GCE

Mathematics (MEI)

Advanced GCE A2 7895-8

Advanced Subsidiary GCE AS 3895-8

Mark Schemes for the Units

June 2009

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2009
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (MEI) (7895)Advanced GCE Further Mathematics (MEI) (7896)Advanced GCE Further Mathematics (Additional) (MEI) (7897)Advanced GCE Pure Mathematics (MEI) (7898)
Advanced Subsidiary GCE Mathematics (MEI) (3895) Advanced Subsidiary GCE Further Mathematics (MEI) (3896) Advanced Subsidiary GCE Further Mathematics (Additional) (MEI) (3897) Advanced Subsidiary GCE Pure Mathematics (MEI) (3898)
Unit/Content Page
4751 (C1) Introduction to Advanced Mathematics 3
4752 (C2) Concepts for Advanced Mathematics 8
4753 (C3) Methods for Advanced Mathematics 11
4754 (C4) Applications of Advanced Mathematics 17
4755 (FP1) Further Concepts for Advanced Mathematics 23
4756 (FP2) Further Methods for Advanced Mathematics 28
4757 Further Pure 3 34
4758 Differential Equations 42
4761 Mechanics 1 46
4762 Mechanics 2 52
4763 Mechanics 3 56
4764 MEI Mechanics 4 60
4766 Statistics 1 63
4767 Statistics 2 67
4768 Statistics 3 71
4769 Statistics 4 76
4771 Decision Mathematics 1 80
4772 Decision Mathematics 2 85
4773 Decision Mathematics Computation 90
4776 Numerical Methods 95
4777 MEI Numerical Computation 97
Grade Thresholds 103

4751 (C1) Introduction to Advanced Mathematics

Section A

1	$(0,14)$ and $(14 / 4,0)$ o.e. isw	4	M2 for evidence of correct use of gradient with $(2,6)$ eg sketch with 'stepping' or $y-6=-4(x-2)$ seen or $y=-4 x+14$ o.e. or M1 for $y=-4 x+c$ [accept any letter or number] and M1 for $6=-4 \times 2+c$; A1 for $(0,14)[c=14$ is not sufficient for A1] and A1 for $(14 / 4,0)$ o.e.; allow when $x=0, y=14$ etc isw	4
2	$[a=] \frac{2(s-u t)}{t^{2}}$ o.e. as final answer [condone $\left.[a=] \frac{(s-u t)}{0.5 t^{2}}\right]$	3	M1 for each of 3 complete correct steps, ft from previous error if equivalent difficulty [eg dividing by t does not count as step needs to be by t^{2}] $[a=] \frac{(s-u t)}{\frac{1}{2} t^{2}}$ gets M2 only (similarly other triple-deckers)	3
3	10 www	3	M1 for $\mathrm{f}(3)=1$ soi and A1 for $31-3 k=1$ or $27-3 k=-3$ o.e. [a correct 3 -term or 2-term equation] long division used: M1 for reaching $(9-k) x+4$ in working and A1 for $4+3(9-k)=1$ o.e. equating coeffts method: M2 for $(x-3)\left(x^{2}+3 x-1\right)[+1]$ o.e. (from inspection or division)	3
4	$x<0$ or $x>6$ (both required)	2	B1 each; if B0 then M1 for 0 and 6 identified;	2
5	(i) 10 www (ii) 80 www or $\mathrm{ft} 8 \times$ their (i)	2	M1 for $\frac{5 \times 4 \times 3}{3 \times 2(\times 1)}$ or 1 1 5	4

6	any general attempt at n being odd and n being even n odd implies n^{3} odd and odd - odd $=$ even n even implies n^{3} even and even - even = even	M1 A1 A1	M0 for just trying numbers, even if some odd, some even or $n\left(n^{2}-1\right)$ used with n odd implies $n^{2}-1$ even and odd \times even $=$ even etc [allow even \times odd $=$ even] or A2 for $n(n-1)(n+1)=$ product of 3 consecutive integers; at least one even so product even; odd $^{3}-$ odd $=$ odd etc is not sufft for A1 SC1 for complete general method for only one of odd or even eg $n=2 m$ leading to $2\left(4 m^{3}-m\right)$	3
7	(i) 1 (ii) 1000	2 1	B1 for 5^{0} or for $25 \times 1 / 25$ o.e.	3
8	(i) $2 / 3 \mathrm{www}$ (ii) $43-30 \sqrt{2}$ www as final answer	2 3	M1 for $4 / 6$ or for $\sqrt{48}=2 \sqrt{12}$ or $4 \sqrt{3}$ or $\sqrt{27}=3 \sqrt{3}$ or $\sqrt{108}=3 \sqrt{12}$ or for $\sqrt{\frac{4}{9}}$ M2 for 3 terms correct of $25-15 \sqrt{2}-$ $15 \sqrt{2}+18$ soi, M1 for 2 terms correct	5
9	(i) $(x+3)^{2}-4$ (ii) ft their $(-a, b)$; if error in (i), accept $(-3,-4)$ if evidence of being independently obtained	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	B1 for $a=3$, B2 for $b=-4$ or M1 for $5-$ 3^{2} soi B1 each coord.; allow $x=-3, y=-4$; or M1 for $\left[\begin{array}{l}-3 \\ -4\end{array}\right]$ o.e. oe for sketch with -3 and -4 marked on axes but no coords given	5
10	$\left(x^{2}-9\right)\left(x^{2}+4\right)$ $x^{2}=9[$ or -4$]$ or ft for integers /fractions if first M1 earned $x= \pm 3$ cao	M2 M1 A1	or correct use of quad formula or comp sq reaching 9 and -4 ; allow M1 for attempt with correct eqn at factorising with factors giving two terms correct, or sign error, or attempt at formula or comp sq [no more than two errors in formula/substn]; for this first M2 or M1 allow use of y etc or of x instead of x^{2} must have x^{2}; or M1 for $(x+3)(x-3)$; this M1 may be implied by $x= \pm 3$ A0 if extra roots if M0 then allow SC1 for use of factor theorem to obtain both 3 and -3 as roots or $(x+3)$ and $(x-3)$ found as factors and SC2 for $x^{2}+4$ found as other factor using factor theorem [ie max SC3]	4

Section B

4752 (C2) Concepts for Advanced Mathematics

Section A

1	using Pythagoras to show that hyp. of right angled isos. triangle with sides a and a is $\sqrt{ } 2 a$ completion using definition of cosine	M1 A1	www a any letter or a number NB answer given	2
2	$\begin{aligned} & 2 x^{6}+5 x \\ & \text { value at } 2-\text { value at } 1 \\ & 131 \end{aligned}$	$\begin{array}{\|l} \hline \text { M2 } \\ \text { M1 } \\ \text { A1 } \end{array}$	M1 if one error ft attempt at integration only	4
3	(i) 193 (ii) divergent + difference between terms increasing o.e.	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	M1 for $8+15+\ldots+63$	3
4	(i) 2.4 (ii) 138	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	M1 for $43.2 \div 18$ M1 for their (i) $\times \frac{180}{\pi}$ or $\theta=\frac{43.2 \times 360}{36 \pi}$ o.e. or for other rot versions of $137.50 \ldots$	4
5	(i)sketch of $\cos x$; one cycle, sketch of $\cos 2 x$; two cycles, both axes scaled correctly (ii) (1-way) stretch parallel to y-axis sf 3	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \text { D1 } \\ 1 \\ \hline \\ \text { D1 } \end{array}$		5
6	$\begin{aligned} & y^{\prime}=3 x^{2}-12 x-15 \\ & \text { use of } y^{\prime}=0 \text {, s.o.i. } \mathrm{ft} \\ & x=5,-1 \text { c.a.o. } \\ & x<-1 \text { or } x>5 \mathrm{ft} \end{aligned}$	M1 M1 A1 A1 A1	for two terms correct	5
7	use of $\cos ^{2} \theta=1-\sin ^{2} \theta$ at least one correct interim step in obtaining $4 \sin ^{2} \theta-\sin \theta=0$. $\begin{aligned} & \theta=0 \text { and } 180, \\ & 14 .(47 \ldots) \\ & 165-166 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	NB answer given r.o.t to nearest degree or better -1 for extras in range	5
8	attempt to integrate $3 \sqrt{x}-5$ $[y=] 2 x^{\frac{3}{2}}-5 x+c$ subst of $(4,6)$ in their integrated eqn $c=10 \text { or }[y=] 2 x^{\frac{3}{2}}-5 x+10$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A2 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	A1 for two terms correct	5

| $\mathbf{9}$ | (i) 7 | 1 | |
| :--- | :--- | :--- | :--- | :--- |
| (ii) 5.5 o.e. | 2 | M1 for at least one of $5 \log _{10} a$ or
 $1 / 2 \log _{10} a$ or $\log _{10} a^{5.5}$ o.e. | 3 |

Section B

\begin{tabular}{|c|c|c|c|c|c|}
\hline 10 \& \begin{tabular}{l}
i \\
ii \\
iii \\
iv \\
v
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& 0.6(0 \ldots), 0.8(45 \ldots),[1], 1.1(76 \ldots) \\
\& 1.3(0 \ldots), 1.6(0 \ldots) \\
\& \text { points plotted correctly ft } \\
\& \text { ruled line of best fit } \\
\& b=\text { their intercept } \\
\& a=\text { their gradient } \\
\& -11 \leq \mathrm{b} \leq-8 \text { and } 21 \leq \mathrm{a} \leq 23.5 \\
\& 34 \text { to } 35 \mathrm{~m} \\
\& 29=\text { ' } 22^{\prime} \log t-‘ 9 \\
\& t=10^{\prime 1.727 . . .}
\end{aligned}
\]
\[
55 \text { [years] approx }
\] \\
For small \(t\) the model predicts a negative height (or \(h=0\) at approx 2.75) \\
Hence model is unsuitable
\end{tabular} \& \begin{tabular}{l}
T1 \\
P1 \\
L1 \\
M1 \\
M1 \\
A1 \\
1 \\
M1 \\
M1 \\
A1 \\
1 \\
D1
\end{tabular} \& \begin{tabular}{l}
Correct to 2 d.p. Allow 0.6, 1.3 and 1.6 tol. 1 mm \\
accept 53 to 59
\end{tabular} \& 3
3
3
1

3
3
2

\hline 11 \& | iA |
| :--- |
| iB |
| iiA |
| iiB |
| iiC | \& | $10+20+30+40+50+60$ |
| :--- |
| correct use of AP formula with $a=10$ and $d=10$ |
| $n(5+5 n)$ or $5 n(n+1)$ or $5\left(n^{2}+n\right)$ or $\left(5 n^{2}+5 n\right)$ $10 n^{2}+10 n-20700=0$ |
| 45 c.a.o. |
| 4 |
| $£ 2555$ |
| correct use of GP formula with $a=5, r=2$ $5\left(2^{n}-1\right) \text { o.e. }=2621435$ |
| $2^{n}=524288 \mathrm{www}$ |
| 19 c.a.o. | \& | B1 |
| :--- |
| M1 |
| A1 |
| M1 |
| A1 |
| 1 |
| 2 |
| M1 |
| D |
| M1 |
| M1 |
| A1 | \& | or $\frac{6}{2}(2 \times 10+5 \times 10)$ or $\frac{6}{2}(10+60)$ |
| :--- |
| Or better |
| M1 for $5\left(1+2+\ldots 2^{8}\right)$ or $5\left(2^{9}-1\right)$ o.e. |
| 'S' need not be simplified | \& 1

4
4
1
2
2

4

\hline 12 \& i \& 6.1 \& 2 \& M1 for $\frac{\left(3.1^{2}-7\right)-\left(3^{2}-7\right)}{3.1-3}$ o.e. \& 2

\hline
\end{tabular}

ii	$\begin{aligned} & \frac{\left((3+h)^{2}-7\right)-\left(3^{2}-7\right)}{h} \\ & \text { numerator }=6 h+h^{2} \\ & 6+h \end{aligned}$	M1 M1 A1	s.o.i.	3
iii	as h tends to 0 , grad. tends to 6 o.e. f.t.from " 6 " +h	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		2
iv	$\begin{aligned} & y-2=‘ 6 '(x-3) \text { о.e. } \\ & y=6 x-16 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	6 may be obtained from $\frac{\mathrm{d} y}{\mathrm{~d} x}$	2
v	At P, $x=16 / 6$ o.e. or ft At $\mathrm{Q}, x=\sqrt{7}$ 0.021 c.a.o.	M1 M1 A1		3

4753 (C3) Methods for Advanced Mathematics

Section A

$1 \quad \begin{aligned} & \int_{0}^{\frac{\pi}{6}} \sin 3 x \mathrm{~d} x=\left[-\frac{1}{3} \cos 3 x\right]_{0}^{\frac{\pi}{6}} \\ & =-\frac{1}{3} \cos \frac{\pi}{2}+\cos 0 \\ & =\frac{1}{3} \end{aligned}$	B1 M1 A1cao [3]	$\left[-\frac{1}{3} \cos 3 x\right]$ or $\left[-\frac{1}{3} \cos u\right]$ substituting correct limits in $\pm k \cos \ldots$ 0.33 or better.
$\begin{array}{ll} \text { 2(i) } & 100=A \mathrm{e}^{0}=A \Rightarrow A=100 \\ & 50=100 \mathrm{e}^{-1500 k} \\ \Rightarrow & \mathrm{e}^{-1500 k}=0.5 \\ \Rightarrow & -1500 k=\ln 0.5 \\ \Rightarrow & k=-\ln 0.5 \div 1500=4.62 \times 10^{-4} \end{array}$	$\begin{gathered} \text { M1A1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ {[5]} \end{gathered}$	$50=A \mathrm{e}^{-1500 k} \mathrm{ft}$ their ' A ' if used taking lns correctly 0.00046 or better
$\begin{aligned} \text { (ii) } & 1=100 \mathrm{e}^{-k t} \\ \Rightarrow & -k t=\ln 0.01 \\ \Rightarrow & t=-\ln 0.01 \div k \\ & =9966 \text { years } \end{aligned}$	M1 M1 A1 [3]	ft their A and k taking lns correctly art 9970
3	M1 B1 A1 [3]	Can use degrees or radians reasonable shape (condone extra range) passes through $(-1,2 \pi),(0, \pi)$ and $(1,0)$ good sketches - look for curve reasonably vertical at $(-1,2 \pi)$ and $(1,0)$, negative gradient at $(0, \pi)$. Domain and range must be clearly marked and correct.
$\begin{array}{ll} 4 & \mathrm{~g}(x)=2\|x-1\| \\ \Rightarrow & b=2\|0-1\|=2 \text { or }(0,2) \\ & 2\|x-1\|=0 \\ \Rightarrow & x=1, \text { so } a=1 \text { or }(1,0) \end{array}$	B1 M1 A1 [3]	Allow unsupported answers. www $\|x\|=1 \text { is A } 0$ www

$\begin{array}{ll} 5(i) & \mathrm{e}^{2 y}=1+\sin x \\ \Rightarrow & 2 \mathrm{e}^{2 y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\cos x \\ \Rightarrow & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\cos x}{2 \mathrm{e}^{2 y}} \end{array}$	M1 B1 A1 [3]	$\begin{aligned} & \text { Their } 2 \mathrm{e}^{2 y} \times \frac{\mathrm{d} y}{\mathrm{~d} x} \\ & 2 \mathrm{e}^{2 y} \\ & \text { o.e. cao } \end{aligned}$
	B1 M1 B1 E1 [4]	chain rule (can be within 'correct' quotient rule with $\mathrm{d} v / \mathrm{d} x=0$) $1 / u$ or $1 /(1+\sin x)$ soi www
6 $\begin{aligned} & \mathrm{f} \mathrm{f}(x)=\frac{\frac{x+1}{x-1}+1}{\frac{x+1}{x-1}-1} \\ & =\frac{x+1+x-1}{x+1-x+1} \\ & =\frac{2 x}{2}=x^{*} \\ & \mathrm{f}^{-1}(x)=\mathrm{f}(x) \end{aligned}$ Symmetrical about $y=x$.	M1 M1 E1 B1 B1 [5]	correct expression without subsidiary denominators $\text { e.g. }=\frac{x+1+x-1}{x-1} \times \frac{x-1}{x+1-x+1}$ stated, or shown by inverting
7(i) $\begin{aligned} \text { (B) } & (x+1 / 2 y)^{2}+3 / 4 y^{2} \\ = & x^{2}+x y+1 / 4 y^{2}+3 / 4 y^{2} \\ = & x^{2}+x y+y^{2} \end{aligned}$	M1 E1 M1 E1 [4]	expanding - allow tabulation www $(x+1 / 2 y)^{2}=x^{2}+1 / 2 x y+1 / 2 x y+1 / 4 y^{2} \text { o.e. }$ cao www
$\begin{aligned} \text { (ii) } & x^{3}-y^{3}=(x-y)\left[(x+1 / 2 y)^{2}+3 / 4 y^{2}\right] \\ & (x+1 / 2 y)^{2}+3 / 4 y^{2}>0[\text { as squares } \geq 0] \\ \Rightarrow & \text { if } x-y>0 \text { then } x^{3}-y^{3}>0 \\ \Rightarrow & \text { if } x>y \text { then } x^{3}>y^{3} * \end{aligned}$	M1 M1 E1 [3]	substituting results of (i)

