spread not B&W shows mean not B&W shows spread not B&W does not give indiv (or raw) data not bit shows freq or fast (allow mode) hist shows distribution better can cale mean from hist shows freqs or fast hist shows freq for each mark not hist sh	(b)			1 mk about overall standard, based on median or
Image: Provide the second s				on F's IQR being "higher"
Image: F generally higher or median higher F higher on average or F better mks F lQR is above M IQR Image: F generally higher or median higher F higher on average or F better mks F lQR is above M IQR B1 F more compact M wide(r) range or gter IQR or grage or f better wariation or gter variance or more spread or less consistent M evenly spread or F skewed B1 not M have hiest and lowest mks (c) Advantage: B&W shows med or Qs or IQR or range or hiest & lowest or key values B1 2 (c) Advantage: B&W loses info' B&W shows stewness mot B&W shows shewness mot B&W shows spread nor B&W does not give indiv (or raw) data nor B&W shows streage ro cancel to read (iii) 102 x 51 + 26 x 59 + 128 + 23 x + 128 +				
interpretation F generally higher or median higher F generally higher or median higher F ligher on average or F better mks F ligher on average or F better mks Examples: F ligher on average or F better mks B1 F more compact not M have hiest and lowest mks M wide(r) range or gter IQR not M have hiest and lowest mks or gter variation or gter variance B1 or more spread or less consistent B1 M evenly spread or F skewed B1 B2 condone F +ve skew (c) Advantage: B&W shows med or Qs or IQR or range or hiest & lowest or key values B1 B1 B1 B2 not B&W shows skewness not B&W shows spread not B&W shows spread not B&W whows spread not B&W whow show freqs B&W not show mode B&W work shows freqs or fds hist shows mode info hist shows mode info hist shows freqs or fds hist show distribution better <tr< th=""><th></th><th></th><th></th><th>1 mk about spread (or range or IQR)</th></tr<>				1 mk about spread (or range or IQR)
Image: Figure 1 Figure 2 must be overall, not indiv mks must be comparison, not just figures Examples: not F higher on average or F better mks FIQR is above M IQR B1 F more compact M wide(r) range or gter IQR not M have hiest and lowest mks M wide(r) range or gter variation or gter varis the we shows info at a glance not B&W shows				or about skewness.
Inst be overlar, not must be comparison, not just figuresF generally higher or median higher F higher on average or F better mks F IQR is above M IQRB1F more compact M wide(r) range or gter IQR or gter variation or gter variance or more spread or less consistent M evenly spread or F skewedB1(c)Advantage: B&W shows med or Qs or IQR or range or hiest & lowest or key valuesB1B12not B&W shows skewness not B&W shows sinfo at a glance not B&W shows spread not B&W shows spread not B&W shows spread not B&W shows mean not B&W shows mean not B&W shows spread not B&W shows mean not B&W shows mean not B&W shows mean not B&W shows mean not B&W shows spread not B&W shows stal alt shows freq for each mark not hist shows freq or fds hist shows modal class (allow mode) hist shows distribution better can calc mean from hist shows distribution better can calc mean from hist $1 + 128$ $= 52.6 (3 sfs)$ B12Total10				must be sugged and in diversity
F generally higher or median higher F igher on average or F better mks B1 Examples: F log is above M IQR B1 not M have hiest and lowest mks Wide(r) range or gter IQR or gter variation or gter variance or more spread or less consistent not M have hiest and lowest mks M vently spread or F skewed B1 2 condone F +ve skew (c) Advantage: not B&W shows skewness not B&W shows sinto at a glance not B&W shows sinto at a glance not B&W shows smead not B&W shows spread not B&W does not give indiv (or raw) data not B&W does not give indiv (or raw) data not B&W does not show mean Disadvantage: not hist shows freq or fds B&W loses info' B&W does not give indiv (or raw) data not B&W does not show mean b&W shows infeqs B&W not show mode B1 2 B&W not show mode B&W not show freqs B&W not show freqs ba&W not show freqs and first shows freq or fds hist shows modal class (allow mode) hist shows statil thist shows modal class (allow mode) hist shows statil the results not hist shows total (iii) 100 x 51 + 26 x 59 + 128 + 25.6 (3 sfs) B1 2 Total 10 10				must be comparison not just figures
F generally higher or median higher F higher on average or F better mks not F higher mean F logR is above M IQR B1 not M have hiest and lowest mks F more compact not M have hiest and lowest mks M wide(r) range or gter IQR or gter variation or gter variance or more spread or less consistent B1 2 M evenly spread or F skewed B1 2 (c) Advantage: B&W shows med or Qs or IQR or range not B&W shows infor at a glance or hiest & lowest or key values B1 Disadvantage: B4W shows less info' B&W loses info' B&W easier to calculate or easier to read Disadvantage: B4W shows less info' B&W not show freqs B4W does not give indiv (or raw) data B&W not show mode B4W does not give indiv (or raw) data hist shows modal class (allow mode) hist shows distribution better B1 2 can can ema from hist B1 2 (iii) 102 x 51 + 26 x 59 + 128 + 25.6 (3 sfs) a 52.6 (3 sfs) 10				must be comparison, not just rigures
F generally higher or median higher F higher on average or F better mks F log is above M IQR B1 F more compact not M have hiest and lowest mks M wide(r) range or gter IQR or gter variation or gter variance or more spread or less consistent B1 M evenly spread or F skewed B1 (c) Advantage: B&W shows med or Qs or IQR or range not B&W shows skewness or hiest & lowest or key values B1 Disadvantage: B4W loses info' B&W not show freqs B4W shows spread B&W shows more info hist shows mode lass (allow mode) hist shows freqs or fds hist shows modal class (allow mode) hist shows distribution better B1 can cale mean from hist B1 (iii) 102 x 51 + 26 x 59 + 128 52.6 (3 sfs) Total 10				Examples:
F generally higher or median higher F higher on average or F better mks F 1QR is above M IQRnot F higher meanF more compact M wide(r) range or gter IQR or gter variation or gter variance or more spread or less consistent M evenly spread or F skewedB1not M have hiest and lowest mks(c)Advantage: B&W shows med or Qs or IQR or range or hiest & lowest or key valuesB12condone F +ve skewB1B1B12not B&W shows infor at a glance not B&W shows infor at a glance not B&W shows spread not B&W shows spread not B&W shows spread not B&W shows mean not B&W shows spread not B&W shows mean not B&W does not give indiv (or raw) data not B&W does not give indiv (or raw) data not B&W does not show meanB2Disadvantage: B&W not show freqs B&W not show mode B&W not show mode B&W is shows or fin6 hist shows more info hist shows distribution better can cale mean from hist shows distribution better can cale mean from hist = 52.6 (3 sfs)B12Total10				Examples.
F higher on average or F better mks F light is above M IQR B1 F more compact not M have hiest and lowest mks M wide(r) range or gter IQR or gter variation or gter variance or more spread or less consistent B1 M evenly spread or F skewed B1 (c) Advantage: B&W shows med or Qs or IQR or range not B&W shows skewness or hiest & lowest or key values B1 B&W shows field or less info' B4 B&W shows less info' B4 B&W not show freqs B4W does not give indiv (or raw) data B&W not show mode B4W: outlier can give false impression hist shows freqs or fds not hist shows freq for each mark hist shows modal class (allow mode) hist B1 2 (iii) 102 x 51 + 26 x 59 M1 w128 M1 or 5202 + 1534 or 6736		F generally higher or median higher		not F higher mean
FIQR is above MIQR B1 F more compact M wide(r) range or gter IQR or gter variation or gter variance or more spread or less consistent M evenly spread or F skewed not M have hiest and lowest mks (c) Advantage: B&W shows med or Qs or IQR or range or hiest & lowest or key values B1 2 B1 B1 2 (c) Advantage: B&W shows med or Qs or IQR or range or hiest & lowest or key values B1 12 B1 Disadvantage: B&W shows less info' B&W shows less info' B&W not show freqs B&W not show freqs B&W not show mode B&W: outlier can give false impression hist shows more info hist shows mode lcass (allow mode) hist shows distribution better can calc mean from hist B1 2 (iii) 102 x 51 + 26 x 59 + 128 = 52.6 (3 sfs) B1 2		F higher on average or F better mks		5 5 T
F more compact M wide(r) range or gter IQR or gter variation or gter variance or more spread or less consistent M evenly spread or F skewednot M have hiest and lowest mks(c)Advantage: B&W shows med or Qs or IQR or range or hiest & lowest or key valuesB12not B&W shows skewness not B&W shows info at a glance not B&W shows info at a glance not B&W shows info at a glance not B&W shows spread not B&W casier to calculate or easier to readDisadvantage: B&W loses info' B&W whows less info' B&W whows mode B&W: outlier can give false impression hist shows freqs or fds hist shows modal class (allow mode) hist shows distribution better can calc mean from histB12(iii) $102 x 51 + 26 x 59 + 128 - 52.6 (3 sfs)$ M1 M1dep A1or 5202 + 1534 or 6736		F IQR is above M IQR	B1	
F more compact M wide(r) range or gter IQR or gter variation or gter variance or more spread or less consistent M evenly spread or F skewednot M have hiest and lowest mks(c)Advantage: B&W shows med or Qs or IQR or range or hiest & lowest or key valuesnot B&W shows skewness not B&W shows info at a glance not B&W shows mean not B&W shows spread not B&W does not give indiv (or raw) data not B&W does not give indiv (or raw) data not B&W does not show mean Not B&W does not give indiv (or raw) data not B&W does not show meanDisadvantage: B&W not show freqs B&W not show mode B&W: outlier can give false impression hist shows more info hist shows more info hist shows mode lass (allow mode) hist shows distribution better can cale mean from histB12(iii)102 x 51 + 26 x 59 + 128 = 52.6 (3 sfs)M1 M1 M1 M1or 5202 + 1534 or 6736				
F more compact M wide(r) range or gter IQR or gter variation or gter variance or more spread or less consistent M evenly spread or F skewednot M have hiest and lowest mks(c)Advantage: B&W shows med or Qs or IQR or range or hiest & lowest or key valuesnot B&W shows skewness not B&W shows mean not B&W shows mean not B&W shows spread not B&W does not give indiv (or raw) data not B&W does not show mean(iii)102 x 51 + 26 x 59 + 128 = 52.6 (3 sfs)M1 M1 M1TotalM1 M				