$\begin{array}{ll} \mathbf{8 (i)} & \mathrm{A}: \\ \Rightarrow & 1+\ln x=0 \\ \Rightarrow & \\ \Rightarrow & x=\mathrm{e}^{-1} \end{array}$ B: $x=0, y=\mathrm{e}^{0-1}=\mathrm{e}^{-1}$ so B is $\left(0, \mathrm{e}^{-1}\right)$ C: $\begin{gathered} : f(1)=e^{1-1}=e^{0}=1 \\ g(1)=1+\ln 1=1 \end{gathered}$	M1 A1 B1 E1 E1 [5]	SC1 if obtained using symmetry condone use of symmetry Penalise $A=e^{-1}, B=e^{-1}$, or co-ords wrong way round, but condone labelling errors.
(ii) Either by invertion: $\begin{array}{cl} \text { e.g. } & y=\mathrm{e}^{x-1} x \leftrightarrow y \\ & x=\mathrm{e}^{y-1} \\ \Rightarrow & \ln x=y-1 \\ \Rightarrow & \\ \hline \end{array}$	$\begin{gathered} \text { M1 } \\ \text { E1 } \end{gathered}$	taking lns or exps
or by composing $\text { e.g. } \quad \begin{aligned} \mathrm{fg}(x) & =\mathrm{f}(1+\ln x) \\ & =\mathrm{e}^{1+\ln x-1} \\ & =\mathrm{e}^{\ln x}=x \end{aligned}$	M1 E1 [2]	$\mathrm{e}^{1+\ln x-1}$ or $1+\ln \left(\mathrm{e}^{x-1}\right)$
$\text { (iii) } \begin{aligned} \int_{0}^{1} \mathrm{e}^{x-1} \mathrm{~d} x & =\left[\mathrm{e}^{x-1}\right]_{0}^{1} \\ & =\mathrm{e}^{0}-\mathrm{e}^{-1} \\ & =1-\mathrm{e}^{-1} \end{aligned}$	M1 M1 Alcao [3]	$\left[\mathrm{e}^{x-1}\right] \text { o.e. or } u=x-1 \Rightarrow\left[\mathrm{e}^{u}\right]$ substituting correct limits for x or u o.e. not e^{0}, must be exact.
$\text { (iv) } \begin{aligned} \int \ln x \mathrm{~d} x & =\int \ln x \frac{\mathrm{~d}}{\mathrm{~d} x}(x) \mathrm{d} x \\ & =x \ln x-\int x \cdot \frac{1}{x} \mathrm{~d} x \\ & =x \ln x-x+c \\ \Rightarrow \int_{e^{-1}}^{1} \mathrm{~g}(x) \mathrm{d} x & =\int_{e^{-1}}^{1}(1+\ln x) \mathrm{d} x \\ & =[x+x \ln x-x]_{e^{-1}}^{1} \\ & =[x \ln x)]_{e^{-1}}^{1} \\ & =1 \ln 1-\mathrm{e}^{-1} \ln \left(\mathrm{e}^{-1}\right) \\ & =\mathrm{e}^{-1} * \end{aligned}$	M1 A1 A1cao B1ft DM1 E1 [6]	parts: $u=\ln x, \mathrm{~d} u / \mathrm{d} x=1 / x, v=x, \mathrm{~d} v / \mathrm{d} x=1$ condone no ' c ' ft their ' $x \ln x-x$ (provided 'algebraic') substituting limits dep B1 www
(v) $\mathrm{Area}=$ $\begin{aligned} \int_{0}^{1} \mathrm{f}(x) \mathrm{d} x- & \int_{\mathrm{e}^{-1}}^{1} \mathrm{~g}(x) \mathrm{d} x \int_{0}^{1} \mathrm{f}(x) \mathrm{d} x-\int_{e^{-1}}^{1} \mathrm{~g}(x) \mathrm{d} x \\ & =\left(1-\mathrm{e}^{-1}\right)-\mathrm{e}^{-1} \\ & =1-\frac{2}{\mathrm{e}} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1cao } \end{gathered}$	Must have correct limits 0.264 or better.

or $\text { Area } \begin{aligned} \mathrm{OCB} & =\text { area under curve }- \text { triangle } \\ & =1-\mathrm{e}^{-1}-1 / 2 \times 1 \times 1 \\ & =1 / 2-\mathrm{e}^{-1} \end{aligned}$	M1	OCA or $\mathrm{OCB}=1 / 2-\mathrm{e}^{-1}$
$\begin{aligned} & \begin{aligned} \text { Area } \mathrm{OAC} & =\text { triangle }- \text { area under curve } \\ & =1 / 2 \times 1 \times 1-\mathrm{e}^{-1} \\ & =1 / 2-\mathrm{e}^{-1} \end{aligned} \\ & \text { Total area }=2\left(1 / 2-\mathrm{e}^{-1}\right)=1-\frac{2}{\mathrm{e}} \end{aligned}$	Alcao [2]	0.264 or better

Section B

\begin{tabular}{|c|c|c|}
\hline 9(i) \(\quad a=\frac{1}{3}\) \& \[
\begin{aligned}
\& \text { B1 } \\
\& {[1]}
\end{aligned}
\] \& or 0.33 or better \\
\hline \[
\text { (ii) } \begin{aligned}
\& \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(3 x-1) 2 x-x^{2} \cdot 3}{(3 x-1)^{2}} \\
\& =\frac{6 x^{2}-2 x-3 x^{2}}{(3 x-1)^{2}} \\
\& =\frac{3 x^{2}-2 x}{(3 x-1)^{2}} \\
\& ={\frac{x(3 x-2)}{(3 x-1)^{2}}}^{*}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
E1 \\
[3]
\end{tabular} \& \begin{tabular}{l}
quotient rule \\
www - must show both steps; penalise missing brackets.
\end{tabular} \\
\hline \[
\begin{aligned}
\& \text { (iii) } \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \text { when } x(3 x-2)=0 \\
\& \Rightarrow \quad x=0 \text { or } x=\frac{2}{3}, \text { so at } \mathrm{P}, x=\frac{2}{3} \\
\& \text { when } x=\frac{2}{3}, y=\frac{(2 / 3)^{2}}{3 \times(2 / 3)-1}=\frac{4}{9} \\
\& \text { when } x=0.6, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-0.1875 \\
\& \text { when } x=0.8, \frac{\mathrm{~d} y}{\mathrm{~d} x}=0.1633 \\
\& \text { Gradient increasing } \Rightarrow \text { minimum }
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1cao \\
B1 \\
B1 \\
E1 \\
[7]
\end{tabular} \& \begin{tabular}{l}
if denom \(=0\) also then M0 \\
o.e e.g. 0.6 , but must be exact \\
o.e e.g. 0.4 , but must be exact \\
\(-3 / 16\), or -0.19 or better \\
\(8 / 49\) or 0.16 or better \\
o.e. e.g. 'from negative to positive'. Allow ft on their gradients, provided -ve and +ve respectively. \\
Accept table with indications of signs of gradient.
\end{tabular} \\
\hline \& B1
M1
M1
E1

B1
B1

M1 \& | $\frac{\frac{(u+1)^{2}}{9}}{u}$ o.e. |
| :--- |
| $\times \frac{1}{3}(\mathrm{~d} u)$ |
| expanding |
| condone missing $\mathrm{d} u$'s |
| $\left[\frac{1}{2} u^{2}+2 u+\ln u\right]$ |
| substituting correct limits, dep integration |

\hline
\end{tabular}

$=\frac{1}{27}\left(3 \frac{1}{2}+\ln 2\right) \quad\left[=\frac{7+2 \ln 2}{54}\right]$
A1cao
o.e., but must evaluate $\ln 1=0$ and collect [7] terms.

4754 (C4) Applications of Advanced Mathematics

Section A

$\begin{array}{ll} 1 & 4 \cos \theta-\sin \theta=R \cos (\theta+\alpha) \\ & =R \cos \theta \cos \alpha-R \sin \theta \sin \alpha \\ & \Rightarrow R \cos \alpha=4, R \sin \alpha=1 \\ & \Rightarrow R^{2}=1^{2}+4^{2}=17, R=\sqrt{17}=4.123 \\ & \tan \theta=1 / 4 \\ & \Rightarrow \theta=0.245 \\ & \sqrt{17} \cos (\theta+0.245)=3 \\ \Rightarrow & \cos (\theta+0.245)=\frac{3}{\sqrt{17}} \\ \Rightarrow & \theta+0.245=0.756,5.527 \\ \Rightarrow & \theta=0.511,5.282 \end{array}$	M1 B1 M1 A1 M1 A1A1 [7]	correct pairs $\begin{aligned} & R=\sqrt{17}=4.123 \\ & \tan \theta=1 / 4 \text { o.e. } \\ & \theta=0.245 \end{aligned}$ $\theta+0.245=\operatorname{arcos} 3 / \sqrt{ } 17$ ft their R, α for method (penalise extra solutions in the range (-1))
	M1 M1 A1 A1 B1 B1 A1 [7]	correct partial fractions substituting, equating coeffts or cover-up $\begin{aligned} & A=1 \\ & B=-1 \end{aligned}$ $\ln (x+1) \mathrm{ft}$ their A $-1 / 2 \ln (2 x+1) \mathrm{ft}$ their B cao - must have c
$\begin{array}{ll} 3 & \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2} y \\ \Rightarrow & \int \frac{\mathrm{~d} y}{y}=\int 3 x^{2} \mathrm{~d} x \\ \Rightarrow & \ln y=x^{3}+c \\ \Rightarrow & \text { when } x=1, y=1, \Rightarrow \ln 1=1+c \Rightarrow c=-1 \\ \Rightarrow & \ln y=x^{3}-1 \\ y=e^{x^{3}-1} \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \\ & \text { A1 } \\ & {[4]} \end{aligned}$	separating variables condone absence of c $c=-1 \text { o.e. }$ o.e.
	B1 M1 M1 B1 A1 [5]	must have integral, π, x^{2} and $\mathrm{d} y$ s.o.i. must have π, their (4-y), their numerical y limits $\left[4 y-\frac{1}{2} y^{2}\right]$

Section B

$\text { 7(i) } \begin{aligned} & \overrightarrow{\mathrm{AB}} \end{aligned}=\left(\begin{array}{l} -1 \\ -2 \\ 0 \end{array}\right) \quad \begin{aligned} \mathbf{r} & =\left(\begin{array}{l} 0 \\ 0 \\ 2 \end{array}\right)+\lambda\left(\begin{array}{l} 1 \\ 2 \\ 0 \end{array}\right) \end{aligned}$	B1 B1 [2]	or equivalent alternative
$\begin{aligned} \text { (ii) } \mathbf{n} & =\left(\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right) \\ \cos \theta & =\frac{\left(\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right) \cdot\left(\begin{array}{l} 1 \\ 2 \\ \sqrt{2} \sqrt{5} \end{array}\right)}{}=\frac{1}{\sqrt{10}} \\ \Rightarrow \quad \theta & =71.57^{\circ} \end{aligned}$	B1 B1 M1 M1 A1 $[5]$	correct vectors (any multiples) scalar product used finding invcos of scalar product divided by two modulae 72° or better
$\begin{aligned} & \text { (iii) } \cos \phi=\frac{\left(\begin{array}{l} -1 \\ 0 \\ -1 \end{array}\right) \cdot\left(\begin{array}{l} -2 \\ -2 \\ -1 \end{array}\right)}{\sqrt{2} \sqrt{9}}=\frac{2+1}{3 \sqrt{2}}=\frac{1}{\sqrt{2}} \\ & \Rightarrow \quad \theta=45^{\circ} * \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { E1 } \\ {[3]} \end{gathered}$	ft their \mathbf{n} for method $\pm 1 / \sqrt{ } 2$ o.e. exact
$\begin{aligned} & \text { (iv) } \sin 71.57^{\circ}=k \sin 45^{\circ} \\ & \Rightarrow \quad k=\sin 71.57^{\circ} / \sin 45^{\circ}=1.34 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	ft on their 71.57° o.e.
$\begin{array}{ll} \hline \text { (v) } & \mathbf{r}=\left(\begin{array}{l} 0 \\ 0 \\ 2 \end{array}\right)+\mu\left(\begin{array}{l} -2 \\ -2 \\ -1 \end{array}\right) \\ & x=-2 \mu, z=2-\mu \\ & x+z=-1 \\ \Rightarrow & -2 \theta+2-\theta=-1 \\ \Rightarrow & 3 \theta=3, \theta=1 \\ \Rightarrow & \text { point of intersection is }(-2,-2,1) \\ & \text { distance travelled through glass } \\ & =\text { distance between }(0,0,2) \text { and }(-2,-2,1) \\ & =\sqrt{\left(2^{2}+2^{2}+1^{2}\right)}=3 \mathrm{~cm} \end{array}$	M1 M1 A1 A1 B1 [5]	s.o.i. subst in $x+z=-1$ www dep on $\mu=1$

$\text { 8(i) } \begin{array}{rll} \text { (A) } & 360^{\circ} \div 24=15^{\circ} \\ & \mathrm{CB} / \mathrm{OB}=\sin 15^{\circ} \\ \Rightarrow & \mathrm{CB}=1 \sin 15^{\circ} \\ \Rightarrow & \mathrm{AB}=2 \mathrm{CB}=2 \sin 15^{\circ} * \end{array}$	$\begin{gathered} \text { M1 } \\ \text { E1 } \\ {[2]} \end{gathered}$	$\begin{aligned} & \mathrm{AB}=2 \mathrm{AC} \text { or } 2 \mathrm{CB} \\ & \angle \mathrm{AOC}=15^{\circ} \\ & \text { o.e. } \end{aligned}$
$\begin{array}{ll} \text { (B) } & \cos 30^{\circ}=1-2 \sin ^{2} 15^{\circ} \\ & \cos 30^{\circ}=\sqrt{\frac{3}{2}} \\ \Rightarrow & \sqrt{\frac{3}{2}}=1-2 \sin ^{2} 15^{\circ} \\ \Rightarrow & 2 \sin ^{2} 15^{\circ}=1-\sqrt{\frac{3}{2}}=(2-\sqrt{3}) / 2 \\ \Rightarrow & \sin ^{2} 15^{\circ}=\frac{2-\sqrt{3}}{4} \\ \Rightarrow & \sin 15^{\circ}=\sqrt{\frac{2-\sqrt{3}}{4}}=\frac{1}{2} \sqrt{2-\sqrt{3}} * \end{array}$	B1 B1 M1 E1 [4]	simplifying
$\text { (C) } \begin{aligned} \text { Perimeter } & =12 \times \mathrm{AB}=24 \times \frac{1}{2} \sqrt{2-\sqrt{3}} \\ & =12 \sqrt{2-\sqrt{3}} \end{aligned}$ circumference of circle $>$ perimeter of polygon $\begin{aligned} & \Rightarrow \quad 2 \pi>12 \sqrt{2-\sqrt{3}} \\ & \Rightarrow \quad \pi>6 \sqrt{2-\sqrt{3}} \end{aligned}$	M1 E1 [2]	
$\text { (ii) } \begin{aligned} & (A) \tan 15^{\circ}=\mathrm{FE} \div \mathrm{OF} \\ & \Rightarrow \quad \mathrm{FE}=\tan 15^{\circ} \\ & \Rightarrow \quad \mathrm{DE}=2 \mathrm{FE}=2 \tan 15^{\circ} \end{aligned}$	M1 E1 [2]	
$\begin{aligned} & \text { (B) } \quad \tan 30=\frac{2 \tan 15}{1-\tan ^{2} 15}=\frac{2 t}{1-t^{2}} \\ & \quad \tan 30=\frac{1}{\sqrt{3}} \\ & \Rightarrow \quad \frac{2 t}{1-t^{2}}=\frac{1}{\sqrt{3}} \Rightarrow 2 \sqrt{3} t=1-t^{2} \\ & \Rightarrow \quad t^{2}+2 \sqrt{ } 3 t-1=0 * \end{aligned}$	B1 M1 E1 [3]	
$\begin{array}{ll} \text { (C) } & t=\frac{-2 \sqrt{3} \pm \sqrt{12+4}}{2}=2-\sqrt{3} \\ & \text { circumference }<\text { perimeter } \\ \Rightarrow & 2 \pi<24(2-\sqrt{3}) \\ \Rightarrow & \pi<12(2-\sqrt{3}) * \end{array}$	M1 A1 M1 E1 [4]	using positive root from exact working

(iii) $6 \sqrt{2-\sqrt{3}}<\pi<12(2-\sqrt{3})$		
$\Rightarrow 3.106<\pi<3.215$	B1 B1	$3.106,3.215$
	$[2]$	

Comprehension

1. $\frac{1}{4} \times[3+1+(-1)+(-2)]=0.25$ *

M1, E1
2. (i) b is the benefit of shooting some soldiers from the other side while none of yours are shot. w is the benefit of having some of your own soldiers shot while not shooting any from the other side.

Since it is more beneficial to shoot some of the soldiers on the other side than it is to have your own soldiers shot, $b>w$.
(ii) c is the benefit from mutual co-operation (i.e. no shooting).
d is the benefit from mutual defection (soldiers on both sides are shot).
With mutual co-operation people don't get shot, while they do with mutual defection. So $c>d$.
3. $\frac{1 \times 2+(-2) \times(n-2)}{n}=-1.999$ or equivalent (allow $n, n+2$) M1, A1
$n=6000$ so you have played 6000 rounds.
4. No. The inequality on line $132, b+w<2 c$, would not be satisfied since

$$
\begin{aligned}
& 6+(-3)>2 \times 1 \\
& b+w<2 c \text { and subst } \\
& \text { No, } 3>2 \text { o.e. }
\end{aligned}
$$

5. (i)

Round	You	Opponent	Your score	Opponent's score
1	C	D	-2	3
2	D	C	3	-2
3	C	D	-2	3
4	D	C	3	-2
5	C	D	-2	3
6	D	C	3	-2
7	C	D	-2	3
8	D	C	3	-2
\ldots	\ldots	\ldots	\ldots	\ldots

M1 Cs and Ds in correct places, A1 C=-2, A1 D=3
(ii) $\frac{1}{2} \times[3+(-2)]=0.5$
6. (i) All scores are increased by two points per round
(ii) The same player wins. No difference/change. The rank order of the players remains the same.B1
7. (i) They would agree to co-operate by spending less on advertising or by sharing equally.
(ii) Increased market share (or more money or more customers).

4755 (FP1) Further Concepts for Advanced Mathematics

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Section A} \\
\hline \begin{tabular}{l}
1(i) \\
(ii)
\end{tabular} \& \[
\mathbf{M}^{-1}=\frac{1}{11}\left(\begin{array}{cc}
2 \& 1 \\
-3 \& 4
\end{array}\right)
\]
\[
\begin{aligned}
\& \frac{1}{11}\left(\begin{array}{cc}
2 \& 1 \\
-3 \& 4
\end{array}\right)\binom{49}{100}=\binom{x}{y}=\frac{1}{11}\binom{198}{253} \\
\& \Rightarrow x=18, y=23
\end{aligned}
\] \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
{[2]} \\
\\
\text { M1 } \\
\text { A1(ft) } \\
\text { A1(ft) } \\
{[3]}
\end{gathered}
\] \& \begin{tabular}{l}
Dividing by determinant \\
Pre-multiplying by their inverse
\end{tabular} \\
\hline 2 \& \[
\begin{aligned}
\& z^{3}+z^{2}-7 z-15=(z-3)\left(z^{2}+4 z+5\right) \\
\& z^{2}+4 z+5=0 \Rightarrow z=\frac{-4 \pm \sqrt{16-20}}{2} \\
\& \Rightarrow z=-2+\mathrm{j} \text { and } z=-2-\mathrm{j}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& {[5]}
\end{aligned}
\] \& Show \(z=3\) is a root; may be implied Attempt to find quadratic factor Correct quadratic factor Use of quadratic formula or other valid method Both solutions \\
\hline 3(i)

(ii) \&

\[
$$
\begin{aligned}
& \frac{2}{x+4}=x+3 \Rightarrow x^{2}+7 x+10=0 \\
& \Rightarrow x=-2 \text { or } x=-5 \\
& x \geq-2 \text { or }-4>x \geq-5
\end{aligned}
$$

\] \& | B1 |
| :--- |
| B1 |
| [2] |
| M1 |
| A1 |
| A1 |
| A2 |
| [5] | \& | Asymptote at $x=-4$ |
| :--- |
| Both branches correct |
| Attempt to find where graphs cross or valid attempt at solution using inequalities |
| Correct intersections (both), or -2 and -5 identified as critical values $\begin{aligned} & x \geq-2 \\ & -4>x \geq-5 \end{aligned}$ |
| s.c. |
| A1 for $-4 \geq x \geq-5$ or $-4>x>-5$ |

\hline 4 \& $$
\begin{aligned}
& 2 w-6 w+3 w=-\frac{1}{2} \\
& \Rightarrow w=\frac{1}{2} \\
& \Rightarrow \text { roots are } 1,-3, \frac{3}{2} \\
& -\frac{q}{2}=\alpha \beta \gamma=-\frac{9}{2} \Rightarrow q=9 \\
& \frac{p}{2}=\alpha \beta+\alpha \gamma+\beta \gamma=-6 \Rightarrow p=-12
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\text { M1 } \\
\\
\text { A2(ft) } \\
{[6]}
\end{gathered}
$$

\] \& | Use of sum of roots - can be implied |
| :--- |
| Correct roots seen |
| Attempt to use relationships between roots |
| s.c. M1 for other valid method One mark each for $p=-12$ and $q=9$ |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
\[
5(\mathbf{i})
\] \\
(ii)
\end{tabular} \& \[
\begin{aligned}
\& \frac{1}{5 r-2}-\frac{1}{5 r+3} \equiv \frac{5 r+3-5 r+2}{(5 r+3)(5 r-2)} \\
\& \equiv \frac{5}{(5 r+3)(5 r-2)}
\end{aligned}
\]
\[
\begin{aligned}
\& \sum_{r=1}^{30} \frac{1}{(5 r-2)(5 r+3)}=\frac{1}{5} \sum_{r=1}^{30}\left[\frac{1}{(5 r-2)}-\frac{1}{(5 r+3)}\right] \\
\& =\frac{1}{5}\left[\begin{array}{l}
\left(\frac{1}{3}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{13}\right)+\left(\frac{1}{13}-\frac{1}{18}\right)+\ldots \\
\left.+\left(\frac{1}{5 n-7}-\frac{1}{5 n-2}\right)+\left(\frac{1}{5 n-2}-\frac{1}{5 n+3}\right)\right] \\
=\frac{1}{5}\left[\frac{1}{3}-\frac{1}{5 n+3}\right]=\frac{n}{3(5 n+3)}
\end{array} .=\begin{array}{l}
\end{array}\right]
\end{aligned}
\] \& M1
A1
\([2]\)

B1
B1
M1
A1

[4] \& | Attempt to form common denominator |
| :--- |
| Correct cancelling |
| First two terms in full |
| Last term in full |
| Attempt to cancel terms |

\hline 6 \& | When $n=1, \frac{1}{2} n(7 n-1)=3$, so true for $n=1$ |
| :--- |
| Assume true for $n=k$ $\begin{aligned} & 3+10+17+\ldots \ldots+(7 k-4)=\frac{1}{2} k(7 k-1) \\ & \Rightarrow 3+10+17+\ldots \ldots+(7(k+1)-4) \\ & =\frac{1}{2} k(7 k-1)+(7(k+1)-4) \\ & =\frac{1}{2}[k(7 k-1)+(14(k+1)-8)] \\ & =\frac{1}{2}\left[7 k^{2}+13 k+6\right] \\ & =\frac{1}{2}(k+1)(7 k+6) \\ & =\frac{1}{2}(k+1)(7(k+1)-1) \end{aligned}$ |
| But this is the given result with $k+1$ replacing k. Therefore if it is true for k it is true for $k+1$. |
| Since it is true for $n=1$, it is true for $n=1,2,3$ and so true for all positive integers. | \& B1

E1
M1
M1
M
A1
E1
E1

[7] \& | Assume true for $n=k$ |
| :--- |
| Add $(k+1)$ th term to both sides |
| Valid attempt to factorise |
| c.a.o. with correct simplification |
| Dependent on previous E1 and immediately previous A1 Dependent on B1 and both previous E marks |

\hline
\end{tabular}

Section B			
7(i)	$(0,10),(-2,0),\left(\frac{5}{3}, 0\right)$	B1 B1 B1 [3]	
(ii)	$x=\frac{-1}{2}, x=1, y=\frac{3}{2}$	B1 B1 B1 [3]	
(iii)	Large positive $x, y \rightarrow \frac{3^{+}}{2}$ (e.g. consider $x=100$) Large negative $x, y \rightarrow \frac{3}{2}$ (e.g. consider $x=-100$)	M1 B1 B1 [3]	Clear evidence of method required for full marks
(iv)	Curve 3 branches of correct shape Asymptotes correct and labelled Intercepts correct and labelled	B1 B1 B1 [3]	

\begin{tabular}{|c|c|c|c|}
\hline 9(i) \& Matrix multiplication is associative
\[
\begin{aligned}
\& \mathbf{M N}=\left(\begin{array}{ll}
3 \& 0 \\
0 \& 2
\end{array}\right)\left(\begin{array}{ll}
0 \& 1 \\
1 \& 0
\end{array}\right) \\
\& \Rightarrow \mathbf{M N}=\left(\begin{array}{ll}
0 \& 3 \\
2 \& 0
\end{array}\right) \\
\& \mathbf{Q M N}=\left(\begin{array}{cc}
-2 \& 0 \\
0 \& 3
\end{array}\right)
\end{aligned}
\] \& B1
[1]
M1
A1
A1(ft)
\([3]\) \& Attempt to find \(\mathbf{M N}\) or \(\mathbf{Q M}\)
\[
\text { or } \mathbf{Q M}=\left(\begin{array}{cc}
0 \& -2 \\
3 \& 0
\end{array}\right)
\] \\
\hline \multirow[t]{3}{*}{(ii)} \& M is a stretch, factor 3 in the \(x\) direction, factor 2 in the \(y\) direction. \& B1
B1 \& Stretch factor 3 in the \(x\) direction Stretch factor 2 in the \(y\) direction \\
\hline \& N is a reflection in the line \(y=x\). \& B1 \& \\
\hline \& Q is an anticlockwise rotation through \(90^{\circ}\) about the origin. \& B1 \& \\
\hline \multirow[t]{2}{*}{(iii)} \& \[
\left(\begin{array}{cc}
-2 \& 0 \\
0 \& 3
\end{array}\right)\left(\begin{array}{lll}
1 \& 1 \& 2 \\
2 \& 0 \& 2
\end{array}\right)=\left(\begin{array}{ccc}
-2 \& -2 \& -4 \\
6 \& 0 \& 6
\end{array}\right)
\] \& \[
\begin{gathered}
\text { M1 } \\
\mathbf{A 1}(\mathrm{ft})
\end{gathered}
\] \& \begin{tabular}{l}
Applying their QMN to points. \\
Minus 1 each error to a minimum of 0.
\end{tabular} \\
\hline \& \& B2

[4] \& Correct, labelled image points, minus 1 each error to a minimum of 0 . Give B4 for correct diagram with no workings.

\hline \multicolumn{4}{|r|}{Section B Total: 36}

\hline \& \& \& Total: 72

\hline
\end{tabular}

4756 (FP2) Further Methods for Advanced Mathematics

1(a)(i)	$\begin{aligned} \ln (1+x) & =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5} \ldots \\ \ln (1-x) & =-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\frac{x^{5}}{5} \ldots \\ \ln \left(\frac{1+x}{1-x}\right) & =\ln (1+x)-\ln (1-x) \\ & =2 x+\frac{2 x^{3}}{3}+\frac{2 x^{5}}{5} \cdots \end{aligned}$ Valid for $-1<x<1$	B1 M1 A1 B1 4	Series for $\ln (1-x)$ as far as x^{5} s.o.i. Seeing series subtracted Inequalities must be strict
(ii)	$\begin{aligned} & \frac{1+x}{1-x}=3 \\ & \Rightarrow \quad 1+x=3(1-x) \\ & \Rightarrow \quad 1+x=3-3 x \\ & \Rightarrow \quad 4 x=2 \\ & \Rightarrow \quad x=\frac{1}{2} \\ & \ln 3 \approx 2 \times \frac{2}{3} \times\left(\frac{1}{2}\right)^{3}+\frac{2}{5} \times\left(\frac{1}{2}\right)^{5} \\ & =1+\frac{1}{12}+\frac{1}{80} \\ & =1.096 \text { (3 d.p.) } \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \\ \\ \text { A1 } \\ 4 \end{gathered}$	Correct method of solution B2 for $x=\frac{1}{2}$ stated Substituting their x into their series in (a)(i), even if outside range of validity. Series must have at least two terms $S R$: if >3 correct terms seen in (i), allow a better answer to 3 d.p. Must be 3 decimal places
(b)(i)		G1 G1 G1 3	$r(0)=a, r(\pi / 2)=a / 2$ indicated Symmetry in $\theta=\pi / 2$ Correct basic shape: flat at $\theta=\pi / 2$, not vertical or horizontal at ends, no dimple Ignore beyond $0 \leq \theta \leq \pi$
(ii)	$\begin{aligned} r+y & =r+r \sin \theta \\ & =r(1+\sin \theta)=\frac{a}{1+\sin \theta} \times(1+\sin \theta) \\ & =a \\ \Rightarrow & r=a-y \\ \Rightarrow & x^{2}+y^{2}=(a-y)^{2} \\ \Rightarrow & x^{2}+y^{2}=a^{2}-2 a y+y^{2} \\ \Rightarrow & 2 a y=a^{2}-x^{2} \\ \Rightarrow & y=\frac{a^{2}-x^{2}}{2 a} \end{aligned}$	A1 (AG) M1 A1 A1 5	Using $y=r \sin \theta$ Using $r^{2}=x^{2}+y^{2}$ in $r+y=a$ Unsimplified A correct final answer, not spoiled