M wide(r) range or gter IQR or gter variation or gter variance or more spread or less consistent M evenly spread or F skewedB12(c)Advantage: B&W shows med or Qs or IQR or range or hiest & lowest or key valuesB12not B&W shows skewness not B&W shows skewness not B&W shows smean not B&W shows spread not B&W does not give indiv (or raw) data not B&W does not give indiv (or raw) data not B&W does not show mean mot B&W does not show meanB&W loses info' B&W not show freqs B&W not show mode B&W i outlier can give false impression hist shows more info hist shows freqs or fds hist shows modal class (allow mode) hist shows distribution better can calc mean from histB12(iii)102 x 51 + 26 x 59 + 128 = 52.6 (3 sfs)M1 M1 M1or 5202 + 1534 or 6736Total1010		F more compact		not M have hiest and lowest mks
or gter variation or gter variance or more spread or less consistent M evenly spread or F skewedB12condone F +ve skew(c)Advantage: B&W shows med or Qs or IQR or range or hiest & lowest or key valuesnot B&W shows skewness not B&W shows mean not B&W shows mean not B&W shows mean not B&W shows spread not B&W shows spread not B&W shows spread not B&W shows mean not B&W shows mean not B&W shows mean not B&W shows mean not B&W shows spread not B&W shows spread not B&W does not give indiv (or raw) data not B&W does not give indiv (or raw) data not B&W does not show meanDisadvantage: B&W loses info' B&W shows less info' B&W not show mode B&W: outlier can give false impression hist shows more info hist shows more info hist shows modal class (allow mode) hist shows distribution better can calc mean from histB12allow adv of hist as disadv of B&W(iii)102 x 51 + 26 x 59 + 128 = 52.6 (3 sfs)M1 A1or 5202 + 1534 or 6736		M wide(r) range or gter IQR		
or more spread or less consistent M evenly spread or F skewedB1 2condone F +ve skew(c)Advantage: B&W shows med or Qs or IQR or range or hiest & lowest or key valuesnot B&W shows skewness not B&W shows info at a glance not B&W shows mean not B&W shows mean not B&W shows spread not B&W shows spread not B&W shows spread not B&W does not give indiv (or raw) data not B&W does not give indiv (or raw) data not B&W does not show meanDisadvantage: B&W loses info' B&W not show freqs B&W not show mode B&W: outlier can give false impression hist shows more info hist shows moda class (allow mode) hist shows distribution better can calc mean from histB1 2allow adv of hist as disady of B&W(iii)102 x 51 + 26 x 59 + 128 = 52.6 (3 sfs)M1 M1 M1or 5202 + 1534 or 6736		or gter variation or gter variance		
M evenly spread or F skewedB12condone F +ve skew(c)Advantage: B&W shows med or Qs or IQR or range or hiest & lowest or key valuesnot B&W shows skewness not B&W shows info at a glance not B&W shows info at a glance not B&W shows spread not B&W shows spread not B&W shows spread not B&W shows spread not B&W does not give indiv (or raw) data not B&W does not give indiv (or raw) data not B&W does not show meanDisadvantage: B&W loses info' B&W shows less info' B&W not show freqs B&W not show mode B&W: outlier can give false impression hist shows more info hist shows modal class (allow mode) hist shows distribution better can cale mean from histB12allow adv of hist as disadv of B&W(iii)102 x 51 + 26 x 59 + 128 = 52.6 (3 sfs)M1 M1 M1or 5202 + 1534 or 6736		or more spread or less consistent		
(c)Advantage: B&W shows med or Qs or IQR or range or hiest & lowest or key valuesnot B&W shows skewness not B&W shows info at a glance not B&W shows mean not B&W shows mean not B&W shows spread not B&W does not give indiv (or raw) data not B&W does not give indiv (or raw) data not B&W does not show meanDisadvantage: B&W loses info' B&W not show freqs B&W not show mode B&W: outlier can give false impression hist shows more info hist shows more info hist shows modal class (allow mode) hist shows distribution better can calc mean from histnot B1 2 allow adv of hist as disadv of B&W(iii)102 x 51 + 26 x 59 + 128 		M evenly spread or F skewed	BI 2	condone F +ve skew
(c)Advantage: B&W shows med or Qs or IQR or range or hiest & lowest or key valuesIntersection and B&W shows shows infor at a glance not B&W shows infor at a glance not B&W shows mean not B&W shows mean not B&W shows mean not B&W shows mean not B&W shows spread not B&W does not give indiv (or raw) data not B&W does not give indiv (or raw) data not B&W does not show meanDisadvantage: B&W loses info' B&W shows less info' B&W not show mode B&W: outlier can give false impression hist shows modal class (allow mode) hist shows distribution better can calc mean from histnot B1(iii)102 x 51 + 26 x 59 + 128 = 52.6 (3 sfs)B12Intersection A 1010	(a)	Advantaga:		not D & W shows alcownood
Betw shows filed of QS of FQK of range or hiest & lowest or key valuesBitInot B&W easier to compare data sets not B&W shows mean not B&W shows mean not B&W shows spread not B&W casier to calculate or easier to readDisadvantage: B&W loses info' B&W shows less info' B&W shows less info' B&W not show freqs B&W not show mode B&W: outlier can give false impression hist shows more info hist shows more info hist shows more info hist shows more info hist shows mode lclass (allow mode) hist shows distribution better can cale mean from histB1 2allow adv of hist as disadv of B&W(iii)102 x 51 + 26 x 59 + 128 = 52.6 (3 sfs)M1 A1or 5202 + 1534 or 6736	(0)	Advantage. R&W shows med or Os or IOP or range		not B&W shows info at a glance
Disact we how storkey valuesDiscrete how show to compare data setsnot B&W shows mean not B&W shows spread not B&W shows spread not B&W easier to calculate or easier to readDisadvantage: 		or hiest & lowest or key values	B1	not $\mathbf{B} \otimes \mathbf{W}$ easier to compare data sets
Disadvantage: B&W loses info' B&W shows less info' B&W shows less info' B&W not show freqs B&W not show mode B&W: outlier can give false impression hist shows more info hist shows freqs or fds hist shows freqs or fds hist shows distribution better can cale mean from histnot B&W does not give indiv (or raw) data not B&W does not show mean(iii) $102 \times 51 + 26 \times 59$ $\div 128$ $= 52.6 (3 \text{ sfs})$ B12Total10		of mest & lowest of key values	DI	not B&W shows mean
Disadvantage: B&W loses info' B&W shows less info' B&W not show freqs B&W not show mode B&W i outlier can give false impression hist shows more info hist shows mode lass (allow mode) hist shows distribution better can calc mean from histnot B&W does not give indiv (or raw) data not B&W does not show mean(iii) $102 \times 51 + 26 \times 59$ $\div 128$ $= 52.6 (3 \text{ sfs})$ B12Total10				not B&W shows spread
Disadvantage: B&W loses info' B&W shows less info' B&W not show freqs B&W not show mode B&W: outlier can give false impression hist shows more info hist shows more info hist shows modal class (allow mode) hist shows distribution better can calc mean from histnot Bat 2 BBAnot B&W does not give indiv (or raw) data not B&W does not show mean(iii) $102 \times 51 + 26 \times 59$ $\div 128$ $= 52.6 (3 \text{ sfs})$ B12allow adv of hist as disadv of B&W				not B&W easier to calculate or easier to read
Disadvantage: B&W loses info' B&W shows less info' B&W not show freqs B&W not show mode B&W: outlier can give false impression hist shows more info hist shows more info hist shows freqs or fds hist shows modal class (allow mode) hist shows distribution better can calc mean from histnot Black Black Black Black Black Black Hist shows modenot hist shows freq for each mark not hist shows all the results not hist shows total(iii) $102 \times 51 + 26 \times 59$ $\div 128$ $= 52.6 (3 \text{ sfs})$ M1 Allor 5202 + 1534 or 6736				
B&W loses info'not B&W does not give indiv (or raw) data not B&W does not show meanB&W shows less info'not B&W does not show meanB&W not show freqsB&W not show modeB&W: outlier can give false impression hist shows more info hist shows freqs or fds hist shows modal class (allow mode) hist shows distribution better can cale mean from histnot hist shows freq for each mark not hist shows total(iii) $102 x 51 + 26 x 59$ $\div 128$ $= 52.6 (3 sfs)$ M1 A1or $5202 + 1534$ or 6736		Disadvantage:		
B&W shows less info'not B&W does not show meanB&W not show freqsB&W not show modeB&W not show modenot bist shows modeB&W: outlier can give false impressionnot hist shows freq for each markhist shows more infonot hist shows freq for each markhist shows freqs or fdsnot hist shows all the resultshist shows modal class (allow mode) histnot hist shows totalshows distribution betterB1 2can calc mean from histB1 2102 x 51 + 26 x 59M1 $\div 128$ or 5202 + 1534 or 6736 $\div 128$ M1 dep $= 52.6 (3 \text{ sfs})$ A1 3		B&W loses info'		not B&W does not give indiv (or raw) data
B&W not show freqs B&W not show mode B&W: outlier can give false impression hist shows more info hist shows freqs or fds hist shows modal class (allow mode) hist shows distribution better can calc mean from histnot hist shows all the results not hist shows total(iii) $102 \times 51 + 26 \times 59$ $\div 128$ $= 52.6 (3 \text{ sfs})$ M1 A1Total10		B&W shows less info'		not B&W does not show mean
B&W not show mode B&W: outlier can give false impression hist shows more info hist shows freqs or fds hist shows modal class (allow mode) hist shows distribution better can calc mean from histnot hist shows freq for each mark not hist shows all the results not hist shows total(iii) $102 \times 51 + 26 \times 59$ M1 $+ 128$ $= 52.6 (3 \text{ sfs})$ or $5202 + 1534 \text{ or } 6736$		B&W not show freqs		
B&W: outlier can give false impression hist shows more info hist shows freqs or fds hist shows modal class (allow mode) hist shows distribution better can calc mean from histnot hist shows freq for each mark not hist shows all the results not hist shows total(iii) $102 \times 51 + 26 \times 59$ $\div 128$ $= 52.6 (3 \text{ sfs})$ M1 A1or $5202 + 1534 \text{ or } 6736$ TotalI0		B&W not show mode		
hist shows more into hist shows freqs or fds hist shows modal class (allow mode) hist shows distribution better can calc mean from histnot hist shows freq for each mark not hist shows all the results not hist shows total(iii) $102 \times 51 + 26 \times 59$ M1 128 $= 52.6 (3 \text{ sfs})$ or $5202 + 1534 \text{ or } 6736$ Total10		B&W: outlier can give false impression		