2 (i)	$\begin{aligned} & \mathbf{M}-\lambda \mathbf{I}=\left(\begin{array}{ccc} 3-\lambda & 1 & -2 \\ 0 & -1-\lambda & 0 \\ 2 & 0 & 1-\lambda \end{array}\right) \\ & \operatorname{det}(\mathbf{M}-\lambda \mathbf{I}) \\ & =(3-\lambda)[(-1-\lambda)(1-\lambda)]+2[2(-1-\lambda)] \\ & =(3-\lambda)\left(\lambda^{2}-1\right)+4(-1-\lambda) \\ & \Rightarrow \quad \lambda^{3}-3 \lambda^{2}+3 \lambda+7=0 \\ & \operatorname{det} \mathbf{M}=-7 \end{aligned}$	M1 A1 B1 3	Attempt at $\operatorname{det}(\mathbf{M}-\lambda \mathbf{I})$ with all elements present. Allow sign errors Unsimplified. Allow signs reversed. Condone omission of $=0$
(ii)	$\begin{aligned} & f(\lambda)=\lambda^{3}-3 \lambda^{2}+3 \lambda+7 \\ & f(-1)=-1-3-3+7=0 \Rightarrow-1 \text { eigenvalue } \\ & f(\lambda)=(\lambda+1)\left(\lambda^{2}-4 \lambda+7\right) \\ & \lambda^{2}-4 \lambda+7=(\lambda-2)^{2}+3 \geq 3 \text { so no real roots } \\ & (\mathbf{M}-\lambda \mathbf{I}) \mathbf{s}=\mathbf{0}, \lambda=-1 \\ & \Rightarrow \quad\left(\begin{array}{ccc} 4 & 1 & -2 \\ 0 & 0 & 0 \\ 2 & 0 & 2 \end{array}\right)\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right) \\ & \Rightarrow \quad \begin{array}{l} 4 x+y-2 z=0 \\ 2 x+2 z=0 \end{array} \\ & \Rightarrow \begin{array}{l} x=-z \\ \\ y=2 z-4 x=2 z+4 z=6 z \\ \Rightarrow \\ \mathbf{s}=\left(\begin{array}{c} -1 \\ 6 \\ 1 \end{array}\right) \\ \left(\begin{array}{lll} 3 & 1 & -2 \\ 0 & -1 & 0 \\ 2 & 0 & 1 \end{array}\right)\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{c} -0.1 \\ 0.6 \\ 0.1 \end{array}\right) \\ \Rightarrow \end{array} \quad x=0.1, y=-0.6, z=-0.1 \end{aligned}$	B1 M1 A1 M1 M1 A1 M1 A2 9	Showing -1 satisfies a correct characteristic equation Obtaining quadratic factor www $(\mathbf{M}-\lambda \mathbf{I}) \mathbf{s}=(\lambda) \mathbf{s}$ M0 below Obtaining equations relating x, y and z Obtaining equations relating two variables to a third. Dep. on first M1 Or any non-zero multiple Solution by any method, e.g. use of multiple of \mathbf{s}, but M0 if \mathbf{s} itself quoted without further work Give A1 if any two correct
(iii)	C-H: a matrix satisfies its own characteristic equation $\begin{array}{ll} \Rightarrow & \mathbf{M}^{3}-3 \mathbf{M}^{2}+3 \mathbf{M}+7 \mathbf{I}=\mathbf{0} \\ \Rightarrow & \mathbf{M}^{3}=3 \mathbf{M}^{2}-3 \mathbf{M}-7 \mathbf{I} \\ \Rightarrow & \mathbf{M}^{2}=3 \mathbf{M}-3 \mathbf{I}-7 \mathbf{M}^{-1} \\ \Rightarrow & \mathbf{M}^{-1}=-\frac{1}{7} \mathbf{M}^{2}+\frac{3}{7} \mathbf{M}-\frac{3}{7} \mathbf{I} \end{array}$	B1 B1 (AG) M1 A1 4	Idea of $\lambda \leftrightarrow \mathbf{M}$ Must be derived www. Condone omitted I Multiplying by \mathbf{M}^{-1} o.e.
(iv)	$\begin{aligned} & \mathbf{M}^{2}=\left(\begin{array}{ccc} 3 & 1 & -2 \\ 0 & -1 & 0 \\ 2 & 0 & 1 \end{array}\right)\left(\begin{array}{ccc} 3 & 1 & -2 \\ 0 & -1 & 0 \\ 2 & 0 & 1 \end{array}\right)=\left(\begin{array}{ccc} 5 & 2 & -8 \\ 0 & 1 & 0 \\ 8 & 2 & -3 \end{array}\right) \\ & -\frac{1}{7}\left(\begin{array}{ccc} 5 & 2 & -8 \\ 0 & 1 & 0 \\ 8 & 2 & -3 \end{array}\right)+\frac{3}{7}\left(\begin{array}{ccc} 3 & 1 & -2 \\ 0 & -1 & 0 \\ 2 & 0 & 1 \end{array}\right)-\frac{3}{7}\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) \\ & =\left(\begin{array}{ccc} \frac{1}{7} & \frac{1}{7} & \frac{2}{7} \\ 0 & -1 & 0 \\ -\frac{2}{7} & -\frac{2}{7} & \frac{3}{7} \end{array}\right) \text { or } \frac{1}{7}\left(\begin{array}{ccc} 1 & 1 & 2 \\ 0 & -7 & 0 \\ -2 & -2 & 3 \end{array}\right) \end{aligned}$	M1 M1 A1	Correct attempt to find \mathbf{M}^{2} Using their (iii) SC 1 for answer without working

OR Matrix of cofactors: $\left(\begin{array}{ccc}-1 & 0 & 2 \\ -1 & 7 & 2 \\ -2 & 0 & -3\end{array}\right)$	M1	Finding at least four cofactors	
Adjugate matrix $\left(\begin{array}{ccc}-1 & -1 & -2 \\ 0 & 7 & 0 \\ 2 & 2 & -3\end{array}\right): \operatorname{det} \mathbf{M}=-7$	M1	Transposing and dividing by determinant. Dep. on M1 above	
$\mathbf{3}$			

\begin{tabular}{|c|c|c|c|}
\hline 3(a)(i) \& \begin{tabular}{l}

\[
\begin{aligned}
\& y=\arcsin x \Rightarrow \sin y=x \\
\& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\cos y \\
\& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{\cos y}=\frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
\] \\
Positive square root because gradient positive
\end{tabular} \& G1

1
1
M1
A1
A1
A1
B1

4 \& | Correct basic shape (positive gradient, through $(0,0)$) |
| :--- |
| $\sin y=$ and attempt to diff. both sides |
| Or $\cos y \frac{\mathrm{~d} y}{\mathrm{~d} x}=1$ |
| www. SC 1 if quoted without working |
| Dep. on graph of an increasing function |

\hline (ii) \& $$
\begin{aligned}
& \int_{0}^{1} \frac{1}{\sqrt{2-x^{2}}} \mathrm{~d} x=\left[\arcsin \frac{x}{\sqrt{2}}\right]_{0}^{1} \\
& =\frac{\pi}{4}
\end{aligned}
$$ \& M1

A1
A1

3 \& | arcsin function alone, or any sine substitution |
| :--- |
| $\frac{x}{\sqrt{2}}$, or $\int 1 \mathrm{~d} \theta$ www without limits |
| Evaluated in terms of π |

\hline (b) \& | $C+j S=e^{j \theta}+\frac{1}{3} e^{3 j \theta}+\frac{1}{9} e^{5 j \theta}+\ldots$ |
| :--- |
| This is a geometric series |
| with first term $a=e^{j \theta}$, common ratio $r=\frac{1}{3} e^{2 j \theta}$ $\begin{aligned} & \text { Sum to infinity }=\frac{a}{1-r}=\frac{e^{j \theta}}{1-\frac{1}{3} e^{2 j \theta}}\left(=\frac{3 e^{j \theta}}{3-e^{2 j \theta}}\right) \\ & =\frac{3 e^{j \theta}}{3-e^{2 j \theta}} \times \frac{3-e^{-2 j \theta}}{3-e^{-2 j \theta}} \\ & =\frac{9 e^{j \theta}-3 e^{-j \theta}}{9-3 e^{-2 j \theta}-3 e^{2 j \theta}+1} \\ & =\frac{9(\cos \theta+j \sin \theta)-3(\cos \theta-j \sin \theta)}{10-3(\cos 2 \theta-j \sin 2 \theta)-3(\cos 2 \theta+j \sin 2 \theta)} \end{aligned}$ | \& M1

M1
A1
A1
M1*

M1

M1 \& | Forming $C+j S$ as a series of powers Identifying geometric series and attempting sum to infinity or to n terms |
| :--- |
| Correct a and r |
| Sum to infinity |
| Multiplying numerator and denominator by $1-\frac{1}{3} e^{-2 j \theta}$ o.e. |
| Or writing in terms of trig functions and realising the denominator |
| Multiplying out numerator and denominator. Dep. on M1* |
| Valid attempt to express in terms of trig functions. If trig functions used from start, M1 for using the compound angle formulae and |

\hline
\end{tabular}

	$\begin{aligned} & =\frac{6 \cos \theta+12 j \sin \theta}{10-6 \cos 2 \theta} \\ & \Rightarrow C=\frac{6 \cos \theta}{10-6 \cos 2 \theta} \end{aligned}$	A1 M1	Pythagoras Dep. on M1* Equating real and imaginary parts. Dep. on M1*
	$\begin{aligned} & =\frac{3 \cos \theta}{5-3 \cos 2 \theta} \\ & S=\frac{6 \sin \theta}{5-3 \cos 2 \theta} \end{aligned}$	$\begin{gathered} \text { A1 (AG) } \\ \text { A1 } \end{gathered}$	o.e.
		11	19

4 (i)	$\begin{aligned} & \cosh u=\frac{e^{u}+e^{-u}}{2} \\ & \Rightarrow \quad 2 \cosh ^{2} u=\frac{e^{2 u}+2+e^{-2 u}}{2} \\ & \Rightarrow \quad 2 \cosh ^{2} u-1=\frac{e^{2 u}+e^{-2 u}}{2} \\ & \quad=\cosh 2 u \end{aligned}$	$\begin{gathered} \mathrm{B} 1 \\ \mathrm{~B} 1 \\ \mathrm{~B} 1(\mathrm{AG}) \\ 3 \\ \hline \end{gathered}$	$\left\{\begin{array}{l} \left(e^{u}+e^{-u}\right)^{2}=e^{2 u}+2+e^{-2 u} \\ \cosh 2 u=\frac{e^{2 u}+e^{-2 u}}{2} \end{array}\right.$ Completion www
(ii)	$\begin{aligned} & x=\operatorname{arcsinh} y \\ & \Rightarrow \quad \sinh x=y \\ & \Rightarrow \quad y=\frac{e^{x}-e^{-x}}{2} \\ & \Rightarrow \quad e^{2 x}-2 y e^{x}-1=0 \\ & \Rightarrow \quad\left(e^{x}-y\right)^{2}-y^{2}-1=0 \\ & \Rightarrow \quad\left(e^{x}-y\right)^{2}=y^{2}+1 \\ & \Rightarrow \quad e^{x}-y= \pm \sqrt{y^{2}+1} \\ & \Rightarrow \quad e^{x}=y \pm \sqrt{y^{2}+1} \end{aligned}$ Take + because $e^{x}>0$ $\Rightarrow \quad x=\ln \left(y+\sqrt{y^{2}+1}\right)$	M1 M1 B1 A1 (AG) 4	Expressing y in exponential form ($\frac{1}{2},-$ must be correct) Reaching e^{x} by quadratic formula or completing the square. Condone no \pm Or argument of \ln must be positive Completion www but independent of B1
(iii)	$\begin{aligned} & x=2 \sinh u \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} u}=2 \cosh u \\ & \int \sqrt{x^{2}+4} \mathrm{~d} x=\int \sqrt{4 \sinh ^{2} u+4} \times 2 \cosh u \mathrm{~d} u \\ & =\int 4 \cosh ^{2} u \mathrm{~d} u \\ & =\int 2 \cosh 2 u+2 \mathrm{~d} u \\ & =\sinh 2 u+2 u+c \\ & =2 \sinh u \cosh u+2 u+c \\ & =x \sqrt{1+\frac{x^{2}}{4}}+2 \operatorname{arcsinh} \frac{x}{2}+c \\ & =\frac{1}{2} x \sqrt{4+x^{2}}+2 \operatorname{arcsinh} \frac{x}{2}+c \end{aligned}$	M1 A1 M1 A1 M1 A1 (AG)	$\frac{\mathrm{d} x}{\mathrm{~d} u}$ and substituting for all elements Substituting for all elements correctly Simplifying to an integrable form Any form, e.g. $\frac{1}{2} e^{2 u}-\frac{1}{2} e^{-2 u}+2 u$ Condone omission of $+c$ throughout Using double 'angle' formula and attempt to express cosh u in terms of x Completion www

| (iv)$t^{2}+2 t+5=(t+1)^{2}+4$
 $=\int_{0}^{1} \sqrt{t^{2}+2 t+5} \mathrm{~d} t=\int_{-1}^{1} \sqrt{(t+1)^{2}+4} \mathrm{~d} t$
 $x^{2}+4$
 $\mathrm{~d} x$ | B1 | Completing the square |
| :--- | :---: | :---: | :--- |
| $=\left[\frac{1}{2} x \sqrt{4+x^{2}}+2 \operatorname{arcsinh} \frac{x}{2}\right]_{0}^{2}$ | A1 | Simplifying to an integrable form,
 by substituting $x=t+1$ s.o.i. or
 complete alternative method
 Correct limits consistent with their
 method seen anywhere |
| (v) $=\sqrt{8}+2 \operatorname{arcsinh} 1$ | | |
| $=2 \sqrt{2}+2 \ln (1+\sqrt{2})$ | | |
| $=2(\ln (1+\sqrt{2})+\sqrt{2})$ | M1 | Using (iii) or otherwise reaching the
 result of integration, and using limits |
| (AG) | Completion www. Condone $\sqrt{8}$ etc. | |
| $\mathbf{5}$ | | |

5 (i)	$\begin{aligned} & \text { If } a=1, \text { angle OCP }=45^{\circ} \\ & \text { so } \mathrm{P} \text { is }\left(1-\cos 45^{\circ}, \sin 45^{\circ}\right) \\ & \Rightarrow \quad \mathrm{P}\left(1-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \\ & \text { OR } \begin{aligned} & \text { Circle }(x-1)^{2}+y^{2}=1, \text { line } y=-x+1 \\ &(x-1)^{2}+(-x+1)^{2}=1 \\ & \Rightarrow x=1 \pm \frac{1}{\sqrt{2}} \text { and hence } \mathrm{P} \\ & \mathrm{Q}\left(1+\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right) \end{aligned} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 (AG) } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ 3 \end{gathered}$	Completion www Complete algebraic method to find x
(ii)	$\begin{aligned} & \cos \mathrm{OCP}=\frac{a}{\sqrt{a^{2}+1}} \\ & \sin \mathrm{OCP}=\frac{1}{\sqrt{a^{2}+1}} \end{aligned}$ P is $(a-a \cos \mathrm{OCP}, a \sin \mathrm{OCP})$ $\Rightarrow \mathrm{P}\left(a-\frac{a^{2}}{\sqrt{a^{2}+1}}, \frac{a}{\sqrt{a^{2}+1}}\right)$ OR Circle $(x-a)^{2}+y^{2}=a^{2}$, line $y=-\frac{1}{a} x+1$ $\begin{aligned} & (x-a)^{2}+\left(-\frac{1}{a} x+1\right)^{2}=a^{2} \\ \Rightarrow & x=\frac{2 a+\frac{2}{a} \pm \sqrt{\left(2 a+\frac{2}{a}\right)^{2}-4\left(1+\frac{1}{a^{2}}\right)}}{2\left(1+\frac{1}{a^{2}}\right)} \end{aligned}$	M1 A1 A1 (AG) M1 A1	Attempt to find cos OCP and sin OCP in terms of a Both correct Completion www Complete algebraic method to find x Unsimplified

	$\begin{aligned} \Rightarrow & x=a \pm \frac{a^{2}}{\sqrt{a^{2}+1}} \text { and hence } \mathrm{P} \\ & \mathrm{Q}\left(a+\frac{a^{2}}{\sqrt{a^{2}+1}},-\frac{a}{\sqrt{a^{2}+1}}\right) \end{aligned}$	A1 B1 4	
(iii)	 As $a \rightarrow \infty, \mathrm{P} \rightarrow(0,1)$ As $a \rightarrow-\infty, y$-coordinate of $\mathrm{P} \rightarrow-1$ $\frac{a}{\sqrt{a^{2}+1}} \rightarrow \frac{a}{-a}=-1 \text { as } a \rightarrow-\infty$	G1 G1 G1 G1ft B1 B1 M1 A1 8	Locus of $\mathrm{P}\left(1^{\text {st }} \& 3^{\text {rd }}\right.$ quadrants $)$ through (0,0) Locus of P terminates at $(0,1)$ Locus of P: fully correct shape Locus of Q ($2^{\text {nd }} \& 4^{\text {th }}$ quadrants: dotted) reflection of locus of P in y - axis Stated separately Stated Attempt to consider y as $a \rightarrow-\infty$ Completion www
(iv)	$\mathrm{POQ}=90^{\circ}$ Angle in semicircle Loci cross at 90°	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ 3 \end{gathered}$	o.e. 18