nist snows freqs or fds hist shows modal class (allow mode) hist shows distribution better can cale mean from histnot hist shows all the results not hist shows total(iii) $102 \times 51 + 26 \times 59$ $\div 128$ $= 52.6 (3 \text{ sfs})$ M1 A1or $5202 + 1534$ or 6736 Total10		hist shows more info		not hist shows freq for each mark
Inist shows modal class (allow mode) hist shows distribution better can cale mean from histInist shows total(iii) $102 \times 51 + 26 \times 59$ M1 ± 128 or $5202 + 1534$ or 6736 $\div 128$ M1 dep $= 52.6 (3 \text{ sfs})$ A1 3		nist snows freqs or fas		not nist shows all the results
shows distribution better can calc mean from histB1 2allow adv of hist as disadv of B&W(iii) $102 \times 51 + 26 \times 59$ M1or $5202 + 1534$ or 6736 $\div 128$ M1 dep $= 52.6 (3 \text{ sfs})$ A1 3		nisi snows modal class (allow mode) hist		not nist snows total
(iii) $102 \times 51 + 26 \times 59$ M1 or $5202 + 1534$ or 6736 $\div 128$ M1dep $= 52.6 (3 \text{ sfs})$ A1 3		snows distribution better	B1 2	allow adv of hist as disadv of \mathbf{D} \mathbf{w}
$102 \times 31 \pm 20 \times 39$ M1 of 5202 ± 1534 of 6750 $\div 128$ M1 dep $= 52.6 (3 \text{ sfs})$ A1 Total 10	(;;;)	$\begin{array}{c} \text{can calc mean nom nist} \\ 102 \times 51 \pm 26 \times 50 \end{array}$	D1 2 M1	anow any of first as disady of D&W or 5202 ± 1524 or 6726
$= 52.6 (3 \text{ sfs}) \qquad \qquad \text{A1} 3$	(111)	$102 \times 31 \pm 20 \times 39$ $\div 128$	M1den	01 3202 + 1334 01 0/30
Total 10		= 52.6 (3 sfs)		
	Total	52.0 (5 515)	10	

7(i)	Geo stated	M1	or implied by $0.7^{r} x 0.3$ or $0.3^{r} x 0.7$
	$0.7^3 \ge 0.3$	M1	Allow $0.7^4 \ge 0.3$
	$^{1029}/_{10000}$ oe or 0.103 (3 sfs)	A1 3	
(ii)	0.7 ⁶ alone	M1	$1-(0.3+0.3\times0.7++0.3\times0.7^5)$ not $1-0.7^6$
	= 0.118 (3 sfs)	A1 2	
(iii)	0.79	M1	not 0.3×0.7^9
	$1 - 0.7^9$	M1	allow $1 - 0.7^{10}$ or 0.972 for M1
	0.960 (3 sfs)	A1 3	allow 0.96, if no incorrect wking seen
			$0.3 + 0.7 \ge 0.3 + \ldots + 0.7^8 \ge 0.3$: M2
			1 term omitted or wrong or "correct" extra: M1
(iv)	Bin stated	M1	or implied by table or ${}^{n}C_{r}$ or $0.7^{3} \times 0.3^{2}$
			or 0.0309
	${}^{5}C_{2} \ge 0.7^{3} \ge 0.3^{2}$ or $0.8369 - 0.5282$	M1	
	= 0.3087 or $0.309 (3 sfs)$	A1 3	
Total		11	
8(i)	88×16.4		-11.8
	$168.6 - \frac{1}{9}$		$\left(=\frac{1}{\sqrt{1+1}}\right)$
	8	M2	$\sqrt{168 \times 0.9}$
	$(1126 88^2)(24.52 16.4^2)$		M1: correct subst in any correct S formula
	$\sqrt{(1130 - \frac{1}{8})(34.32 - \frac{1}{8})}$		M2: correct substn in any correct r formula
	= -0.960 (3 sfs)	A1 3	allow 0.06 if no incorrect whing soon
(::)	must refer to or imply		allow -0.90, II no incorrect wking seen
(11)	must refer to, of imply,		not x is not random
	external constraint on x		not x pot officiated by y
	e.g. x is controlled		not x not affected by y
	of values of x fixed of chosen	D1 1	not x goes up same amount each time
	allow x is lixed	DII	not r not being measured
(:::)	00,174		not x not being measured
(III)	$168.6 - \frac{88 \times 10.4}{2}$		
	8	M1	ft their S and S
	$1126 88^2$	1011	incl $\frac{168.6}{100}$ if used in (i)
	$1136 - \frac{1}{8}$		
	50 118	A1	or -0.07 if no incorrect wking
	$= -0.0702 (3 \text{ sfs}) \text{ or } -\frac{37}{840} \text{ or } -\frac{11.3}{168}$		
	16.4 - " 0.0702"(88/)	M1	or $a = \frac{16.4}{8} - ((-0.0702)) \times \frac{88}{8}$ or $\frac{2371}{840}$
	$y - \frac{1}{8} = -0.0/02 (x - \frac{1}{8})$	A1 4	oe eg $y = \frac{59}{840}x + \frac{2371}{840}$
(i-r)(a)	y = -0.07x + 2.8 of benef	M1	
$(\mathbf{Iv})(\mathbf{a})$	$-0.07 \times 20 \pm 2.0$ = 1 $A(2)$ million (2 sfs)		no ft
(b)	r close to 1 or corr'n is high	R1 2	or good corr'n or nts close to line
(0)	r close to -1 of cont it is high	DI	but not if "close to -1 hence unreliable"
			if $r \log in$ (i) ft: " $r \log$ " or "poor corr'n" etc
	just outside given data so reliable	B1 2	or outside given data so unreliable
		21 -	
			not "reliable as follows trend"
			not "reliable as follows average"
			no ft from (iv)(a)
(v)	y on x	B1	
	<i>x</i> is indep	B1 2	or x controlled or y depends on x
			or y not indep
			dep on not "x on y"
			<i>r</i> close to -1 so makes little difference: B2
Total		14	

4733 Probability & Statistics 2

General: Conclusions to hypothesis tests must acknowledge uncertainty. Thus "time is unchanged" is A0. Similarly, "Significant evidence that time is unchanged" is also A0.

1	(i)	Biased in favour of those with strong	B2	2	"Biased", "unrepresentative", "not indept" or equiv
		political interest			[but not "not random"] stated, with sensible reason.
		-			[SR: partial answer, B1]
	(ii)	Obtain list of all pupils	B1		List, can be implied; number serially or randomly,
		Allocate numbers sequentially	B1		not just "number pupils"
		Choose using random numbers	B1	3	Select consistently with method of numbering,
					not just "select randomly"
					[SR: systematic: List B1, every n^{th} B1, random start B1]
_	(2.64		[SR: names in a hat: B2]
2	(1)	$\Phi\left(\frac{24-30}{2}\right) - \Phi\left(\frac{20-30}{2}\right)$	MI		Standardise one, allow $\sqrt{12}$, 12^2 , \sqrt{n}
			AI		Both standardisations correct, allow cc here
		$= \Phi(-0.5) - \Phi(-0.833)$	M1		Correct handling of tails $[0.3085 - 0.2024]$
		= (1 - 0.6915) - (1 - 0.7976) = 0.1061	Al	4	Answer, a.r.t. 0.106, c.a.o.
	(ii)	Not symmetrical (skewed)	M1		Any comment implying not symmetric
		Therefore inappropriate	A1	2	Conclude "not good model" [Partial answer: B1]
3		$H_0: \mu = 28$	B2		Both hypotheses correctly stated; one error, allow
		$H_1: \mu \neq 28$			wrong or no letter, but not x or t or \bar{x} , B1
		$\sigma^2 = 37.05 \times 40/39$ [= 38]	MI		Multiply 37.05 or $\sqrt{37.05}$ by $n/(n-1)$ or $\sqrt{[n/(n-1)]}$
		$z = \frac{26.44 - 28}{2} = -1.601$	M1		Standardise with \sqrt{n} , allow \sqrt{n} errors, cc, +
	α	$2 = \sqrt{\frac{38}{40}} = 1.001$	A1		Correct z, a.r.t -1.60 , or $p \in [0.0547, 0.0548]$
		Compare -1.645, or 0.0547 with 0.05	B1		Explicit comparison of z with -1.645 or p with 0.05
	β	Critical value $28 - z\sigma/\sqrt{n}$ [= 26.397]	M1		Allow " \pm ", $$ errors, cc, ignore other tail
		z = 1.645	B1		z = 1.645 in CV expression, and compare 26.44
		Compare 26.44 with 26.40	A1√		CV, $$ on their <i>z</i> , rounding to 3 SF correct
		Do not reject H_0 [can be implied]	M1		Needs \sqrt{n} , correct method & comparison, <i>not</i> $\mu = 26.44$
		Insufficient evidence that time taken has	A1√	8	Conclusion interpreted in context, $\sqrt{\text{ on } z}$,
	(*)	changed.	2.61		~
4	(1)	$\frac{53-50}{5} < 2.326$	MI		Standardise with 10 or $\sqrt{10}$ and Φ^{-1}
		$\sigma/\sqrt{10}$	AI D1		Both sides same sign, $\sqrt{10}$, don't worry about <
		$\sigma > 4.08$ AG		4	2.326 or 2.33 seen
		0 - 1.00 110	AI	4	Convincingly obtain $\sigma > 4.08$ to 3 SF, one other step
		[Allow≥]			[SK: Substitution: standardise & substitute 4.08 MI;
	(ii)	P(Type I) = 0.01 used e.g. Geo(0.01)	M1		Not enough merely to state $n = 0.01$
	(11)	$1(1)$ (1) $y = 0.01$ (1) 0.01 (1) 0.01 (1) $0.00^4 \times 0.01$	M1		Not chough increase to state $p = 0.01$
		= 0.0096	Al	3	Answer art 0.0096
5	(i)	$\int_{-1}^{1} 3(x^2 - x^4) dx = 3 \int_{-1}^{1} x^3 - x^5 \int_{-1}^{1} [= 1/5]$	M1	-	Attempt $\int_{-\infty}^{1} x^2 f(x) dx$
		$J_{-1}^{-1} \overline{4} (x - x) a x - \frac{1}{4} \left[\frac{3}{3} - \frac{5}{5} \right] \left[\frac{1}{5} - \frac{1}{5} \right]$	A 1		$J_{-1} = \frac{1}{\sqrt{2}}$
		$1/5 - 0^2$	Al		Correct indefinite integral
		1/5 = 0 = 1/5	BI		Mean U clearly indicated
	(::)	1/5	AI	4	Answer 1/5 or a.r.t. 0.200, don't need $\mu = 0$
	(11)		D1		Correct graph don't need f(r) as well. Don't allow if
			DI		araph goes further below axis than "pips"
					Don't worry too much about evact shape
		(a) - (b) Areas equal more spread out	M1		Mention areas or total probability
		so g lower	A1		Convincing argument not just "flatter"
		(c) W greater	B1den		W greater
		as more spread out	depB1	5	with convincing reason
		us more spread out		-	

4733

6	(a)	Po(2.375)	M1		Po(19/8) stated or implied
-	()	$2375(2375^3 - 2375^4)$ [= 0 2079 + 0 1233]	M1		One correct Poisson formula, <i>not</i> tables
		$e^{-2.3/3}\left(\frac{-1.4}{3!}+\frac{-1.4}{4!}\right)$	A1		Complete correct expression, including addition
		= 0.3310	A1	4	Answer, a.r.t. 0.331
		0.5510			[SR: $Po(2)$ or $Po(2.4)$ and tables. M1]
	(b)	(i) n large OR $n > 50$	B1		Or equivalent [Allow \leq and \geq throughout]
	(-)	p small OR $np < 5$	B1	2	Or equivalent e_{g} $nn \approx nng$ or $n < 0.1$
		1 1			[Treat " $np < 5$. $npq < 5$ " as single wrong statement]
		(ii) $B(108 \frac{1}{2})$	M1		Correct binomial distribution stated or implied
		(ii) $D(100, _{36})$	M1		Po(<i>np</i>), $$ on their <i>n</i> , <i>p</i>
		$\approx Po(3)$	A1		Po(3)
		$1 - P(\le 3) = 1 - 0.6472$	M1		Use Po tables "1 –" or correct formula ± 1 term
		= 0.3528	A1	5	e g 0.1847 a r t 0.353 allow from exact Binomial
7	(i)	Dropped catches must occur	B1		"independently" in context allow "random"
'	(1)	independently of one another and at	B1	2	"Constant average rate" in context
		constant average rate	DI	-	["Singly" doesn't gain B1]
	(ii)	Use: "Reject H_0 when correct"	M1		Find $P(>r)$ where $r > \lambda$ e.g. $P(>6)$ from $P_0(2)$
	(11)	Po(10)	M1		Po(10) stated or implied [can be recovered in (iii)]
art		P(> 16) = 1 - P(< 15) = 1 - 0.9513	M1		Seek biggest prob ≤ 0.05 e.g. 0.0835 or 0.0166
r p;		1(210) $1-1(213)$ $1-0.9515$	1011		allow 0.0293 but no other I H tail
the		Probability 0.0487	A1		Answer in range [0.0487, 0.0488], cwd, cwo
eit	(iiii)	$H \rightarrow \lambda = 10 \text{ or } 2$ [or u]	B2		Hypotheses fully correct allow λ or μ
l in	(111)	$H_{10} : \lambda = 10 \text{ or } 2 [\text{or } \mu]$	D2		SR: one error B1 but r or R or r or \overline{z} : B0]
dec		$H_1 \cdot \lambda > 10 \text{ of } 2 [01 \mu]$	A 1		$[5K, 0hc choi, b1, 0hc 7 0h K 0h \chi 0h \chi, b0]$
var		$Q. \qquad P(\geq 14) - 1 - 0.8043 - 0.1333 \\ > 0.05$	R1		$p \in [0.135, 0.130]$ from PO(10)
aw		> 0.05			Compare explicitly with 0.05 or 0.0487
be		$\beta: \text{Critical region } r \ge 16, p = 0.048 / 14$	AIV D1		V on answer from (11)
can		Compare $r = 14$	BI√		
XS (Do not reject H_0 [can be implied]	MI		Method correct, $$ on p , must be upper tail and " \geq "
[ar]		Insufficient evidence of an increase in	A1√	10	Conclusion interpreted in context
N		the number of dropped catches			$[SR: P(\le 14) = 0.9165 < 0.95: (B2 M1) A0 B1 M0A0;$
					same for $P(> 14)$ or $P(= 14)$]
0	(;)	H 0.4	DO		[SK: N(10,10): (11) 0.05 M0. (11) (B2) M1 A0 B1 M0A0]
0	(1)	$H_0: p = 0.4$ or $\mu = 4.8$	D2		Both fully collect, $B2$.