4757 Further Pure 3

1 (i)	Putting $\begin{aligned} & x=0,-3 y+10 z=6,-4 y-2 z=8 \\ & y=-2, \quad z=0 \end{aligned}$ Direction is given by $\left(\begin{array}{c}8 \\ -3 \\ 10\end{array}\right) \times\left(\begin{array}{c}3 \\ -4 \\ -2\end{array}\right)$ $=\left(\begin{array}{c} 46 \\ 46 \\ -23 \end{array}\right)$ Equation of L is $\mathbf{r}=\left(\begin{array}{c}0 \\ -2 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ 2 \\ -1\end{array}\right)$	M1 A1 M1 A1 A1 ft 5	Finding coords of a point on the line or $(2,0,-1),\left(1,-1,-\frac{1}{2}\right)$ etc or finding a second point Dependent on M1M1 Accept any form Condone omission of ' $\mathbf{r}=$ '
(i)	$\overrightarrow{\mathrm{AB}} \times \mathbf{d}=\left(\begin{array}{c} 7 \\ -14 \\ 4 \end{array}\right) \times\left(\begin{array}{c} 2 \\ 2 \\ -1 \end{array}\right)=\left(\begin{array}{c} 6 \\ 15 \\ 42 \end{array}\right) \quad\left[=3\left(\begin{array}{c} 2 \\ 5 \\ 14 \end{array}\right)\right]$ Distance is $\begin{aligned} {\left[\left(\begin{array}{c} -1 \\ 12 \\ 5 \end{array}\right)-\left(\begin{array}{c} 0 \\ -2 \\ 0 \end{array}\right)\right] \cdot \hat{\mathbf{n}} } & =\frac{\left(\begin{array}{c} -1 \\ 14 \\ 5 \end{array}\right) \cdot\left(\begin{array}{c} 2 \\ 5 \\ 14 \end{array}\right)}{\sqrt{2^{2}+5^{2}+14^{2}}} \\ & =\frac{138}{15}=\frac{46}{5}=9.2 \end{aligned}$	M1 A2 ft M1 A1 ft $\begin{gathered} \text { A1 } \\ 6 \end{gathered}$	Evaluating $\overrightarrow{\mathrm{AB}} \times \mathbf{d}$ Give A1 ft if just one error Appropriate scalar product Fully correct expression
(iii)	$\|\overrightarrow{\mathrm{AB}} \times \mathbf{d}\|=\left\|\left(\begin{array}{c} 6 \\ 15 \\ 42 \end{array}\right)\right\|=\sqrt{6^{2}+15^{2}+42^{2}}$ Distance is $\frac{\|\overrightarrow{\mathrm{AB}} \times \mathbf{d}\|}{\|\mathbf{d}\|}=\frac{\sqrt{6^{2}+15^{2}+42^{2}}}{\sqrt{2^{2}+2^{2}+1^{2}}}$ $=\frac{45}{3}=15$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1ft } \\ \\ \text { A1 } \\ 5 \end{gathered}$	For $\|\overrightarrow{\mathrm{AB}} \times \mathbf{d}\|$ Evaluating magnitude In this part, M marks are dependent on previous M marks

(iv)

$$
\begin{gathered}
\text { At } \mathrm{D},\left(\begin{array}{c}
-1 \\
12 \\
5
\end{array}\right)+\lambda\left(\begin{array}{c}
k+1 \\
-12 \\
-3
\end{array}\right)=\left(\begin{array}{c}
6 \\
-2 \\
9
\end{array}\right)+\mu\left(\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right) \\
12-12 \lambda=-2+2 \mu \\
5-3 \lambda=9-\mu \\
\lambda=\frac{1}{3}, \mu=5 \\
-1+\frac{1}{3}(k+1)=6+10 \\
k=50
\end{gathered}
$$

D is $(6+2 \mu,-2+2 \mu, 9-\mu)$
i.e. $(16,8,4)$

M1 Condone use of same parameter on

A1 8
both sides

A1 ft Two equations for λ and μ
M1 Obtaining λ and μ (numerically)
M1 Give M1 for λ and μ in terms of k Equation for k
M1
A1
M1 Obtaining coordinates of D

Alternative solutions for Q1

1 (i)	$\text { e.g. } \begin{aligned} & 23 x-23 y=46 \\ & \quad \begin{array}{l} x=t, y=t-2 \\ \\ 3 t-4(t-2)-2 z=8 \\ x=t, y=t-2, z=-\frac{1}{2} t \end{array} \end{aligned}$	$\begin{gathered} \text { M1A1 } \\ \text { M1 } \\ \text { A1 ft } \\ \text { A1 } \\ 5 \end{gathered}$	Eliminating one of x, y, z
(ii)	$\begin{aligned} & \overrightarrow{\mathrm{PQ}}=\left(\begin{array}{c} -1+7 \mu \\ 12-14 \mu \\ 5+4 \mu \end{array}\right)-\left(\begin{array}{c} 2 \lambda \\ -2+2 \lambda \\ -\lambda \end{array}\right) \\ & \overrightarrow{\mathrm{PQ}} \cdot \mathbf{d}=\overrightarrow{\mathrm{PQ}} \cdot \overrightarrow{\mathrm{AB}}=0 \\ & 2(-1+7 \mu-2 \lambda)+2(14-14 \mu-2 \lambda)-(5+4 \mu+\lambda) \\ & =0 \\ & 7(-1+7 \mu-2 \lambda)-14(14-14 \mu-2 \lambda)+4(5+4 \mu+\lambda) \\ & =0 \\ & \lambda=\frac{27}{25}, \mu=\frac{47}{75} \\ & \|\overrightarrow{\mathrm{PQ}}\|=\sqrt{\left(\frac{92}{75}\right)^{2}+\left(\frac{230}{75}\right)^{2}+\left(\frac{644}{75}\right)^{2}}=9.2 \end{aligned}$	M1 A1 ft A1 ft M1 A1 ft A1 6	Two equations for λ and μ Expression for shortest distance
(iii)	$\begin{aligned} & \overrightarrow{\mathrm{AX}} \cdot \mathbf{d}=\left(\begin{array}{c} 6+2 \lambda+1 \\ -2+2 \lambda-12 \\ 9-\lambda-5 \end{array}\right) \cdot\left(\begin{array}{c} 2 \\ 2 \\ -1 \end{array}\right)=0 \\ & 2(7+2 \lambda)+2(2 \lambda-14)-(4-\lambda)=0 \\ & \lambda=2 \\ & \overrightarrow{\mathrm{AX}}=\left(\begin{array}{c} 11 \\ -10 \\ 2 \end{array}\right) \\ & \begin{aligned} \mathrm{AX} & =\sqrt{11^{2}+10^{2}+2^{2}} \\ & =15 \end{aligned} \\ & \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1ft } \\ & \text { M1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & 5 \end{aligned}$	

2(i)	$\begin{aligned} & \frac{\partial z}{\partial x}=3(x+y)^{3}+9 x(x+y)^{2}-6 x^{2}+24 \\ & \frac{\partial z}{\partial y}=9 x(x+y)^{2} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A2 } \\ \\ \text { A1 } \\ \mathbf{4} \end{gathered}$	Partial differentiation Give A1 if just one minor error
(ii)	At stationary points, $\frac{\partial z}{\partial x}=0$ and $\frac{\partial z}{\partial y}=0$ $9 x(x+y)^{2}=0 \Rightarrow x=0$ or $y=-x$ If $x=0$ then $3 y^{3}+24=0$ $y=-2$; one stationary point is $(0,-2,0)$ If $y=-x$ then $-6 x^{2}+24=0$ $x= \pm 2$; stationary points are $(2,-2,32)$ and $(-2,2,-32)$	M1 M1 A1A1 M1 A1 A1 7	If A0A0, give A1 for $x= \pm 2$
(iii)	$\begin{aligned} & \text { At } \mathrm{P}(1,-2,19), \frac{\partial z}{\partial x}=24, \frac{\partial z}{\partial y}=9 \\ & \text { Normal line is } \mathbf{r}=\left(\begin{array}{c} 1 \\ -2 \\ 19 \end{array}\right)+\lambda\left(\begin{array}{c} 24 \\ 9 \\ -1 \end{array}\right) \end{aligned}$	$\begin{gathered} \mathrm{B} 1 \\ \\ \text { M1 } \\ \mathrm{A} 1 \mathrm{ft} \\ \mathbf{3} \\ \hline \end{gathered}$	For normal vector (allow sign error) Condone omission of ' $\mathbf{r}=$ '
(iv)	$\begin{aligned} \delta z & \approx \frac{\partial z}{\partial x} \delta x+\frac{\partial z}{\partial y} \delta y \\ & =24 \delta x+9 \delta y \\ 3 h & \approx 24 k+9 h \end{aligned}$	$\begin{gathered} \mathrm{M} 1 \\ \mathrm{~A} 1 \mathrm{ft} \\ \mathrm{M} 1 \end{gathered}$	

	$k \approx-\frac{1}{4} h$	$\begin{gathered} \mathrm{A} 1 \\ 4 \end{gathered}$	
	OR Tangent plane is $24 x+9 y-z=-13$ $\begin{aligned} & 24(1+k)+9(-2+h)-(19+3 h) \approx-13 \\ & k \approx-\frac{1}{4} h \end{aligned}$	$\begin{gathered} \mathrm{M} 2 \\ \mathrm{~A} 1 \mathrm{ft} \\ \mathrm{~A} 1 \end{gathered}$	
(v)	$\begin{aligned} & \frac{\partial z}{\partial x}=27 \text { and } \frac{\partial z}{\partial y}=0 \\ & 9 x(x+y)^{2}=0 \Rightarrow x=0 \text { or } y=-x \end{aligned}$ If $x=0$ then $3 y^{3}+24=27$ $y=1, z=0$; point is $(0,1,0)$ $d=0$ If $y=-x$ then $-6 x^{2}+24=27$ $x^{2}=-\frac{1}{2}$; there are no other points	M1 M1 A1 A1 M1 A1 6	(Allow M1 for $\frac{\partial z}{\partial x}=-27$)

3(i)	$\left.\begin{array}{l} \left(\begin{array}{rl} \left(\frac{\mathrm{d} x}{\mathrm{~d} \theta}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} \theta}\right)^{2} & =[a(1+\cos \theta)]^{2}+(a \sin \theta)^{2} \\ & =a^{2}(2+2 \cos \theta) \\ & =4 a^{2} \cos ^{2} \frac{1}{2} \theta \end{array}\right. \\ s=\int 2 a \cos \frac{1}{2} \theta \mathrm{~d} \theta \\ \\ =4 a \sin \frac{1}{2} \theta+C \end{array}\right\}$	M1 A1 M1 M1 A1 A1(AG) 6	Forming $\left(\frac{\mathrm{d} x}{\mathrm{~d} \theta}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} \theta}\right)^{2}$ Using half-angle formula Integrating to obtain $k \sin \frac{1}{2} \theta$ Correctly obtained ($+C$ not needed) Dependent on all previous marks
(ii)	$\begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{a \sin \theta}{a(1+\cos \theta)} \\ & =\frac{2 \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta}{2 a \cos ^{2} \frac{1}{2} \theta}=\tan \frac{1}{2} \theta \\ \psi & =\frac{1}{2} \theta, \text { and so } s=4 a \sin \psi \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \mathbf{4} \end{gathered}$	Using half-angle formulae
(iii)	$\begin{aligned} \rho & =\frac{\mathrm{d} s}{\mathrm{~d} \psi}=4 a \cos \psi \\ & =4 a \cos \frac{1}{2} \theta \end{aligned}$	$\begin{array}{\|c} \mathrm{M} 1 \\ \mathrm{~A} 1 \mathrm{ft} \\ \mathrm{~A}(\mathrm{AG}) \\ 3 \end{array}$	Differentiating intrinsic equation
	OR $\begin{aligned} \rho & =\frac{\left(4 a^{2} \cos ^{2} \frac{1}{2} \theta\right)^{3 / 2}}{a(1+\cos \theta)(a \cos \theta)-(-a \sin \theta)(a \sin \theta)} \\ & =\frac{8 a^{3} \cos ^{3} \frac{1}{2} \theta}{a^{2}(1+\cos \theta)}=\frac{8 a^{3} \cos ^{3} \frac{1}{2} \theta}{2 a^{2} \cos ^{2} \frac{1}{2} \theta}=4 a \cos \frac{1}{2} \theta \end{aligned}$	$\begin{gathered} \mathrm{M} 1 \\ \mathrm{~A} 1 \mathrm{ft} \\ \mathrm{~A} 1(\mathrm{AG}) \end{gathered}$	Correct expression for ρ or κ

(iv)	$\begin{aligned} & \text { When } \theta=\frac{2}{3} \pi, \psi=\frac{1}{3} \pi, x=a\left(\frac{2}{3} \pi+\frac{1}{2} \sqrt{3}\right), \quad y=\frac{3}{2} a \\ & \quad \rho=2 a \\ & \hat{\mathbf{n}}=\binom{-\sin \psi}{\cos \psi}=\binom{-\frac{1}{2} \sqrt{3}}{\frac{1}{2}} \\ & \mathbf{c}=\binom{a\left(\frac{2}{3} \pi+\frac{1}{2} \sqrt{3}\right)}{\frac{3}{2} a}+2 a\binom{-\frac{1}{2} \sqrt{3}}{\frac{1}{2}} \end{aligned}$ Centre of curvature is $\left(a\left(\frac{2}{3} \pi-\frac{1}{2} \sqrt{3}\right), \frac{5}{2} a\right)$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \\ \text { M1 } \\ \\ \text { A1A1 } \\ 6 \end{gathered}$	Obtaining a normal vector Correct unit normal (possibly in terms of θ) Accept (1.23a, 2.5a)
(v)	Curved surface area is $\int 2 \pi y \mathrm{~d} s$ $\begin{aligned} & =\int_{0}^{\pi} 2 \pi a(1-\cos \theta) 2 a \cos \frac{1}{2} \theta \mathrm{~d} \theta \\ & =\int_{0}^{\pi} 8 \pi a^{2} \sin ^{2} \frac{1}{2} \theta \cos \frac{1}{2} \theta \mathrm{~d} \theta \\ & =\left[\frac{16}{3} \pi a^{2} \sin ^{3} \frac{1}{2} \theta\right]_{0}^{\pi} \\ & =\frac{16}{3} \pi a^{2} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 ft } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ 5 \end{gathered}$	Correct integral expression in any form (including limits; may be implied by later working) Obtaining an integrable form Obtaining $k \sin ^{3} \frac{1}{2} \theta$ or equivalent

4 (i)	$\begin{aligned} & \text { In } G, 3^{2}=2,3^{3}=6,3^{4}=4,3^{5}=5,3^{6}=1 \\ & \quad\left[\text { or } 5^{2}=4,5^{3}=6,5^{4}=2,5^{5}=3,5^{6}=1\right] \\ & \text { In } H, 5^{2}=7,5^{3}=17,5^{4}=13,5^{5}=11,5^{6}=1 \\ & \quad\left[\text { or } 11^{2}=13,11^{3}=17,11^{4}=7,11^{5}=5,11^{6}=1\right. \\ &] \\ & G \text { has an element } 3 \text { (or 5) of order } 6 \\ & H \text { has an element } 5 \text { (or } 11 \text {) of order } 6 \end{aligned}$	M1 A1 B1 B1 4	All powers of an element of order 6 All powers correct in both groups
(ii)	$\begin{aligned} & \{1,6\} \\ & \{1,2,4\} \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B2 } \\ 3 \end{gathered}$	Ignore $\{1\}$ and G Deduct 1 mark (from B1B2) for each proper subgroup in excess of two
(iii)		$\begin{gathered} \mathrm{B} 4 \\ 4 \end{gathered}$	Give B3 for 4 correct, B2 for 3 correct, B1 for 2 correct
(iv)	$\begin{aligned} & \mathrm{ad}(1)=\mathrm{a}(3)=1 \\ & \mathrm{ad}(2)=\mathrm{a}(2)=3 \\ & \mathrm{ad}(3)=\mathrm{a}(1)=2, \text { so } \mathrm{ad}=\mathrm{c} \\ & \mathrm{da}(1)=\mathrm{d}(2)=2 \\ & \mathrm{da}(2)=\mathrm{d}(3)=1 \end{aligned}$	M1 A1 M1	Evaluating e.g. ad(1) (one case sufficient; intermediate value must be shown) For $\mathrm{ad}=\mathrm{c}$ correctly shown Evaluating e.g. da(1) (one case sufficient; no need for any working)

Pre-multiplication by transition matrix

5 (i)	$\mathbf{P}=\left(\begin{array}{cccc}0 & 0.1 & 0 & 0.3 \\ 0.7 & 0.8 & 0 & 0.6 \\ 0.1 & 0 & 1 & 0.1 \\ 0.2 & 0.1 & 0 & 0\end{array}\right)$	$\begin{gathered} \text { B2 } \\ 2 \end{gathered}$	Give B1 for two columns correct
(ii)	$\mathbf{P}^{13}\left(\begin{array}{c}0.6 \\ 0.4 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}0.0810 \\ 0.5684 \\ 0.2760 \\ 0.0746\end{array}\right)$	$\begin{gathered} \text { M1 } \\ \text { A2 } \\ \mathbf{3} \end{gathered}$	Using \mathbf{P}^{13} (or \mathbf{P}^{14}) Give A1 for 2 probabilities correct (Max A1 if not at least 3dp) Tolerance ± 0.0001
(iii)	$\begin{gathered} 0.5684 \times 0.8+0.2760 \\ =0.731 \end{gathered}$	M1M1 A1 ft 3	For 0.5684×0.8 and 0.2760 Accept 0.73 to 0.7312
(iv)	$\mathbf{P}^{30}\left(\begin{array}{c} 0.6 \\ 0.4 \\ 0 \\ 0 \end{array}\right)=\left(\begin{array}{c} . \\ . \\ 0.4996 \\ . \end{array}\right), \quad \mathbf{P}^{31}\left(\begin{array}{c} 0.6 \\ 0.4 \\ 0 \\ 0 \end{array}\right)=\left(\begin{array}{c} . \\ . \\ 0.5103 \\ . \end{array}\right)$ Level 32	M1 A1 A1 3	Finding $\mathrm{P}(\mathrm{C})$ for some powers of \mathbf{P} For identifying \mathbf{P}^{31}
(v)	Expected number of levels including the next change of location is $\frac{1}{0.2}=5$ Expected number of further levels in B is 4	M1 A1 A1 3	For $1 /(1-0.8)$ or $0.8 /(1-0.8)$ For 5 or 4 For 4 as final answer

\begin{tabular}{|c|c|c|c|}
\hline (vi) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathbf{Q}=\left(\begin{array}{cccc}
0 \& 0.1 \& 0 \& 0.3 \\
0.7 \& 0.8 \& 0 \& 0.6 \\
0.1 \& 0 \& 0.9 \& 0.1 \\
0.2 \& 0.1 \& 0.1 \& 0
\end{array}\right) \\
\& \mathbf{Q}^{n} \rightarrow\left(\begin{array}{llll}
0.0916 \& 0.0916 \& 0.0916 \& 0.0916 \\
0.6183 \& 0.6183 \& 0.6183 \& 0.6183 \\
0.1908 \& 0.1908 \& 0.1908 \& 0.1908 \\
0.0992 \& 0.0992 \& 0.0992 \& 0.0992
\end{array}\right)
\end{aligned}
\] \\
A: 0.0916 B: 0.6183 C: 0.1908 D: 0.0992
\end{tabular} \& B1
M1
M
M1

A2

5 \& | Can be implied |
| :--- |
| Evaluating powers of \mathbf{Q} |
| or Obtaining (at least) 3 equations |
| from $\mathbf{Q p}=\mathbf{p}$ |
| Limiting matrix with equal columns or Solving to obtain one equilib prob or M2 for other complete method Give A1 for two correct |
| (Max A1 if not at least 3dp) |
| Tolerance ± 0.0001 |

\hline (vii) \& $$
\begin{aligned}
\left(\begin{array}{cccc}
0 & 0.1 & a & 0.3 \\
0.7 & 0.8 & b & 0.6 \\
0.1 & 0 & c & 0.1 \\
0.2 & 0.1 & d & 0
\end{array}\right)\left(\begin{array}{c}
0.11 \\
0.75 \\
0.04 \\
0.1
\end{array}\right) & =\left(\begin{array}{c}
0.11 \\
0.75 \\
0.04 \\
0.1
\end{array}\right) \\
0.075+0.04 a+0.03 & =0.11 \\
0.077+0.6+0.04 b+0.06 & =0.75 \\
0.011+0.04 c+0.01 & =0.04 \\
0.022+0.075+0.04 d & =0.1 \\
a=0.125, \quad b=0.325, \quad c & =0.475, \quad d=0.075
\end{aligned}
$$ \& M1

A1

M1

A2

5 \& | Transition matrix and $\left(\begin{array}{c}0.11 \\ 0.75 \\ 0.04 \\ 0.1\end{array}\right)$ |
| :--- |
| Forming at least one equation |
| or $a+b+c+d=1$ |
| Give A1 for two correct |

\hline
\end{tabular}

Post-multiplication by transition matrix

5 (i)	$\mathbf{P}=\left(\begin{array}{cccc}0 & 0.7 & 0.1 & 0.2 \\ 0.1 & 0.8 & 0 & 0.1 \\ 0 & 0 & 1 & 0 \\ 0.3 & 0.6 & 0.1 & 0\end{array}\right)$	$\begin{gathered} \text { B2 } \\ 2 \end{gathered}$	Give B1 for two rows correct
(ii)	$\begin{aligned} &\left(\begin{array}{llllll} 0.6 & 0.4 & 0 & 0 \end{array}\right) \mathbf{P}^{13} \\ &=\left(\begin{array}{llllll} 0.0810 & 0.5684 & 0.2760 & 0.0746 \end{array}\right) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A2 } \\ 3 \end{gathered}$	Using \mathbf{P}^{13} (or \mathbf{P}^{14}) Give A1 for 2 probabilities correct (Max A1 if not at least 3dp) Tolerance ± 0.0001
(iii)	$\begin{gathered} 0.5684 \times 0.8+0.2760 \\ =0.731 \end{gathered}$	$\begin{gathered} \text { M1M1 } 1 \\ \text { A1 ft } \\ 3 \end{gathered}$	For 0.5684×0.8 and 0.2760 Accept 0.73 to 0.7312
(iv)	$\left.\left(\begin{array}{llll} (0.6 & 0.4 & 0 & 0 \end{array}\right) \mathbf{P}^{30}=\left(\begin{array}{lll} . & 0.4996 \end{array}\right) .\right)$ Level 32	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ 3 \end{gathered}$	Finding $\mathrm{P}(\mathrm{C})$ for some powers of \mathbf{P} For identifying \mathbf{P}^{31}
(v)	Expected number of levels including the next change of location is $\frac{1}{0.2}=5$ Expected number of further levels in B is 4	$\begin{gathered} \mathrm{M} 1 \\ \text { A1 } \\ \text { A1 } \\ 3 \end{gathered}$	For $1 /(1-0.8)$ or $0.8 /(1-0.8)$ For 5 or 4 For 4 as final answer

\begin{tabular}{|c|c|c|c|}
\hline (vi) \& $$
\left.\begin{array}{rl}
\mathbf{Q} & =\left(\begin{array}{cccc}
0 & 0.7 & 0.1 & 0.2 \\
0.1 & 0.8 & 0 & 0.1 \\
0 & 0 & 0.9 & 0.1 \\
0.3 & 0.6 & 0.1 & 0
\end{array}\right) \\
\mathbf{Q}^{n} \rightarrow\left(\begin{array}{llll}
0.0916 & 0.6183 & 0.1908 & 0.0992 \\
0.0916 & 0.6183 & 0.1908 & 0.0992 \\
0.0916 & 0.6183 & 0.1908 & 0.0992 \\
0.0916 & 0.6183 & 0.1908 & 0.0992
\end{array}\right) \\
\mathrm{A}: 0.0916 & \text { B: } 0.6183
\end{array} \mathrm{C}: 0.1908 \quad \text { D: } 0.0992\right)
$$ \& B1
M1

M1

A2

5 \& | Can be implied |
| :--- |
| Evaluating powers of \mathbf{Q} or Obtaining (at least) 3 equations from $\mathbf{p Q}=\mathbf{p}$ |
| Limiting matrix with equal rows or Solving to obtain one equilib prob or M2 for other complete method |
| Give A1 for two correct |
| (Max Al if not at least $3 d p$) |
| Tolerance ± 0.0001 |

\hline (vii) \& $$
\left.\begin{array}{rl}
\left(\begin{array}{llll}
0.11 & 0.75 & 0.04 & 0.1
\end{array}\right)\left(\begin{array}{cccc}
0 & 0.7 & 0.1 & 0.2 \\
0.1 & 0.8 & 0 & 0.1 \\
a & b & c & d \\
0.3 & 0.6 & 0.1 & 0
\end{array}\right) \\
=\left(\begin{array}{llll}
0.11 & 0.75 & 0.04 & 0.1
\end{array}\right) \\
0.075+0.04 a+0.03 & =0.11 \\
0.077+0.6+0.04 b+0.06 & =0.75 \\
0.011+0.04 c+0.01 & =0.04 \\
0.022+0.075+0.04 d & =0.1 \\
a=0.125, & b=0.325, \quad c
\end{array}\right)
$$ \& M1

A1
M1
M1

A2

5 \& | Transition matrix and $\left(\begin{array}{llll} 0.11 & 0.75 & 0.04 & 0.1 \end{array}\right)$ |
| :--- |
| Forming at least one equation or $a+b+c+d=1$ Give A1 for two correct |

\hline
\end{tabular}

4758 Differential Equations

1(i)	$\alpha^{2}+25=0$	M1	Auxiliary equation
	$\alpha= \pm 5$	A1	
	CF $y=A \cos 5 t+B \sin 5 t$	F1	CF for their roots
	PI $y=a t \cos 5 t+b t \sin 5 t$	B1	
	$\dot{y}=a \cos 5 t-5 a t \sin 5 t+b \sin 5 t+5 b t \cos 5 t$		
	$\ddot{y}=-10 a \sin 5 t-25 a t \cos 5 t+10 b \cos 5 t-25 b t \sin 5 t$	M1	Differentiate twice
	In $\mathrm{DE} \Rightarrow 10 b \cos 5 t-10 a \sin 5 t=20 \cos 5 t$	M1	Substitute and compare
			coefficients
	$\Rightarrow b=2, a=0$	A1	
	PI $y=2 t \sin 5 t$		
	GS $y=2 t \sin 5 t+A \cos 5 t+B \sin 5 t$	F1	
		8	
(ii)	$t=0, y=1 \Rightarrow A=1$	B1	From correct GS
	$\dot{y}=2 \sin 5 t+10 t \cos 5 t-5 A \sin 5 t+5 B \cos 5 t$	M1	Differentiate
	$t=0, \dot{y}=0 \Rightarrow B=0$	M1	Use condition on \dot{y}
	$y=2 t \sin 5 t+\cos 5 t$	A1	
		4	
(iii)	Curve through (0,1)	B1	
	Curve with zero gradient at (0, 1)	B1	
	Oscillations	B1	
	Oscillations with increasing amplitude	B1	
		4	
(iv)	$\begin{aligned} y=2 \sin 5 t, & \dot{y}=10 \cos 5 t, \quad \ddot{y}=-50 \sin 5 t \\ \ddot{y}+2 \dot{y}+25 y & =-50 \sin 5 t+20 \cos 5 t+50 \sin 5 t \\ & =20 \cos 5 t \end{aligned}$	M1	Substitute into DE
		E1	
	$\begin{aligned} & \alpha^{2}+2 \alpha+25=0 \\ & \alpha=-1 \pm \mathrm{i} \sqrt{24} \\ & \text { CF } \mathrm{e}^{-t}(C \cos \sqrt{24} t+D \sin \sqrt{24} t) \\ & \text { GS } y=2 \sin 5 t+\mathrm{e}^{-t}(C \cos \sqrt{24} t+D \sin \sqrt{24} t) \end{aligned}$	M1	Auxiliary equation
		A1	
		F1	CF for their complex roots
		F1	Their PI + their CF with two arbitrary constants
(v)	Oscillations of amplitude 2	B1	or bounded oscillations; or both oscillate o.e. or one bounded, one unbounded
	Compared to unbounded oscillations in first model	B1	
2(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{3}{x} y=\frac{\sin x}{x^{2}}$	M1	Rearrange
	$I=\mathrm{e}^{\int \frac{3}{x} \mathrm{~d} x}$	M1	Attempting integrating factor
	$=\mathrm{e}^{3 \ln x}$	A1	

$$
\begin{aligned}
& =x^{3} \\
& \frac{\mathrm{~d}}{\mathrm{~d} x}\left(x^{3} y\right)=x \sin x \\
& x^{3} y=\int x \sin x \mathrm{~d} x=-x \cos x+\int \cos x \mathrm{~d} x \\
& =-\cos x+\sin x+A \\
& y=\frac{-x \cos x+\sin x+A}{x^{3}}
\end{aligned}
$$

A1 Correct and simplified
M1 Multiply and recognise derivative
M1 Integrate
A1
A1 All correct
F1 Must include constant
9

M1 Substitute given approximations
F1
$=\frac{1}{3}+\frac{A}{x^{3}}$
$A=0$
$y=\frac{\sin x-x \cos x}{x^{3}}$
$\lim _{x \rightarrow 0} y=\frac{1}{3}$
B1 Correct limit
M1 Use finite limit to deduce A
A1
B1 Correct particular solution

6
(iii) $\quad y=0 \Rightarrow \sin x-x \cos x=0$
$\Rightarrow \tan x=x$
M1 Equate to zero and attempt to get $\tan x$
E1 Convincingly shown
2
(iv) $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{3}{x} y=\frac{1}{x}-\frac{1}{6} x$, multiply by $I=x^{3}$

M1 Rearrange and multiply by IF
$\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{3} y\right)=x^{2}-\frac{1}{6} x^{4}$
$x^{3} y=\frac{1}{3} x^{3}-\frac{1}{30} x^{5}+B$
M1 Integrate
$y=\frac{1}{3}-\frac{1}{30} x^{2}+\frac{B}{x^{3}}$
Finite limit $\Rightarrow B=0$
$\lim _{x \rightarrow 0} y=\frac{1}{3}$
B1 Same IF as in (i) or correct IF
A1 Recognise derivative and RHS correct

A1 c.a.o
M1 Use condition to find constant
E1 Show correct limit (or same limit
as (ii))
7

3(a)(i) $2 \alpha+4=0 \Rightarrow \alpha=-2$	M1	Find root of auxiliary equation
CF $A \mathrm{e}^{-2 t}$	A1	
PI $I=a \cos 2 t+b \sin 2 t$	B1	
$\dot{I}=-2 a \sin 2 t+2 b \cos 2 t$	M1	Differentiate
$-4 a \sin 2 t+4 b \cos 2 t+4 a \cos 2 t+4 b \sin 2 t=3 \cos 2 t$	M1	Substitute
$-4 a+4 b=0,4 b+4 a=3 \Rightarrow a=b=\frac{3}{8}$	M1	Compare coefficients and solve

PI $I=\frac{3}{8}(\cos 2 t+\sin 2 t)$
GS $I=A \mathrm{e}^{-2 t}+\frac{3}{8}(\cos 2 t+\sin 2 t)$

A1
F1 Their PI + their CF with one arbitrary constant
8

(ii)$t=0, l=0 \Rightarrow 0=A+\frac{3}{8} \Rightarrow A=-\frac{3}{8}$ M1 $I=\frac{3}{8}\left(\cos 2 t+\sin 2 t-\mathrm{e}^{-2 t}\right)$	Use condition

(iii) For large $t, I \approx \frac{3}{8}(\cos 2 t+\sin 2 t)$

Amplitude $=\frac{3}{8} \sqrt{1^{2}+1^{2}}=\frac{3}{8} \sqrt{2}$
M1 Consider behaviour for large t (may be implied)

A1

Curve with oscillations with constant amplitude
Their amplitude clearly indicated
B1
B1
4

M1 Substitute into DE
A1
Gradient $=3$
M1 Substitute into DE
$\Rightarrow \quad 0=2-2\left(\frac{9}{8}\right)+\mathrm{e}^{-t} \Rightarrow \mathrm{e}^{-t}=\frac{1}{4}$
M1 \quad Solve for t
$\Rightarrow t=\ln 4$
A1
(C) $\frac{\mathrm{d} y}{\mathrm{~d} t} \rightarrow 0, \mathrm{e}^{-t} \rightarrow 0$

Giving $0=2-2 y+0$, so $y \rightarrow 1$

M1 Substitute into DE
A1
7
B1
B1 Follow their $\ln 4$
B1 Follow their (C)
3

M1 Differentiate
M1 Substitute for \dot{y}
M1 y in terms of x, \dot{x}, t
M1 Substitute for y
E1 Complete argument
5
(ii) $\quad x=a \mathrm{e}^{-3 t}-9 \cos t+3 \sin t$
$\dot{x}=-3 a \mathrm{e}^{-3 t}+9 \sin t+3 \cos t$
$\ddot{x}=9 a \mathrm{e}^{-3 t}+9 \cos t-3 \sin t \quad$ M1 \quad Differentiate twice
In DE gives
M1 Substitute
$9 a \mathrm{e}^{-3 t}+9 \cos t-3 \sin t$

$$
+3\left(-3 a \mathrm{e}^{-3 t}+9 \sin t+3 \cos t\right)
$$

$$
+2\left(a \mathrm{e}^{-3 t}-9 \cos t+3 \sin t\right)
$$

$=2 a \mathrm{e}^{-3 t}+30 \sin t$
So PI with $2 a=14$
E1 Correct form shown
$\Rightarrow \quad a=7$
AE $\alpha^{2}+3 \alpha+2=0$
A1
$\alpha=-1,-2$
CF $A \mathrm{e}^{-t}+B \mathrm{e}^{-2 t}$
GS $x=A \mathrm{e}^{-t}+B \mathrm{e}^{-2 t}+7 \mathrm{e}^{-3 t}-9 \cos t+3 \sin t$
M1 Auxiliary equation
A1
F1 CF for their roots
F1 Their PI + their CF with two arbitrary constants