		$H_1: p > 0.4$ or $\mu > 4.8$	M1		[SK. one error, B1, but x of x of y of x . B0] D(12, 0, 4) state days invalid as a 0.0072 sy 0.0847
		B(12, 0.4)	IVI I		B(12, 0.4) stated or implied, e.g. $0.99/2$ or $0.984/$
		$P(\ge 9) = 1 - 0.9847 = 0.0153$	A1		Or: CR is ≥ 9 and $p \in [0.015, 0.0153]$
		< 0.05	B1√		Explicitly compare with 0.05, or 9 with \ge 9, \vee on <
		Reject H ₀ [can be implied]	M1		Reject H_0 , $$ on probability, must be " \geq "
		Significant evidence of increase in	A1√	7	Conclusion interpreted in context
		proportion of audience members who			[SR: $P(\le 9)$ or $P(= 9)$ or $P(> 9)$: (B2 M1) A0 B1 M0A0]
		know sponsor's name	D 1		[SR: N(4.8, 2.88): (B2) M1 A0 B0 M0A0]
	(11)	N(160, 96)	BI		Normal, mean 160
			BI		Variance (or SD) 96 [96/400: B2M0]
		$\underline{(x-0.5)-160} = 1.645$	MI		Standardise unknown with np and \sqrt{npq} or npq , &
		$\sqrt{96}$	AI		equate to Φ^{-1} ; $\sqrt{96}$ and signs correct, ignore cc
			BI		RHS = 1.645
		Solve to find $x = 1/6.6$	MI	_	Solve [implied by 177 or 176.6 or 176.1]
		Ivinimum value is	AI	7	177 only, from 176.6, CWO [cc error: 6 ex 7]

4734 Probability & Statistics 3

1 (i)	$\frac{1}{99}(6115.04 - \frac{761.2^2}{100})$ =3.240	M1 A1	2	AEF
(ii)	761.2/100 $\pm z\sqrt{(3.24/100)}$ z = 1.96 (7.26,7.96)	M1 B1 A1	3	z= 1.282, 1.645, or 1.96 Allow from σ^2 =3.21; allow 7.97 but not from wrong σ. Allow 4 or 5 SF but no more.
(iii)	None necessary, since sample size large enough for sample mean to have a normal distribution	B1	1 [6	OR:None necessary, <i>n</i> large enough for Central Limit theorem to apply
2	$(\overline{x} - 12.6) / \sqrt{0.1195 / 10}$ 1.383 seen Solve for variable $\overline{x} \ge 12.75$	M1 A1 B1 M1 A1	5 [5]	Any variable, correct mean, /10, ignore z All correct Allow any symbol ($<,>,=$) Allow > ; 12.7 or 12.8 No z seen
3(i)	Choice of newspaper is independent of level of income	B1	1	Or equivalent
(ii)	Use df=4 EITHER: CV 13.28, from df=4 or sig. level Largest significance level is 1% OR: UseP($\chi^2 > 12.32$) Largest significance level is 1.52%	B1 M1 B1 B2	3 [4] SR: 1	May be implied by 13.28 seen or 0.0152 From tables Accept 0.01 Use of calculator Accept 0.0152 from df=6: CV 12.59 used ; SL=5% : B0M1B1
4(i)	$\int_0^1 \frac{4}{3} x^3 dx + \int_1^2 \frac{4}{3x^3} dx$ Limits seen anywhere	M1		For both integrals OR 1 - $\int_2^\infty \frac{4}{3x^3} dx$
	$\left[\frac{x^4}{3}\right]_0^1 + \left[-\frac{2}{3x^2}\right]_1^2$	A1 A1	3	For both OR $1 - \left[-\frac{2}{3x^2} \right]_2^{\infty}$
 (ii)	EITHER: $\int_{0}^{1} \frac{4}{3} x^{3} dx = \frac{1}{3}$ < $\frac{1}{2}$ Median must exceed 1 OR: $m = \sqrt{(4/3)}$ > 1 AG	M1 A1 A1 M1 A1 A1	3	Attempt to find median M0 for $1.5^{1/4}$ Accept 1.15

 (iii)	$\int_{0}^{1} \frac{4}{3} x^{4} dx + \int_{1}^{\infty} \frac{4}{3 x^{2}} dx$	M1	Correct form for at least one integral
	$[4x^{5}/15] + [-4/(3x)]$ 1.6	B1 A1 3	Both integrals correct without limits AEF
 (iv)	$E(X^2) = \dots + \int_1^\infty \frac{4}{3x} dx$	M1	For second integral
	Second integral = $\left[\frac{4}{3}\ln x\right]_{1}^{\infty}$	A1	
	This is not finite, (so variance not finite)	A1 3 [12]	AEF
(i)	Justify a relevant Poisson approximation $E(A)=75\times0.022$ (=1.65), $E(B) = 90\times0.025$ (=2.25) Sum of two independent Poisson variables X has a	M1 B1B1	Using $n > 50$ or n large; $np < 5$ or p small (<0.1 or $np \approx npq$
	Poisson distribution Mean $m = 3.9$	A1 B1 5	Accept Po(3.9)
(ii)	$1 - P(\le 5)$	M1	Or From Po(m) Accept ≤ 4 ; OR Exact 1 – sum of at least 5 correct terms
	0.1994	A1 2 [7]	2 From calculator or tables, art 0.20
6 (i)	Use $p_s \pm zs$	M1	
	z=2.326	Bl	Or /40
	$s = \sqrt{(0.12 \times 0.88/50)}$ (0.013,0.227) Allow limits if penalised in Q1	A1 A1 4	Or (0.012,0.228) from 49
(ii)	$z(0.12 \times 0.88/n)^{1/2}$	MI A 1	Any z
	Solve to obtain	M1	Must contain \sqrt{n}
	n > 228.5	Al	Accept =
	$n \approx 229 \text{ or } 230$	A1 5	Must be integer
	Park way lating of the tangent and a lather	[9]
/ (I)	normal distributions	B1	Context R
	with equal variances	B1 2	
(ii)	EITHER:Cannot test for normality from data		Not variances are not equal
	accept population variances equal	B1 1	

(iii)	H ₀ : $\mu_B = \mu_G$, H ₁ : $\mu_B > \mu_G$ $s^2 = (23 \times 86.79 + 17 \times 93.01)/40$ =89.4335 $t = (1238.4/18 - 1526.8/24)/[s^2(18^{-1} + 24^{-1})]^{1/2}$ = 1.758 Use CV of 1.684 1.758 > 1.684 Reject H ₀ and accept there is sufficient evidence at the 5% significance level that teenage boys worry more, on average than teenage girls.	B1 M1 A1 M1 A1 B1 M1 A1√	9	For both. No other variables. Allow words Finding pooled estimate of variance May be implied by later value of <i>t</i> With pooled estimate of variance All correct art 1.76, or - Consistent Compare correctly with their CV (<i>t</i> value) Not assertive Ft on their 1.758 SR:Using s^2 = 93.01/18+86.79/24 : B1M0A0M1A0A1(for 1.749) B1M1(from
				1.645 or 1.684)A1
			10	Max 6/9
8 (i)	$\Sigma rf/80 = 1.9$ AG	R1	_12	With evidence
0 (1)	$\sum x^2 f/80 - 1.9^2$	M1		Or $\times 80/79$
	1.365 or 1.382	A1 .	3	
(ii)	Poisson distribution requires equal mean and variance EITHER: No, mean and variance differ significantly OR:	B1		May be indicated
	Yes, indicated by sample statistics taking	D1 /	,	
		DI 4		
(iii)	$e^{-1.9}1.9^{3}/3!$	B1 B1	2	Or from tables
	~~~~		<u> </u>	
(iv)	Considering sample as random selection of all similar matches $H_0$ : Poisson suitable model Combine last two cells $0.97^2/11.97+7.73^2/22.73+11.40^2/21.60$ $+ 2.32^2/13.68+5.02^2/10.02$ =11.63 CV 7.815 11.63 > 7.815 There is sufficient evidence that a Poisson distribution is not a suitable model confirming (or not) the answer to part (ii)	B1 B1 M1 A1 B1 * M1d	dep*	Any two correct All correct art 11.6 OR $p=0.00875$ OR $0.00875 < 0.05$ Et (ii)
		A1 V	0	SR: If last cells not combined: $\chi^2 = 12.3$ M1A1A1 CV=9.448 or p = 0.0152, B1*dep the M1dep*
(v)	E-values or probabilities would change df would increase by 1	B1 B1	2 [17]	Or other valid observation Or CV would change

### 4735 Statistics 4

1	(i)	Use $P(A) + P(B) - P(A \cap B) \le 1$ , $P(A \cap B) = 0$	B1	1	AEF
	(ii)	Use $P(A B)=P(A \cap B) / P(B)$ Use $P(A \cap B) = 0$ with argument with $x \neq 0$	M1 A1	AEF e.g 2	g. Inependent if $(A \cap B) = P(A)P(B) = x^2$ , $P(A \cap B) = 0, x \neq 0$ , so A and B are not indep.