8

(iii) | x | $=\frac{1}{6}\left(\dot{x}-7 x-2 e^{-3 t}\right)$ | M1 | y in terms of x, \dot{x}, t |
| ---: | :--- | :--- | :--- |
| \dot{x} | $=-A \mathrm{e}^{-t}-2 B \mathrm{e}^{-2 t}-21 \mathrm{e}^{-3 t}+9 \sin t+3 \cos t$ | M1 | Differentiate GS for x |
| y | $=-\frac{4}{3} A \mathrm{e}^{-t}-\frac{3}{2} B \mathrm{e}^{-2 t}-12 \mathrm{e}^{-3 t}+11 \cos t-2 \sin t$ | F1 | Follow their GS |
| | A1 | c.a.o | |

| (iv) $\left.\begin{array}{lll}x \approx 3 \sin t-9 \cos t & \text { B1 } & \text { Follow their } x \\ y \approx 11 \cos t-2 \sin t & \text { B1 } & \text { Follow their } y \\ x=y \Rightarrow 11 \cos t-2 \sin t \approx 3 \sin t-9 \cos t & \text { M1 } & \text { Equate } \\ \Rightarrow 20 \cos t \approx 5 \sin t \Rightarrow \tan t \approx 4 & \text { A1 } & \text { Complete argument }\end{array} \quad \begin{array}{ll} & \\ & \end{array}\right)$ |
| :--- | :--- | :--- |

(v) Amplitude of $x \approx \sqrt{3^{2}+9^{2}}=3 \sqrt{10}$

Amplitude of $y \approx \sqrt{11^{2}+2^{2}}=5 \sqrt{5}$
Ratio is $\frac{5}{6} \sqrt{2}$

M1 Attempt both amplitudes
A1 One correct
A1 c.a.o (accept reciprocal)

4761 Mechanics 1

Q 3		Mark	Comment	Sub
(i)	The line is not straight	B1	Any valid comment	
(ii)	$a=3-\frac{6 t}{8}$	M1	Attempt to differentiate. Accept 1 term correct but not $3-\frac{3 t}{8}$.	1
	$a(4)=0$ The sprinter has reached a steady speed	F1	Accept 'stopped accelerating' but not just $a=0$. Do not $\mathrm{ft} a(4) \neq 0$.	
				3
	We require $\int_{1}^{4}\left(3 t-\frac{3 t^{2}}{8}\right) \mathrm{d} t$ $\begin{aligned} & =\left[\frac{3 t^{2}}{2}-\frac{t^{3}}{8}\right]_{1}^{4} \\ & =(24-8)-\left(\frac{3}{2}-\frac{1}{8}\right) \end{aligned}$ $=14 \frac{5}{8} \mathrm{~m}(14.625 \mathrm{~m})$	M1 A1 M1 A1	Integrating. Neglect limits. One term correct. Neglect limits. Correct limits subst in integral. Subtraction seen. If arb constant used, evaluated to give $s=0$ when $t=1$ and then $\operatorname{sub} t=4$. c.a.o. Any form. [If trapezium rule used M1 use of rule (must be clear method and at least two regions) A1 correctly applied M1 At least 6 regions used A1 Answer correct to at least 2 s.f.)]	
				4
		8		

Q 6		Mark	Comment	Sub
(i)	Up the plane $T-4 g \sin 25=0$	M1	Resolving parallel to the plane. If any other direction used, all forces must be present. Accept $\mathrm{s} \leftrightarrow \mathrm{c}$. Allow use of m. No extra forces.	
	$T=16.5666 \ldots$ so 16.6 N (3 s. f.)	A1		2
(ii)	Down the plane,$(4+m) g \sin 25-50=0$	M1	No extra forces. Must attempt resolution in at least 1 term. Accept $\mathrm{s} \leftrightarrow \mathrm{c}$. Accept $M \mathrm{~g} \sin 25$. Accept use of mass. Accept $M g \sin 25$	
		A1		
	$m=8.0724 \ldots$ so 8.07 (3 s. f.)	A1		3
(iii)	Diagram	B1	Any 3 of weight, friction normal reaction and P present in approx correct directions with arrows. All forces present with suitable directions, labels and arrows. Accept W, $m \mathrm{~g}, 4 \mathrm{~g}$ and 39.2.	
		B1		
				2
(iv)	Resolving up the plane	M1	Or resolving parallel to the plane. All forces must be present. Accept $\mathrm{s} \leftrightarrow \mathrm{c}$. Allow use of m. At least one resolution attempted and accept wrong angles. Allow sign errors. $P \cos 15$ term correct. Allow sign error. Both resolutions correct. Weight used. Allow sign errors. ft use of $P \sin 15$. All correct but ft use of $P \sin 15$.	
		B1		
	$P \cos 15-20-4 g \sin 25=0$	B1		
		A1		
	$P=37.8565 \ldots$... so 37.9 N (3 s. f.)	A1		
				5
(v)	Resolving perpendicular to the plane	M1	May use other directions. All forces present. No extras. Allow $\mathrm{s} \leftrightarrow \mathrm{c}$. Weight not mass used. Both resolutions attempted. Allow sign errors.	
	$R+P \sin 15-4 g \cos 25=0$	B1	Both resolutions correct. Allow sign errors. Allow use of $P \cos 15$ if $P \sin 15$ used in (iv).	
		F1	All correct. Only ft their P and their use of $P \cos 15$.	
	$R=25.729 \ldots$ so 25.7 N	A1		
		16		

If there is a consistent $\mathrm{s} \leftrightarrow \mathrm{c}$ error in the weight term throughout the question, penalise only two marks for this error. In the absence of other errors this gives
(i) $35.52 \ldots$ (ii) $1.6294 \ldots$ (iv) $57.486 \ldots$ (v) $1.688 \ldots$

For use of mass instead of weight lose maximum of 2.

Q 7		Mark	Comment	Sub
With the 11.2 N resistance acting to the left				
(i)	N2L $F-11.2=8 \times 2$		Use of N2L (allow $F=m g a$). Allow 11.2 omitted; no extra forces.	3
	$F=27.2$ so 27.2 N			
		$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	c.a.o.	
(ii)	The string is inextensible	E1	Allow 'light inextensible' but not other irrelevant reasons given as well (e.g. smooth pulley).	
				1
(iii)		B1	One diagram with all forces present; no extras; correct arrows and labels accept use of words. Both diagrams correct with a common label.	
		B1		
				2
(iv)	Method (1)	M1	For either box or sphere, $F=m a$. Allow omitted force and sign errors but not extra forces. Need correct mass. Allow use of mass not weight.	
	Box N2L \rightarrow 105-T-11.2 $=8 a$	A1	Correct and in any form. Correct and in any form. [box and sphere equns with consistent signs]	
	Sphere N2L $\uparrow T-58.8=6 a$	A1		
	Adding $35=14 a$	M1	Eliminating 1 variable from 2 equns in 2 variables.	
	$a=2.5$ so $2.5 \mathrm{~ms}^{-2}$	E1		
	Substitute $a=2.5$ giving $T=58.8+$ 15	M1	Attempt to substitute in either box or sphere equn.	
	$T=73.8$ so 73.8 N	A1		
	Method (2)			
	$105-11.2-58.8=14 a$	M1	For box and sphere, $F=m a$. Must be correct mass. Allow use of mass not weight.	
	$a=2.5$	A1		
		E1	Method made clear.	
		M1	For either box or sphere, $F=m a$. Allow omitted force and sign errors but not extra forces. Need correct mass. Allow use of mass not weight.	
	either: box N2L $\rightarrow 105-T-11.2=$ $8 a$			
	or: sphere N2L $\uparrow T-58.8=6 a$	A1	Correct and in any form. Attempt to substitute in either box or sphere equn.	
	Substitute $a=2.5$ in either equn	M1		
	$T=73.8$ so 73.8 N	A1		
			[If AG used in either equn award M1 A1 for that equn as above and M1 A1 for finding T. For full marks, both values must be shown to satisfy the second equation.]	
				7

4762 Mechanics 2

Q1		Mark	Comment	Sub
(a)(i)				
		B1		

4763 Mechanics 3

1 (i)	$\begin{aligned} \frac{1}{2} m\left(v^{2}-1.4^{2}\right) & =m \times 9.8(2.6-2.6 \cos \theta) \\ v^{2}-1.96 & =50.96-50.96 \cos \theta \\ v^{2} & =52.92-50.96 \cos \theta \end{aligned}$	M1 A1 E1 3	Equation involving KE and PE
(ii)	$\begin{aligned} 0.65 \times 9.8 \cos \theta-R & =0.65 \times \frac{v^{2}}{2.6} \\ 6.37 \cos \theta-R & =0.25(52.92-50.96 \cos \theta) \\ 6.37 \cos \theta-R & =13.23-12.74 \cos \theta \\ R & =19.11 \cos \theta-13.23 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \mathbf{4} \end{gathered}$	Radial equation involving $\frac{v^{2}}{r}$ Substituting for v^{2} Dependent on previous M1 Special case: $R=13.23-19.11 \cos \theta$ earns M1A0M1SC1
(iii)	Leaves surface when $R=0$ $\begin{aligned} & \cos \theta=\frac{13.23}{19.11} \quad\left(=\frac{9}{13}\right) \quad\left(\theta=46.19^{\circ}\right) \\ & v^{2}=52.92-50.96 \times \frac{9}{13} \end{aligned}$ Speed is $4.2 \mathrm{~ms}^{-1}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ 4 \end{gathered}$	(ft if $R=a+b \cos \theta$ and $0<-\frac{a}{b}<1$) Dependent on previous M1
(iv)	$\begin{aligned} & T \sin \alpha+R \cos \alpha=0.65 \times 9.8 \\ & T \cos \alpha-R \sin \alpha=0.65 \times \frac{1.2^{2}}{2.4} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Resolving vertically (3 terms) Horiz eqn involving $\frac{v^{2}}{r}$ or $r \omega^{2}$
	$\begin{aligned} \text { OR } & T-m g \sin \alpha=m\left(\frac{1.2^{2}}{2.4}\right) \cos \alpha \\ & m g \cos \alpha-R=m\left(\frac{1.2^{2}}{2.4}\right) \sin \alpha \end{aligned}$	M1A1 M1A1	
	$\sin \alpha=\frac{2.4}{2.6}=\frac{12}{13}, \quad \cos \alpha=\frac{5}{13} \quad\left(\alpha=67.38^{\circ}\right)$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$	Solving to obtain a value of T or R
	Tension is 6.03 N Normal reaction is 2.09 N	A1 A1 8	Dependent on necessary M1s (Accept 6, 2.1) Treat $\omega=1.2$ as a misread, leading to $T=6.744, R=0.3764$ for $7 / 8$

2 (i)	$\frac{1}{2} \times 5000 x^{2}=\frac{1}{2} \times 400 \times 3^{2}$ Compression is 0.849 m	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ 3 \end{gathered}$	Equation involving EE and KE Accept $\frac{3 \sqrt{2}}{5}$
(ii)	Change in PE is $400 \times 9.8 \times(7.35+1.4) \sin \theta$ $\begin{aligned} & =400 \times 9.8 \times 8.75 \times \frac{1}{7} \\ & =4900 \mathrm{~J} \\ & \frac{1}{2} \times 5000 \times 1.4^{2} \\ & =4900 \mathrm{~J} \end{aligned}$ $\text { Change in EE is } \frac{1}{2} \times 5000 \times 1.4^{2}$ Since Loss of PE = Gain of EE, car will be at rest	M1 A1 M1 E1 4	Or $400 \times 9.8 \times 1.4 \sin \theta$ and $\frac{1}{2} \times 400 \times 4.54^{2}$ Or $784+4116$ M1M1A1 can also be given for a correct equation in x (compression): $2500 x^{2}-560 x-4116=0$ Conclusion required, or solving equation to obtain $x=1.4$
(iii)	WD against resistance is $7560(24+x)$ Change in EE is $\frac{1}{2} \times 5000 x^{2}$ Change in KE is $\frac{1}{2} \times 400 \times 30^{2}$ Change in PE is $400 \times 9.8 \times(24+x) \times \frac{1}{7}$	B1 B1 B1 B1	$\begin{aligned} & (=181440+7560 x) \\ & \left(=2500 x^{2}\right) \\ & (=180000) \\ & (=13440+560 x) \end{aligned}$
	OR Speed $7.75 \mathrm{~m} \mathrm{~s}^{-1}$ when it hits buffer, then WD against resistance is $7560 x$ Change in EE is $\frac{1}{2} \times 5000 x^{2}$ Change in KE is $\frac{1}{2} \times 400 \times 7.75^{2}$ Change in PE is $400 \times 9.8 \times x \times \frac{1}{7}$	B1 B1 B1 B1	$\begin{aligned} & \left(=2500 x^{2}\right) \\ & (=12000) \\ & (=560 x) \end{aligned}$
	$\begin{aligned} -7560(24+x)= & \frac{1}{2} \times 5000 x^{2}-\frac{1}{2} \times 400 \times 30^{2} \\ & -400 \times 9.8 \times(24+x) \times \frac{1}{7} \\ -7560(24+x)= & 2500 x^{2}-180000-560(24+x) \\ -3.024(24+x)= & x^{2}-72-0.224(24+x) \\ x^{2}+2.8 x-4.8= & 0 \end{aligned}$	M1 F1 M1 A1	Equation involving WD, EE, KE, PE Simplification to three term quadratic
	$\begin{aligned} x & =\frac{-2.8+\sqrt{2.8^{2}+19.2}}{2} \\ & =1.2 \end{aligned}$	M1 A1 10	

3(a)(i)	$\begin{aligned} & {[\text { Velocity }]=\mathrm{LT}^{-1}} \\ & {[\text { Force }]=\mathrm{MLT}^{-2}} \\ & {[\text { Density }]=\mathrm{ML}^{-3}} \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \mathbf{3} \end{gathered}$	Deduct 1 mark for ms ${ }^{-1}$ etc
(ii)	$\begin{aligned} & \mathrm{MLT}^{-2}=\left(\mathrm{ML}^{-3}\right)^{\alpha}\left(\mathrm{LT}^{-1}\right)^{\beta}\left(\mathrm{L}^{2}\right)^{\gamma} \\ & \alpha=1 \\ & \beta=2 \\ & -3 \alpha+\beta+2 \gamma=1 \\ & \gamma=1 \end{aligned}$	$\begin{gathered} \mathrm{B} 1 \\ \mathrm{~B} 1 \\ \text { M1A1 } \\ \text { A1 } \\ 5 \end{gathered}$	(ft if equation involves α, β and γ)
(b)(i)	$\begin{aligned} \frac{2 \pi}{\omega} & =4.3 \\ \omega & =\frac{2 \pi}{4.3} \quad(=1.4612) \end{aligned}$	M1 A1	
	$\dot{\theta}^{2}=1.4612^{2}\left(0.08^{2}-0.05^{2}\right)$ Angular speed is $0.0913 \mathrm{rads}^{-1}$	$\begin{gathered} \text { M1 } \\ \text { F1 } \\ \text { A1 } \\ 5 \end{gathered}$	Using $\omega^{2}\left(A^{2}-\theta^{2}\right)$ For RHS (b.o.d. for $v=0.0913 \mathrm{~m} \mathrm{~s}^{-1}$)
	$\begin{aligned} \text { OR } \quad \dot{\theta} & =0.08 \omega \cos \omega t \\ & =0.08 \times 1.4612 \cos 0.6751 \\ & =0.0913 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { F1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} \text { Or } \dot{\theta} & =(-) 0.08 \omega \sin \omega t \\ & =(-) 0.08 \times 1.4612 \sin 0.8957 \end{aligned}$
(ii)	$\theta=0.08 \sin \omega t$ When $\theta=0.05,0.08 \sin \omega t=0.05$ $\begin{aligned} \omega t & =0.6751 \\ t & =0.462 \end{aligned}$	B1 M1 A1 cao	or $\theta=0.08 \cos \omega t$ Using $\theta=(\pm) 0.05$ to obtain an equation for t B1M1 above can be earned in (i) or $t=0.613$ from $\theta=0.08 \cos \omega t$ or $t=1.537$ from $\theta=0.08 \cos \omega t$
	Time taken is 2×0.462 $=0.924 \mathrm{~s}$	M1 A1 cao	Strategy for finding the required time (2×0.462 or $\frac{1}{2} \times 4.3-2 \times 0.613$ or 1.537-0.613) Dep on first M1 For $\theta=0.05 \sin \omega t$, max B0M1A0M0 (for $0.05=0.05 \sin \omega t$)