	(iii)	Use $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B)$ - $P(B \cap C) - P(C \cap A) + P(A \cap B \cap C)$ Use $P(A \cap B) = 0$ ; $P(A \cap B \cap C) = 0$ $P(B \cap C) = 2x^2$ ; $P(C \cap A) = 2x^2$ Substitute and obtain required result AG	) M1 A1 A1 A1	4 (7)	Or equivalent. Allow one sign error For both For both
2	(i)	Wilcoxon test requires a symmetric distribution not supported by the diagram	B1	1	Or equivalent
	(ii)	H ₀ : $m = 1.80$ , H ₁ : $m > 1.80$ Use sign test Number exceeding $1.8 = 20$ Use B(30,0.5), P( $\ge 20$ ) Or P( $\le 10$ ) 0.0494 Compare with 0.05 correctly 2.008 Conclude there is significant evidence that	M1 A1 M1 A1 M1	B1	Needs "population median" if words OR: 1.645 if N(15,7.5), $z = 1.643$ , 1.816, used: OR CR ( $X \ge 20$ )
7	(;)	Conclude there is significant evidence that the median time exceeds $1.80 \text{ sec}$	A1√	7 (8)	tised, OK CK ( $x \ge 20$ ) ft $p$ or $z$
3	(1)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1 M1 A1	3	
	- (ii)	P(Y > X) = 0.08 + 0.05 + 0.03 + 0.08 + 0.06 + 0.07 $= 0.37$	M1 A1	2	
	(iii)	Use $P(Y > X \cap X > 0) / P(X > 0)$ P(X > 0) = 0.73 $P(Y > X \cap X > 0) = 0.08 + 0.06 + 0.07$ 21/73	M1 A1 A1 A1	4	From marginal distribution
	(iv) [*]	The director cannot conclude independence from cov. So director's conclusion incorrec OR: Eg P( $X=0 \cap Y=0$ )=0.11, P( $X=0$ )P( $Y=0$ )=0.27× 0.29≠ P( $X=0 \cap Y=0$ )	M1 t.A1 M1 A1	2 (11)	Idea that independence implies cov = 0 but not the reverse

_	-
5	7
J	

4	(i)	Variances seem not to be equal	B1	1	
 "a	(ii) verao	$\operatorname{H}_{0}: m_{M} = m_{A}, \operatorname{H}_{1}: m_{M} \neq m_{A}$		B1	Both hypotheses, AEF. Not
a	verag	$R_m = 40, m(m+n+1) - R_m = 72$	M1		Both found
		W = 40 CR: $W < 38$	B1		At It he of wrong 72
		40 not in CR, so do not reject $H_0$	M1		Or equivalent
		Insufficient evidence that median times dif	ferA1	6 (7)	In context. B1 if no M1 but conclusion correct Allow average here
5	(i)	$a+b = \frac{3}{4}$	B1		From M(0)=1
		$M'(0)=3^{3}/_{8}$	M1		
		$\frac{1}{2} + 3a + 4b = 3\frac{3}{8}$	A1		AEF
		Solve simultaneously $a = 1/2$ AG			Elimination or substitution
		$\begin{array}{c} a = \frac{1}{8} & AG \\ b = \frac{5}{8} & \end{array}$	A1 A1	6	
	(ii)	$M''(t) = e^{2t} + \frac{9}{2}e^{3t} + 10e^{4t}$	B1		
	()	$M''(0) - (M'(0))^2$	M1		
		$\frac{97}{8} - (3^{3}/8)^{2}$ ; $\frac{47}{64}$	A1A1	4	
	- (iii)	<i>x</i> = 2, 3, 4	B1	1 (11)	
6	(i)	P(Y > y) = 1 - F(y) = $a^3/x^3$	M1		Allow any variables
		$P(S > s) = P(all 3 values > s) = (a/s)^9 AG$	A1 A1		
		$\mathbf{f}(s) = \mathbf{d}/\mathbf{d}s(1 - (a/s)^9)$	M1		
		$=\begin{cases} 9\frac{a}{s^{10}} & s \ge a, \\ 0 & s < a \end{cases}$	A1	5	
	(ii)	$\int_{a}^{\infty} \frac{a^{9}}{s^{9}} \mathrm{d}s$	M1		
		= 9a/8	A1		
		S not unbiased since this not equal to $a$	M1		
		$T_1 = 8S/9$	B1√	4	Ft E( <i>S</i> )
(	(iii)	$Var(T_1) = a^2/63$ , $Var T_2 = a^2/9$	M1 A1 for	both	Correct method
		$\operatorname{Var}(T_1) < \operatorname{Var}(T_2), T_1 \text{ is more efficient}$	A1√	3	Comparison, completion $$ one variance correct with same dimensions
	(iv)	$t_1 = 4.0, t_2 = 5.4$	B1		Both
(	,	From data $a \le 4.5$ and $t_2 > 4.5$	B1B1	3 (15)	AEF

7	(i)	G(1) = 1 a = 2	M1 A1	2	
	<b>(ii)</b> (1	$\frac{(1+2t)/(4-t) = c (1+2t)(1-\frac{1}{4}t)^{-1}}{\frac{1}{2} = \frac{1}{4}(1+2t)(1+\frac{1}{4}t+(\frac{1}{4}t)^{2}+)}$ Coefficient of $t^{3} = \frac{1}{4}[(\frac{1}{4})^{3}+2(\frac{1}{4})^{2}]}{\frac{1}{2} = \frac{9}{256}}$	M1 A1 M1√		$c = \frac{1}{4}$ or 4 With 2 terms from previous line A1 4
	(iii)	$\mathbf{H}(t) = \left(\frac{1+2t}{4-t}\right)^3$	B1		
		H'(t) = $3\left(\frac{1+2t}{4-t}\right)^2 \left[\frac{2(4-t)+1+2t}{(4-t)^2}\right]$	M1A1		
		E(Y) = H'(1) =3	M1 A1	5	
	(iv)	$ \begin{array}{l} H(1) = p_0 + p_1 + p_2 + p_3 + p_4 + \dots = 1 \\ H(-1) = p_0 - p_1 + p_2 - p_3 + p_4 - \dots = -^{1}/_{125} \\ \text{Add:}  2(p_0 + p_2 + p_4 + \dots) = 1 - ^{1}/_{125} \\ ^{1}/_2(1 - ^{1}/_{125}) \qquad \text{AG} \end{array} $	M1 A1	2 (13)	With sufficient detail

# **4736 Decision Mathematics 1**

1	(i)	Biggest/largest/last number (only) (Not showing effect on a specific list)	B1	Accept bubbling to left unless inconsistent with part (ii): Smallest/first number	[1]
	(ii)	2 1 3 4 5 horizontally or vertically (may see individual comparisons/swaps) [For reference: original list was 3 2 1 5 4] 4 comparisons and 3 swaps (both correct)	M1	Or bubbling to left: 1 3 2 4 5 Watch out for shuttle sort used	
		+ comparisons and 5 swaps (both concer)		comparisons come first	[2]
	(iii)	1 2 3 4 5	M1	FT from their first pass with their bubbling if possible	
		One (more pass after this)	A1	Watch out for 'One swap (in 2 nd pass)'	[2]
	(iv)	$(3000 \div 500)^2 \times 0.2$	M1	$6^2 \times 0.2$ or $8 \times 10^{-7} \times 9 \times 10^6$ or any equivalent calculation	
		= 7.2 seconds	A1	cao UNITS	[2]
				Total =	7

2	(i)	eg or	M1 A1 B1	A graph with four vertices of orders 2, 2, 4, 4 (ignore any vertex labels) A connected graph Recognition that their graph is not	
		<ul> <li>Graph is not simple</li> <li>Two of the vertices are joined by two arcs (if appropriate)</li> <li>It has a 'loop' (if appropriate)</li> <li>For a simple graph each vertex must have order 3 or less</li> </ul>	DI	simple (although it is connected). Need not use the word 'simple'.	[3]
	(ii)	eg Graph is not connected	M1 A1 B1	Any graph with four vertices of orders 2, 2, 4, 4 (that is topologically different from that in part (i)) A graph that is not connected Recognition in words that their graph is not connected	[3]
				Total =	6

3	(i)	$y \le x + 2 x + 2y > 6 \qquad (y \ge -\frac{1}{2}x + 3)$	M1 M1	Line $y = x + 2$ in any form Line $x + 2y = 6$ in any form	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1	Line $2x + y = 12$ in any form All inequalities correct	[4]
	(ii)	$x + 2y = 6 \text{ and } y = x + 2 \implies \left(\frac{2}{3}, 2\frac{2}{3}\right)$ y + 2x = 12 and y = x + 2 $\implies \left(3\frac{1}{3}, 5\frac{1}{3}\right)$ y + 2x = 12 and x + 2y = 6 $\implies (6, 0)$	M1 A1 A1 B1	Follow through if possible Calculating from their lines or implied from either A mark $\left(\frac{2}{3}, \frac{8}{3}\right)$ (art (0.7, 2.7)) $\left(\frac{10}{3}, \frac{16}{3}\right)$ (art (3.3, 5.3)) (6, 0) cao	[4]
	(iii)	$(\frac{2}{3}, 2\frac{2}{3}) \Rightarrow 11\frac{1}{3}$ $(3\frac{1}{3}, 5\frac{1}{3}) \Rightarrow 32\frac{2}{3}$ $(6, 0) \Rightarrow 30$ At optimum, $x = 3\frac{1}{3}$ and $y = 5\frac{1}{3}$ Maximum value $= 32\frac{2}{3}$	M1 A1 A1	Follow through if possible Testing vertices or using a line of constant profit (may be implied) Accept $(3\frac{1}{3}, 5\frac{1}{3})$ identified (ft) $32\frac{2}{3}$ (air 32.6 to 32.7) (ft)	[3]
	(iv)	$5 \times 3\frac{1}{3} + k \times 5\frac{1}{3} \ge 5 \times 6 + k \times 0$ $\Rightarrow k \ge 2.5$	M1 M1 A1	$5 \times 3\frac{1}{3} + k \times 5\frac{1}{3}$ (ft) or implied $5 \times 6 + k \times 0$ or 30 or implied Greater than or equal to 2.5 (cao)	[3]
				Total =	14

4	(i)		M1	Both 6 and 5 shown at <i>B</i>	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	All temporary labels correct including $F$ and $J$	
		5 6 (9) (16) 7 12	A1	No extra temporary labels	
		$\begin{array}{c c} 6 \\ \hline C \\ \hline C \\ \hline F \\ \hline H \\ \hline \end{array} \begin{array}{c c} 12 \\ \hline H \\ \hline \end{array}$	B1	All permanent labels correct (may omit <i>F</i> and/or <i>J</i> ) cao	
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	Order of labelling correct (may omit $F$ and/or $J$ , may reverse $F$ and $J$ ) cao	
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1	A - E - B - G - H - K cao 14 cao	[7]
		Length = 14 metres			
	(ii)	Without using <i>CJ</i> : Route = $A - E - B - G - F - J$ Length = 21 metres	B1 B1	Follow through their (i) A - E - B - G - F - J 21	[2]
	(iii)	More than 2 metres	M1 A1	2 (cao) More than, or equivalent	
		(Answer of 'more than 7 metres' or '7 metres' $\Rightarrow$ M1, A0)		(Answer of 3 or $\geq$ 3 $\Rightarrow$ SC1)	[2]
				Total =	11

5	(i)		E		W	7			
		A	x		3 -	x	B1	AW = 3 - x	
		В	v		3 -	v	BI B1	BW = 3 - y CE = A - x - y in any form	
		С	4 - x	к - <i>у</i>	<i>x</i> +	y - 1		CE = 4 - x - y, in any form	
				2	•		M1	An appropriate calculation for their	
		Total cost = $f$	E(250x)	+ 250(2	3-x)			table	
		-	+ 200y -	+ 140(3	3-y)		A 1	Leading to given result	[5]
		+ 300(	300(4-x-y) + 280(x+y-1))				111	Leading to given result	[5]
		$= \pounds(2090 - 20.)$	x + 40y	<i>?</i> )	(A0	G)			
	(ii)	2090 - 20x + 4	$40y \le 2$	150			DI		
		$\Rightarrow -20x + 40y$	<u>&lt;</u> 60				BI	Showing where the given inequality	
		$\Rightarrow -x + 2y \leq 3$			(A0	G)			[1]
	(iii)	50(3-x) + 40(3-x)	(3-y) + 6	50(x+y-	1)		M1	Follow through their table	
		=210+10x+	20y		, ,		A1	Correct expression	[0]
		So need to ma	aximise $x + 2y$ (AG)			G)		210 + 10x + 20y	[2]
	(iv)	P x	у	S	t	-		Rows and columns may be in any	
		1 -1	-2	0	0	0	B1	order $-1$ -2 in objective row	
		0 -1	2	1	0	3	B1	Constraint rows correct	[2]
		0 1	1	0	1	3			
	(v)	Pivot on the 2	in the	y colur	nn	1	B1	Correct choice of pivot from <i>y</i>	
		1 -2	0	1	0	3	-	column Follow through their tableau	
		0 -0.5	1	0.5	0	1.5	-	and valid pivot if possible	
		0 1.5	Ū	0.5	1	1.5	M1	Pivot row correct	
		Pivot on 1.5 in	n the x	columr	1		A1	Other rows correct	
		1 0	0	$\frac{1}{3}$	$1\frac{1}{2}$	5	M1	Correct choice of pivot	
			0	<u>1</u>	<u>1</u>	5	1	Follow through their tableau	
		0 0	1	3	3	3 2		and valid pivot if possible	
		0 1	0	$-\frac{1}{3}$	$\frac{2}{3}$	1	B1	Correct answer only	[6]
					, ,				
		x = 1, y = 2							
								Total =	16

•	(a)(1)	Route Inspection (problem)	B1	Or Chinese postman (problem)	[1]
	(ii)	Odd nodes are A, B, C and D AB = 250 $AC = 100$ $AD = 200CD = 200$ $BD = 250$ $BC = 350AD = 250$ $BC = 350$	B1 M1	Identifying odd nodes (may be implied from working) Pairing odd nodes (all three pairings considered) M mark may not be implied	
		$\begin{array}{c} 450 & 350 & 550 \\ \text{Repeat } AC \text{ and } BFED = 350 \\ \text{Length of shortest route} = 3350 \text{ metres} \end{array}$	A1 B1	350 as minimum 3350 m or 3.35 km UNITS	[4]
	(iii)	C is an odd node, so we can end at another odd node. AB = 250 $AD = 200$ $BD = 250$	M1	Working need not be seen May be implied from answer	
		Repeat $AD = 200$ Length of route = 3200 metres Route ends at <i>B</i>	A1 B1	3200 B	[3]
	(b)(i)	D-G-C-A-E-F-B-H-D 1580 metres $A-C-D-G$ then method stalls	M1 A1 B1	Correct cycle If drawn then arcs must be directed 1580 Identifying the stall	[3]
	(ii)	BF = 100 $FE = 50$ $ED = 100$ $DG = 80$ $EH = 110$ $DC = 200$ $C$ $G$ $H$	M1 A1 B1 A1 B1	Use of Prim's algorithm to build tree (e.g. an attempt at list of arcs or order of adding vertices). NOT Kruskal Correct arcs chosen (listed or seen on tree) A correct tree with vertices labelled Order stated or clearly implied 640	[5]
	(iii)	Lower bound = $640 + 100 + 200 = 940$ 940 metres $\leq$ shortest tour $\leq$ 1580 metres	M1 A1	300 + weight of their tree their $940 \le \text{length} \le \text{their } 1580$ (condone use of $<$ here) Total =	[2]

For reference:





### **4737 Decision Mathematics 2**

	Reduce co	educe columns						
	0	0	0	0	0	M1	Either reducing columns or	
	1	2	3	2	0		reducing rows of 5×5 matrix	
	3	4	1	5	0			
	2	6	3	3	0	A1	This reduced matrix	
	2	5	3	1	0		Correct answer only	
	Rows are	already r	educed					
	Augment	by 1						
	0	0	0	0	1	M1	A reasonable attempt to augment	
	0	1	2	1	0			
	2	3	0	4	0			
	1	5	2	2	0	A1	This final matrix	
	1	4	2	0	0		Correct answer only	
	H = D	Harry	is the dire	ector				
	I = C	Iannos	operates	the came	era	B1	This matching indicated in any	
	J = L N - S	Jack is	in charg	e of light	ing	21	way	
	N - S	(and K	erry is no	ge of sou of used)	ma		5	
	Total score =					M1		
	(10-2) + (10-2) + (10-5) + (10-5) + (10-10)			1411	A reasonable attempt.			
	= 26					A1	14 or 24 $\Rightarrow$ M1, A0	[7]
							26	
(iii)		С	D	L	S			
	I	2	4	7	6			
	J K	4	<u>6</u> 8	5	9	B1	This $4 \times 4$ matrix (need not have row	
	N N	3	7	7	5	21	and column labels)	
		5	,	,	Ū		, ,	
	Reduce co	olumns	1				Or reduce rows	
		0	0	2	1		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		2	2	0	4	M1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		1	4	2	2		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		1	5	2	U			
	Then reduce rows						Then reduce columns	
		0	0	2	1		0 0 4 2	
		2	2	0	4	A1	0 0 0 3	
		0	3	1	1		0 3 3 2	
		1	3	2	0		0 2 3 0	
	I = D	J =	L K	K = C	N = S	B1	This matching indicated in any way	[4]
							Correct answer only	
							Tota	1 - 10

2	(i)	-2	B1	Accept 'loses 2' or equivalent	[1]
	(ii)	Column <i>W</i> is dominated by column <i>Y</i> .	B1	Stating <i>Y</i> (but not <i>W</i> dominates <i>Y</i> )	
		If Rowena plays P, Collette loses 2 with W but			
		1 with Y.	B1	Correct comparisons explained,	
		If Rowena plays $Q$ , Collette loses 1 with $W$ but		2 > 1 and $1 > -1$ , or equivalent	[2]
		gains I with Y.			
	(iii)		1.41		
		$\frac{[W] X Y Z}{[2] 2 1 2}$ Row min	MI	Determining row minima and	
		Rowena $P[2] -3 + 3 -3$		Column maxima, or equivalent.	
		$\begin{array}{c c} Q & [1] & 2 & -1 & -4 \\ Colmon & [2] & 2 & 1 & 2 \end{array}$		shown	
		$\begin{array}{c} \text{Collinax}  [2]  2  1  5 \end{array}$		May not be implied from answers	
		Play-safe for Rowena is P	A1	way not be implied from answers.	
		Play-safe for Collette is Y	Al	P stated	[3]
		They sure for conclusion is r		Y stated	[-]
	(iv)	-3p + 2(1-p) = 2-5p	B1	2-5 <i>p</i> in simplified form	
		Y gives $2p-1$		1 1	
		Z gives $7p-4$	B1	Both 2 <i>p</i> -1 and 7 <i>p</i> -4 in any form	[2]
	(v)			Graph must be on graph paper	
			B1	Their lines drawn correctly on a	
				reasonable scale	
			1.41		
			MI	Solving the correct pair of	
		$7p - 4 = 2 - 5p \Longrightarrow p = 0.5$	A 1	correctly	
		E = -0.5	R1	0.5 correct answer only	[4]
			DI	-0.5, correct answer only	["]
	(vi)	Add 4 throughout matrix to make all values non-	B1	'Add 4', or new matrix written out	
	()	negative	21	or equivalent	
		On this augmented matrix, if Collette plays Y		1	
		Rowena expects $4p_1 + 3p_2 + 6p_3$ , and if Collette	B1	Relating to columns $Y$ and $Z$	
		plays Z Rowena expects $7p_1 + 0p_2 + 2p_3$		respectively. Note: $4p_1 + 3p_2 + 6p_3$	
				and $7p_1 + 2p_3$ are given in question	
		We are solving a maximin problem.			
		<i>m</i> is less than or equal to each of these values	B1	Or shown on a diagram.	
		since we need find the maximum value of the		For <u>each value of p</u> we look at the	
		worst possible augmented expected pay-off for		minimum output.	[2]
	< •••	each value of p	D1		ျပ
	(vii)	We use an inequality instead of an equality	BI	So that we can use the Simplex	
		because this is needed to enable the Simplex		algorithm.	[1]
		argonulin to proof on a row that will increase the value of $M$			[1]
			B1	3	
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$p_3 = \frac{2}{7}$		$\frac{1}{7}$	
		$E = \frac{6}{7}$	B1	$\frac{6}{7}$	[2]
			-	Tata	l = 18
	1	1		Tota	- 10

ANSWERED ON INSERT

3	(i)	$\{SA, B, D, G\}, \{C, E, F, T\}$ (given)	M1	Identifying the correct arcs, on a	
		AC = 4, BC = 2, BE = 1, DE = 2, GE = 5, GT = 6		diagram or list or by using 4, 2, 1, $2, 5, 6$	
		4+2+1+2+5+6		2, 3, 0	
		= 20 litres per minute	A1	20 from a correct calculation	[2]
	(ii)	At most 2 litres per minute can enter $G$ so the arc	B1	Maximum into $G = 2$	141
	(;;;)	GE can carry at most 2 litres per minute	D1	Q	
	(Ш)	At most 8 littles per minute can now into $E$	DI	8	
		Flow shown on diagram on insert	M1	A flow of the rate they have claimed	
		Flow in = flow out for each vertex except $S$ , $T$		through $E$ (irrespective of whether it	
				changed assume a blank means ()	
		A feasible flow of 8 litres per minute through E	A1	No pipe capacities exceeded and	
				flow through $E = 8$	[3]
	(iv)	Arrows labelled on diagram $C = 0 \qquad CE = 0 \qquad ET = 1$		Assume blanks mean 0	
		AS = 4 $CA = 4$ $FC = 4$ $TF = 4$	M1	Arrows on arcs on one of the routes	
				SACFT, SBET, SDGT labelled	
		$AB = 3 \qquad BC = 2 \qquad CE = 3 \qquad EF = 4$		correctly, or all labels on the route	
		$BA = 0 \qquad CB = 0 \qquad EC = 0 \qquad FE = 0$		reversed	
		SB = 4 $BE = 0$ $ET = 5$	M1	Arrows on all three routes labelled	
		BS = 1 $EB = 1$ $TE = 1$		correctly or all reversed	
		BD = 3 $DE = 2$ $EG = 0$	A1	All arrows labelled correctly, not	
		DB = 0 $ED = 0$ $GE = 5$		reversed	
		CD = 0 $DC = 0$ $CT = 4$			[3]
		$SD = 0 \qquad DG = 0 \qquad GT = 4$ $DS = 2 \qquad GD = 2 \qquad TG = 2$			
	(v)	Amount that flows along $SBDET = 2$ litres per	B1	2	
		min	2.01	For arrows on route <i>SBDET</i> :	
		SB = 4.2 $BD = 3.1$ $DF = 2.0$ $FT = 5.3$	MI A1	Labels updated consistently These all labelled correctly	[3]
		BS = 1.3 $DB = 0.2$ $ED = 0.2$ $TE = 1.3$	111	(and not reversed)	[9]
	(vi)	Route used = <i>SBCET</i>	B1	SBCET listed	
		SP = 42.0 $PC = 2.0$ $CE = 2.1$ $ET = 5.2$	M1	For arrows on route <i>SBCET</i> :	
		SD = 420 $BC = 20$ $CL = 51$ $E1 = 55$	A1	These all labelled correctly	[3]
		$BS = 1 \ 3 \ 5 \ CB = 0 \ 2 \ EC = 0 \ 2 \ TE = 1 \ 3$		(and not reversed)	[-]
		5			
	(vii)	A 4 C 4 F	BI	Follow through their (v) and (vi) if	[11]
				Assume blanks mean 0	[*]
		$S \overbrace{5}$			
		B			
		D 2 G			
	(viii)	Eg cut through arcs SA, SB, SD	M1	A suitable cut chosen, indicated in	
		OF arcs AC, BC, BE, DE, DG	A1	any way Indicated by listing arcs cut	[2]
				Tota	l = 18

4 (a) $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{2}$			PARI (a	a) ANS	WEKED	ON INSER	l			
(i) (ii) $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	(a)	Stage	State	Action	Working	Suboptimal			
$\begin{bmatrix} 2 & 0 & 0 & 0 & 5 & 5 \\ \hline 2 & 0 & 4 & 4 \\ \hline 2 & 0 & 4 & 4 \\ \hline 2 & 0 & 3 + 5 = 8 & 8 \\ \hline 1 & 1 & 1 & 2 + 4 = 6 & 8 \\ \hline 1 & 1 & 1 & 2 + 4 = 6 & 8 \\ \hline 2 & 1 & 6 + 4 = 10 & 10 \\ \hline 2 & 2 & 4 + 4 = 8 & 8 \\ \hline 1 & 1 & 2 & 2 + 4 + 6 & 8 \\ \hline 2 & 1 & 6 + 4 = 10 & 10 \\ \hline 0 & 0 & 4 & 8 & 8 & 12 \\ \hline 0 & 0 & 0 & \frac{1 + 5 + 8 + 13}{2 + 16 + 12 + 10 + 12} & 13 \\ \hline 0 & 0 & \frac{1 + 5 + 8 + 13}{2 + 2 + 10 - 12} & 13 \\ \hline 1 & 1 & 2 & 2 + 10 - 12 \\ \hline 0 & 0 & 1 & \frac{1 + 8 + 8 + 12}{2 + 10 - 12} & 13 \\ \hline 0 & 0 & 0 & \frac{1 + 5 + 8 + 13}{2 + 2 + 10 - 12} & 13 \\ \hline 0 & 0 & 0 & \frac{1 + 5 + 8 + 13}{2 + 2 + 10 - 12} & 13 \\ \hline 0 & 0 & 0 & \frac{1 + 5 + 8 + 13}{2 + 2 + 10 - 12} & 13 \\ \hline 0 & 0 & 0 & \frac{1 + 5 + 8 + 13}{2 + 2 + 10 - 12} & 13 \\ \hline 0 & 0 & 0 & \frac{1 + 5 + 8 + 13}{2 + 2 + 10 - 12} & 13 \\ \hline 0 & 0 & 0 & \frac{1 + 5 + 8 + 13}{2 + 2 + 10 - 12} & 13 \\ \hline 0 & 0 & 0 & \frac{1 + 5 + 8 + 13}{2 + 10 - 2 + 10 - 12} & 13 \\ \hline 0 & 0 & 0 & \frac{1 + 5 + 8 + 13}{2 + 10 - 2 + 10 - 12} & 13 \\ \hline 0 & 0 & 0 & 0 & \frac{1 + 5 + 8 + 13}{2 + 10 - 2 + 10 - 12} & 13 \\ \hline 0 & 0 & 0 & 0 & \frac{1 + 5 + 8 + 13}{2 + 10 - 2 + 10 - 12} & 15 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 &$							maximum			
$\begin{bmatrix} 2 & 1 & 0 & 4 & 4 \\ \hline 0 & 0 & 3+5=8 & 8 \\ \hline 1 & 1 & 2+4=6 \\ \hline 2 & 4+4=8 & 8 \\ \hline 1 & 1 & 2+4=6 \\ \hline 2 & 2-5+4=9 \\ \hline 0 & 0 & 4+8=12 \\ \hline 2 & 2-2+10=12 \\ \hline 1 & 3 \\ \hline 1 & 2 & 2+10=12 \\ \hline 1 & 3 \\ \hline 1 & 2 & 2+10=12 \\ \hline 1 & 3 \\ \hline 1 & 2 & 2+10=12 \\ \hline 1 & 3 \\ \hline 1 & 1 & 2-2+10=12 \\ \hline 1 & 3 \\ \hline 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 \\ \hline 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 \\ \hline 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 \\ \hline 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 \\ \hline 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 \\ \hline 1 & 1 \\ \hline 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 \\ \hline 1 & 1 \\ \hline 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 \\ \hline 1 & 1 \\ \hline 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 \\ \hline 1 & 1 \\ \hline 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 \\ \hline 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 \\ \hline 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 \\ \hline 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 & 2-2+10=12 \\ \hline 1 & 1 & 1 & 2-2+10=12 \\ \hline$				0	0	5	5	B1	5.4.4 identified as subontimal	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			2	1	0	4	4		maxima for stage 2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				2	0	4	4	M1	Transferring suboptimal maxima	
(ii) $ \begin{array}{c c c c c c c c c c c c c c c c c c c $				0	0	3+5=8	8		from stage 2 to stage 1 correctly	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					1	4+ <b>4</b> = <b>8</b>	8	A1	Correct additions or totals seen	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			1	1	1	2+4=6			for all rows in stage 1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					2	4+ <b>4</b> = <b>8</b>	8	B1	8, 8, 10 identified as suboptimal	
(ii) $ \begin{array}{c c c c c c c c c c c c c c c c c c c $				2	1	6+4=10	10		maxima for stage 1 (cao)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					2	5+4=9		M1	Transferring suboptimal maxima	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					0	4 + 8 = 12		A 1	from stage 1 to stage 0 correctly	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			0	0	1	5+8=13	13	AI	for all rows in stage 0	
Length of longest path = 13 Route = $(0,0) - (1;1) - (2;2) - (3;0)$ Di BiCorrect route or in reverse (including $(0; 0)$ and $(3; 0)$ )[8](b)(i) $D(3)$ $D(3)$ Condone directions missing Must be activity on arc A reasonable attempt, arcs should be labelledCondone extra dummies provided precedences are not violated, accept networks with multiple end vertices Arc weights may be shown but are not necessary[2](ii) $f(3)$ $f(3)$ $f(3)$ [2](iii) $f(3)$ $f(3)$ $f(3)$ [2](iii) $f(3)$ $f(3)$ $f(3)$ [2] $f(3)$					2	2 + 10 = 12		B1	13	
(ii) (iii) (b)(i) (b)(i) (b)(i) (b)(i) (b)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i) (c)(i)			Length a	of longe	est nath =	: 13		B1	Correct route or in reverse	[8]
(b)(i) $ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Route =	(0:0) -	(1:1) - (2)	2:2) - (3:0)			(including (0: 0) and (3: 0))	[v]
Image: Constraint of the sectivity of th		(b)(i)				D(3)			Condone directions missing	
A(4) $E(4)$ $J(5)$ $K(4)$ $M1$ A reasonable attempt, arcs should be labelledA(4) $B(5)$ $F(2)$ $K(4)$ $A1$ Any correct form Condone extra dummies provided precedences are not violated, accept networks with multiple end vertices Arc weights may be shown but are not necessary[2](ii) $f(5)$ $F(7)$ $F(7)$ $F(7)$ $F(7)$ $D(0)$ $f(7)$ $F(7)$ $F(7)$ $F(7)$ $F(7)$ $D(1)$ $F(7)$ $F(7)$ $F(7)$ $F(7)$ $F(7)$ $P(1)$ $F(7)$ $F(7)$ $F(7)$ $F(7)$ $F(7)$ $P(1)$ $F(7)$						– Č			Must be activity on arc	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				/ `				M1	A reasonable attempt, arcs should	
B(5) $F(2)$ $K(4)$ A1Any correct form Condone extra dummies provided precedences are not violated, accept networks with multiple end vertices Arc weights may be shown but are not necessary[2](ii) $H(6)$ $L(4)$ $F(3)$ [2](iii) $H(5)$ $F(3)$ $F(3)$ $F(3)$ [2](iii) $H(5)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ [2] $D(0)$ $H(5)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $D(0)$ $H(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $D(0)$ $H(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $D(1)$ $H(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $D(1)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $D(1)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $D(1)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $D(1)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $D(1)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $P(1)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $P(1)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3)$ $F(3$			A(4)	1	E(4)	J(5)			be labelled	
Image: Construct form construction of the form constru				(5)	F(2)	K	(4)			
(ii) (ii) (ii) (ii) (ii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii)								A1	Any correct form	
(ii) (ii) (ii) (ii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii)			CON	G(4	4)				Condone extra dummies	
(ii) (ii) (ii) (ii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (ii)) (ii) (ii)) (ii)			C(2)			L(4)			provided precedences are not	
Image: constructionImage: constructionImage: construction[2](ii)Image: construction $I(5)$ $I(5)$ $I(5)$ $I(5)$ $I(7)$ (iii)Image: construction $I(5)$ $I(5)$ $I(5)$ $I(5)$ $I(7)$ Image: constructionImage: construction $I(5)$ $I(5)$ $I(7)$ $I(7)$ Image: constructionImage: construction $I(7)$ $I(7)$ $I(7)$ $I(7)$ Image: constructionImage: construction $I(7)$ $I(7)$ $I(7)$ $I(7)$ Image: constructionImage: construction $I(7)$ $I(7)$ $I(7)$ $I(7)$ Image: construction $I(7)$ $I(7)$ $I(7)$ $I(7)$ $I(7)$ $I(7)$ Image: construction $I(7)$ $I(7)$ $I(7)$ $I(7)$ $I(7)$ $I(7)$ Image: construction $I(7)$ $I(7)$ $I(7)$ $I(7)$ $I(7)$ $I(7)$ $I(7)$ Image: construction $I(7)$ $I(7)$ $I(7)$ $I(7)$ $I(7)$ $I(7)$ $I(7)$ Image: construction $I(7)$ $I(7)$ $I(7)$ $I(7)$ $I(7)$ $I(7)$ $I(7)$ Image: construction $I(7)$ $I(7)$ $I(7)$ $I(7)$ $I(7)$ $I(7)$ $I(7)$ Image: construction $I(7)$ $I(7)$ $I(7)$ $I(7)$ $I(7)$ $I(7)$ $I(7)$ Image: construction $I(7)$ $I(7)$ $I(7)$ $I(7)$ $I(7)$ $I(7)$ $I(7)$ Image: construction $I(7)$ $I(7)$ $I(7)$ <th></th> <th></th> <th></th> <th></th> <th></th> <th>$\checkmark$</th> <th></th> <th></th> <th>multiple and vertices</th> <th></th>						$\checkmark$			multiple and vertices	
(ii) (ii) (ii) (ii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (					I(5)				Arc weights may be shown but	[2]
(ii) (ii) (ii) (ii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii					1(5)				are not necessary	[~]
(iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii) (iii)) (iii) (iii) (iii)) (iii) (iii) (iii)) (ii)) (ii)		(ii)							Follow through their network if	
Values at vertices may be recorded using any consistent notation $010$ $515$ $819$ $313$ $010$ $515$ $819$ $313$ $111$ $111$ $1111$ $1111$ $11111$ $111111$ $111111111111111111111111111111111111$		()			4 5	7 8	]		possible	
Image: constraint of the forward pass of the forward pass with no more than one independent error forward pass with no more than one independent error (follow through their 13) B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 Control of K A directed dummy from end of G to start of L Condone extra dummies provided precedences are not violated Watch out for K following I[2][2][2][2][2][3][3][4][4][5][4][5][5][6][6][6][6][7][6][8][7][8][8][8][8][8][8][8][8][8][8][8][8][8][8][8][9][9][9][9][10][9][11][9][12][9][13][14][14][15][15][16][16][16][17][16][18][16][19][16][10][16][10][16][16][16][17][16][17][16][18][16][19][16][19][16][10][16][11][16][11][16][11][16][16][16]					$\leq$				Values at vertices may be	
Image: constraint of the forward pass with no more than one independent error forward pass with no more than one independent error forward pass correctImage: constraint of the forward pass with no more than one independent error forward pass correctImage: constraint of the forward pass with no more than one independent error forward pass correctImage: constraint of the forward pass with no more than one independent error forward pass correctImage: constraint of the forward pass with no more than one independent error forward pass correctImage: constraint of the forward pass					$\sim$	、 、			recorded using any consistent	
Image: Non-state of the system of the sys			_ /						notation	
Image: constraint of the forward pass with no more than one independent error Forward pass correctForward pass with no more than one independent error Forward pass correctMinimum project completion time = 13 days Critical activities $B, G, L$ Minimum project completion time = 13 days B1Backward pass correct Backward pass correct(iii)Image: constraint of the forward pass correct Backward pass correct[6](iii)Image: constraint of the forward pass correct Backward pass correct[6](iii)Image: constraint of the forward pass correct B1[6](iii)Image: constraint of the forward pass correct B1[6]Image: constraint of the forward pass correct B1[6]Image: constraint of the forward pass correct B1[7]Image: constraint of the forward pass correct B1[8]Image: constraint of the forward pass correct Condone extra dummise provided precedences are not violated Watch out for K following IImage: constraint of the forward pass correct Total = 18			0 0		512		3 13	M1		
A1One independent error Forward pass correct $23$ $99$ Minimum project completion time = 13 days Critical activities $B, G, I$ Backward pass with no more than one independent error (follow through their 13)B1Backward pass correctB13 stated, cao $B, G, L$ correct answer only(iii) $\overbrace{F}$ $\overbrace{F}$ B1A1Minimum project completion time = 13 days B1B1Backward pass correctB1B1B1A directed dummy from end of $G$ to start of $K$ B1A directed dummy from end of $G$ to start of $L$ Condone extra dummies provided precedences are not violated Watch out for $K$ following $I$ [2]Total = 18								A 1	Forward pass with no more than	
Image: Construct of the construction is the construction of the construction is the construction of the construction is the construction of the construction of the construction is the construction of the const					$\rightarrow$	$\langle \rangle$		AI	Forward page correct	
Image: Description of the sector of the s							·	M1	rorward pass confect	
Image: Description of the part of the					212			1011	Backward pass with no more than	
A1 B1 B1through their 13) Backward pass correct 13 stated, cao $B, G, L$ correct answer only[6](iii) $\overbrace{E}_{F}$ $\overbrace{H}$ $\overbrace{L}$ Not follow through A directed dummy from end of G to start of K B1Not follow through A directed dummy from end of G to start of L Condone extra dummies provided precedences are not violated Watch out for K following I[2]				Ł	2 3	9 9			one independent error (follow	
Minimum project completion time = 13 days Critical activities $B, G, I$ B1 B1Backward pass correct 13 stated, cao $B, G, L$ correct answer only[6](iii) $\overbrace{F}_{F}$ $\overbrace{K}_{K}$ B1Not follow through A directed dummy from end of $G$ to start of $K$ B1Not follow through A directed dummy from end of $G$ to start of $L$ Condone extra dummies provided precedences are not violated Watch out for $K$ following $I$ [2]								A1	through their 13)	
(iii) $E$ B113 stated, cao $B, G, L$ correct answer only[6](iii) $E$ Not follow through A directed dummy from end of G to start of KNot follow through B1[2]B1 $A$ directed dummy from end of G to start of L Condone extra dummies provided precedences are not violated Watch out for K following I[2]				Minim	um proie	ct completio	m time = 13 days	B1	Backward pass correct	
(iii) $E$ $B, G, L \text{ correct answer only}$ (iii) $E$ Not follow throughB1A directed dummy from end of G to start of KB1B1A directed dummy from end of G to start of L Condone extra dummies provided precedences are not violated Watch out for K following I[2]					FJ-	Critical	activities B, G, L	B1	13 stated, cao	[6]
(iii) $ \begin{array}{c c}                                    $							, ,		<i>B</i> , <i>G</i> , <i>L</i> correct answer only	
$\begin{bmatrix} F \\ F \\ H \\ H \\ I \\ I$		(iii)		●_E					Not follow through	
$\begin{bmatrix} I \\ I $					F			B1	A directed dummy from end of $G$	
$\begin{bmatrix} I \\ I $				€	<u> </u>			D1	to start of K	
H $L$ $I$				6		K		ВІ	A directed dummy from end of G	[2]
<i>L L L Controlic Cytra dumines provided</i> precedences are not violated Watch out for <i>K</i> following <i>I</i> <b>Total = 18</b>									Condone extra dummies provided	[4]
I = I $V = I $ $V = I$				$\checkmark$					precedences are not violated	
Total = 18				Ι	-				Watch out for K following I	
									Tota	l = 18

PART (a) ANSWERED ON INSERT

### **Grade Thresholds**

#### Advanced GCE Mathematics (3890-2, 7890-2) June 2008 Examination Series

#### Unit Threshold Marks

78	392	Maximum Mark	Α	В	С	D	E	U
4724	Raw	72	63	55	47	39	32	0
4721	UMS	100	80	70	60	50	40	0
4700	Raw	72	56	49	42	35	29	0
4722	UMS	100	80	70	60	50	40	0
4700	Raw	72	55	47	40	33	26	0
4723	UMS	100	80	70	60	50	40	0
4724	Raw	72	56	49	43	37	31	0
4724	UMS	100	80	70	60	50	40	0
4725	Raw	72	57	49	41	34	27	0
4725	UMS	100	80	70	60	50	40	0
4726	Raw	72	49	43	37	31	25	0
4720	UMS	100	80	70	60	50	40	0
4707	Raw	72	54	47	41	35	29	0
4/2/	UMS	100	80	70	60	50	40	0
4729	Raw	72	61	53	45	37	29	0
4720	UMS	100	80	70	60	50	40	0
4720	Raw	72	56	47	38	29	20	0
4729	UMS	100	80	70	60	50	40	0
4720	Raw	72	56	47	38	29	21	0
4730	UMS	100	80	70	60	50	40	0
4724	Raw	72	59	50	42	34	26	0
4731	UMS	100	80	70	60	50	40	0
4722	Raw	72	60	52	45	38	31	0
4752	UMS	100	80	70	60	50	40	0
4722	Raw	72	56	48	41	34	27	0
4733	UMS	100	80	70	60	50	40	0
4724	Raw	72	55	48	41	34	28	0
4734	UMS	100	80	70	60	50	40	0
4725	Raw	72	56	49	42	35	28	0
4735	UMS	100	80	70	60	50	40	0
1726	Raw	72	53	46	39	32	26	0
4130	UMS	100	80	70	60	50	40	0
4707	Raw	72	61	54	47	40	34	0
4/3/	UMS	100	80	70	60	50	40	0

### **Specification Aggregation Results**

	Maximum Mark	Α	В	С	D	Е	U
3890	300	240	210	180	150	120	0
3891	300	240	210	180	150	120	0
3892	300	240	210	180	150	120	0
7890	600	480	420	360	300	240	0
7891	600	480	420	360	300	240	0
7892	600	480	420	360	300	240	0

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3890	33.3	50.4	65.4	77.0	86.6	100	14679
3891	100	100	100	100	100	100	1
3892	57.2	76.7	88.2	94.1	97.6	100	1647
7890	45.4	67.3	82.4	92.1	97.8	100	10512
7891	33.3	66.7	100	100	100	100	6
7892	56.5	77.9	90.0	95.4	98.2	100	1660

For a description of how UMS marks are calculated see: <u>http://www.ocr.org.uk/learners/ums_results.html</u>

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

**OCR Customer Contact Centre** 

### 14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

#### www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