4(a)	Area is $\begin{aligned} \int_{0}^{\ln 3} \mathrm{e}^{x} \mathrm{~d} x & =\left[\mathrm{e}^{x}\right]_{0}^{\ln 3} \\ & =2 \end{aligned}$ $\begin{aligned} & \begin{aligned} \int x y \mathrm{~d} x & =\int_{0}^{\ln 3} x \mathrm{e}^{x} \mathrm{~d} x \\ & =\left[x \mathrm{e}^{x}-\mathrm{e}^{x}\right]_{0}^{\ln 3} \\ & =3 \ln 3-2 \end{aligned} \\ & \begin{aligned} \bar{x}=\frac{3 \ln 3-2}{2}=\frac{3}{2} \ln 3-1 \end{aligned} \\ & \begin{aligned} & \begin{aligned} \frac{1}{2} y^{2} \mathrm{~d} x & =\int_{0}^{\ln 3} \frac{1}{2}\left(\mathrm{e}^{x}\right)^{2} \mathrm{~d} x \end{aligned} \\ &=\left[\frac{1}{4} \mathrm{e}^{2 x}\right]_{0}^{\ln 3} \\ &=2 \end{aligned} \\ & \begin{aligned} \bar{y}=\frac{2}{2}= & 1 \end{aligned} \end{aligned}$	M1 A1 M1 M1 A1 A1 M1 A1 A1 9	Integration by parts For $x \mathrm{e}^{x}-\mathrm{e}^{x}$ ww full marks (B4) Give B3 for 0.65 For integral of $\left(\mathrm{e}^{x}\right)^{2}$ For $\frac{1}{4} \mathrm{e}^{2 x}$ If area wrong, SC 1 for $\bar{x}=\frac{3 \ln 3-2}{\text { area }} \text { and } \bar{y}=\frac{2}{\text { area }}$
(b)(i)	Volume is $\int \pi y^{2} \mathrm{~d} x=\int_{2}^{a} \pi \frac{36}{x^{4}} \mathrm{~d} x$ $\begin{aligned} & =\pi\left[-\frac{12}{x^{3}}\right]_{2}^{a}=\pi\left(\frac{3}{2}-\frac{12}{a^{3}}\right) \\ & \begin{aligned} & \int \pi x y^{2} \mathrm{~d} x=\int_{2}^{a} \pi \frac{36}{x^{3}} \mathrm{~d} x \\ &=\pi\left[-\frac{18}{x^{2}}\right]_{2}^{a}=\pi\left(\frac{9}{2}-\frac{18}{a^{2}}\right) \\ & \bar{x}=\frac{\int \pi x y^{2} \mathrm{~d} x}{\int \pi y^{2} \mathrm{~d} x} \\ &=\frac{\pi\left(\frac{9}{2}-\frac{18}{a^{2}}\right)}{\pi\left(\frac{3}{2}-\frac{12}{a^{3}}\right)}=\frac{3\left(a^{3}-4 a\right)}{a^{3}-8} \end{aligned} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { E1 } \\ & 6 \end{aligned}$	π may be omitted throughout
(ii)	Since $a>2, \quad 4 a>8$ $\text { so } a^{3}-4 a<a^{3}-8$ Hence $\bar{x}=\frac{3\left(a^{3}-4 a\right)}{a^{3}-8}<3$ i.e. CM is less than 3 units from O	M1 A1 E1 3	Condone \geq instead of $>$ throughout Fully acceptable explanation Dependent on M1A1
	OR As $a \rightarrow \infty, \bar{x}=\frac{3\left(1-4 a^{-2}\right)}{1-8 a^{-3}} \rightarrow 3$ Since \bar{x} increases as a increases, \bar{x} is less than 3	M1A1 E1	Accept $\bar{x} \approx \frac{3 a^{3}}{a^{3}} \rightarrow 3$, etc (M1 for $\bar{x} \rightarrow 3$ stated, but A1 requires correct justification)

4764 MEI Mechanics 4

$\left.\begin{array}{|llll|}\hline \text { 1(i) } \begin{array}{lll} & \frac{\mathrm{d}}{\mathrm{d} t}(m v)=m g & \text { B1 }\end{array} \text { Seen or implied } \\ & \Rightarrow \frac{\mathrm{d} m}{\mathrm{~d} t} v+m \frac{\mathrm{~d} v}{\mathrm{~d} t}=m g & \text { M1 } & \text { Expand } \\ & \Rightarrow \frac{m g}{2(v+1)} v+m \frac{\mathrm{~d} v}{\mathrm{~d} t}=m g & \text { M1 } & \text { Use } \frac{\mathrm{d} m}{\mathrm{~d} t} v=\frac{m g}{2(v+1)} \\ & \Rightarrow \frac{\mathrm{d} v}{\mathrm{~d} t}=g\left(1-\frac{v}{2(v+1)}\right)=g\left(\frac{v+2}{2(v+1)}\right) & & \\ & \Rightarrow\left(\frac{v+1}{v+2}\right) \frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{1}{2} g & \text { M1 } & \text { Separate variables (oe) }\end{array}\right]$

4766 Statistics 1

Q1 (i)	$\begin{aligned} & \text { Median }=2 \\ & \text { Mode }=1 \end{aligned}$	$\begin{aligned} & \text { B1 cao } \\ & \text { B1 cao } \end{aligned}$	2
(ii)		S1 labelled linear scales on both axes H1 heights	2
(iii)	Positive	B1	1
		TOTAL	5
Q2 (i)	$\binom{25}{5}$ different teams $=53130$	M1 for $\binom{25}{5}$ A1 cao	2
(ii)	$\binom{14}{3} \times\binom{ 11}{2}=364 \times 55=20020$	M1 for either combination M1 for product of both A1 cao	3
		TOTAL	5
Q3 (i)	$\begin{aligned} & \text { Mean }=\frac{126}{12}=10.5 \\ & S_{x x}=1582-\frac{126^{2}}{12}=259 \\ & s=\sqrt{\frac{259}{11}}=4.85 \end{aligned}$	B1 for mean M1 for attempt at $S_{x x}$ A1 cao	3
(ii)	New mean $=500+100 \times 10.5=1550$ New $s=100 \times 4.85=485$	B1 ANSWER GIVEN M1A1 ft	3
(iii)	On average Marlene sells more cars than Dwayne. Marlene has less variation in monthly sales than Dwayne.	$\begin{aligned} & \hline \text { E1 } \\ & \text { E1 ft } \end{aligned}$	2
		TOTAL	8

Q4 (i)	$\mathrm{E}(X)=25$ because the distribution is symmetrical. Allow correct calculation of $\Sigma r p$				E1 ANSWER GIVEN	1
(ii)	$\begin{aligned} & \mathrm{E}\left(X^{2}\right)=10^{2} \times 0.2+20^{2} \times 0.3+30^{2} \times 0.3+40^{2} \times 0.2=730 \\ & \operatorname{Var}(X)=730-25^{2}=105 \end{aligned}$				M1 for $\Sigma r^{2} p$ (at least 3 terms correct) M1dep for -25^{2} A1 cao	3
					TOTAL	4
Q5 (i)					M1 for fds A1 cao Accept any suitable unit for fd such as eg freq per 50 miles. L1 linear scales on both axes and label W1 width of bars H1 height of bars	5
(ii)	$\begin{aligned} & \text { Median }=600 \text { th distance } \\ & \text { Estimate }=50+{ }^{240} / 400 \times 50=50+30=80 \end{aligned}$				B1 for $600^{\text {th }}$ M1 for attempt to interpolate A1 cao	3
					TOTAL	8
Q6 (i)	(A) $\mathrm{P}($ at most one $)=\frac{83}{100}=0.83$ (B) $\mathrm{P}($ exactly two $)=\frac{10+2+1}{100}=\frac{13}{100}=0.13$				B1 aef M1 for $(10+2+1) / 100$ A1 aef	1 2
(ii)	$\mathrm{P}(\text { all at least one })=\frac{53}{100} \times \frac{52}{99} \times \frac{51}{98}=\frac{140556}{970200}=0.145$				M1 for $\frac{53}{100} \times$ M1 dep for product of next 2 correct fractions A1 cao	3
					TOTAL	6

Q7 (i)	$a=0.8, b=0.85, c=0.9$.	B1 for any one B1 for the other two	2
(ii)	$\begin{aligned} & \mathrm{P}(\text { Not delayed })=0.8 \times 0.85 \times 0.9=0.612 \\ & \mathrm{P}(\text { Delayed })=1-0.8 \times 0.85 \times 0.9=1-0.612=0.388 \end{aligned}$	M1 for product A1 cao M1 for $1-\mathrm{P}$ (delayed) A1 ft	4
(iii)	$\begin{aligned} & \text { P(just one problem) } \\ & \quad=0.2 \times 0.85 \times 0.9+0.8 \times 0.15 \times 0.9+0.8 \times 0.85 \times 0.1 \\ & =0.153+0.108+0.068=0.329 \end{aligned}$	B1 one product correct M1 three products M1 sum of 3 products A1 cao	4
(iv)	$\begin{aligned} & \mathrm{P}(\text { Just one problem } \mid \text { delay }) \\ & =\frac{\mathrm{P}(\text { Just one problem })}{\mathrm{P}(\text { Delay })}=\frac{0.329}{0.388}=0.848 \end{aligned}$	M1 for numerator M1 for denominator Al ft	3
(v)	P(Delayed \| No technical problems) $\text { Either }=0.15+0.85 \times 0.1=0.235$ $\text { Or }=1-0.9 \times 0.85=1-0.765=0.235$ $O r=0.15 \times 0.1+0.15 \times 0.9+0.85 \times 0.1=0.235$ Or (using conditional probability formula) $\begin{aligned} & \frac{\mathrm{P}(\text { Delayed and no technical problems })}{\mathrm{P}(\text { No technical problems })} \\ & =\frac{0.8 \times 0.15 \times 0.1+0.8 \times 0.15 \times 0.9+0.8 \times 0.85 \times 0.1}{0.8} \\ & =\frac{0.188}{0.8}=0.235 \end{aligned}$	M1 for $0.15+$ M1 for second term A1 cao M1 for product M1 for 1 -product A1 cao M1 for all 3 products M1 for sum of all 3 products A1 cao M1 for numerator M1 for denominator A1 cao	3
(vi)	Expected number $=110 \times 0.388=42.7$	M1 for product $\mathrm{A} 1 \mathrm{ft}$	2
		TOTAL	18

\begin{tabular}{|c|c|c|c|}
\hline Q8 (i) \& \begin{tabular}{l}
\[
\mathrm{X} \sim \mathrm{~B}(15,0.2)
\] \\
(A) \(\quad \mathrm{P}(V=3)=\binom{15}{3} \times 0.2^{3} \times 0.8^{12}=0.2501\) \\
Or from tables \(0.6482-0.3980=0.2502\) \\
(B) \(\mathrm{P}(X \geq 3)=1-0.3980=0.6020\) \\
(C) \(\mathrm{E}(X)=n p=15 \times 0.2=3.0\)
\end{tabular} \& \begin{tabular}{l}
M1 \(0.2^{3} \times 0.8^{12}\) \\
M1 \(\binom{15}{3} \times p^{3} q^{12}\) \\
A1 cao \\
Or: M2 for \(0.6482-0.3980\) \\
A1 cao \\
M1 \(\mathrm{P}(X \leq 2)\) \\
M1 1-P(X \(\leq 2)\) \\
A1 cao \\
M1 for product \\
A1 cao
\end{tabular} \& 3
3

2

\hline (ii) \& | (A) Let $p=$ probability of a randomly selected child eating at least 5 a day |
| :--- |
| $\mathrm{H}_{0}: p=0.2$ |
| $\mathrm{H}_{1}: p>0.2$ |
| (B) $\quad \mathrm{H}_{1}$ has this form as the proportion who eat at least 5 a day is expected to increase. | \& | B1 for definition of p in context |
| :--- |
| B1 for H_{0} |
| B1 for H_{1} |
| E1 | \& 4

\hline (iii) \& | $\begin{aligned} & \text { Let } X \sim \mathrm{~B}(15,0.2) \\ & \mathrm{P}(X \geq 5)=1-\mathrm{P}(X \leq 4)=1-0.8358=0.1642>10 \% \\ & \mathrm{P}(X \geq 6)=1-\mathrm{P}(X \leq 5)=1-0.9389=0.0611<10 \% \end{aligned}$ |
| :--- |
| So critical region is $\{6,7,8,9,10,11,12,13,14,15\}$ |
| 7 lies in the critical region, so we reject null hypothesis and we conclude that there is evidence to suggest that the proportion who eat at least five a day has increased. | \& | B1 for 0.1642 |
| :--- |
| B1 for 0.0611 |
| M1 for at least one comparison with 10% A1 cao for critical region dep on M1 and at least one B1 |
| M1 dep for comparison A1 dep for decision and conclusion in context | \& 6

\hline \& \& TOTAL \& 18

\hline
\end{tabular}

4767 Statistics 2

Question 1

(i)	EITHER: $\begin{aligned} & \begin{aligned} \mathrm{S}_{x y} & =\sum x y-\frac{1}{n} \sum x \sum y=316345-\frac{1}{50} \times 2331.3 \times 6724.3 \\ & =2817.8 \\ \mathrm{~S}_{x x} & =\sum x^{2}-\frac{1}{n}\left(\sum x\right)^{2}=111984-\frac{1}{50} \times 2331.3^{2}=3284.8 \\ \mathrm{~S}_{y y} & =\sum y^{2}-\frac{1}{n}\left(\sum y\right)^{2}=921361-\frac{1}{50} \times 6724.3^{2}=17036.8 \\ r & =\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}=\frac{2817.8}{\sqrt{3284.8 \times 17036.8}}=0.377 \end{aligned} \end{aligned}$ OR: $\begin{aligned} & \operatorname{cov}(x, y)=\frac{\sum x y}{n}-\overline{x y}=\frac{316345}{50}-46.626 \times 134.486 \\ &=56.356 \\ & \operatorname{rmsd}(x)=\sqrt{\frac{S_{x x}}{n}}=\sqrt{\frac{3284.8}{50}}=\sqrt{65.696}=8.105 \\ & \operatorname{rmsd}(y)=\sqrt{\frac{S_{y y}}{n}}=\sqrt{\frac{17036.8}{50}}=\sqrt{340.736}=18.459 \\ & r=\frac{\operatorname{cov}(x, y)}{\operatorname{rmsd}(x) \operatorname{rmsd}(y)}=\frac{56.356}{8.105 \times 18.459}=0.377 \end{aligned}$	M1 for method for $S_{x y}$ M1 for method for at least one of $\mathrm{S}_{x x}$ or $\mathrm{S}_{y y}$ A1 for at least one of $S_{x y}, S_{x x}$ or $S_{y y}$ correct M1 for structure of r A1 (AWRT 0.38) M1 for method for $\operatorname{cov}(x, y)$ M1 for method for at least one msd A1 for at least on of $\operatorname{cov}(x, y)$, $\operatorname{rmsd}(x)$ or $\operatorname{rmsd}(y)$ correct M1 for structure of r A1 (AWRT 0.38)	5
(ii)	$\mathrm{H}_{0}: \rho=0$ $\mathrm{H}_{1}: \rho \neq 0$ (two-tailed test) where ρ is the population correlation coefficient For $n=50,5 \%$ critical value $=0.2787$ Since $0.377>0.2787$ we can reject H_{0} : There is sufficient evidence at the 5% level to suggest that there is correlation between oil price and share cost	B1 for $\mathrm{H}_{0}, \mathrm{H}_{1}$ in symbols B1 for defining ρ. B1FT for critical value M1 for sensible comparison leading to a conclusion A1 for result B 1 FT for conclusion in context	6
(iii)	Population The scatter diagram has a roughly elliptical shape, hence the assumption is justified.	B1 B1 elliptical shape E1 conclusion	3
(iv)	Because the alternative hypothesis should be decided without referring to the sample data and there is no suggestion that the correlation should be positive rather than negative.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	2
		TOTAL	16

Question 2

(i)	Meteors are seen randomly and independently There is a uniform (mean) rate of occurrence of meteor sightings	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	2
(ii)	(A) Either $\mathrm{P}(X=1)=0.6268-0.2725=0.3543$ Or $\mathrm{P}(X=1)=\mathrm{e}^{-1.3} \frac{1.3^{1}}{1!}=0.3543$ (B) Using tables: $\mathrm{P}(X \geq 4)=1-\mathrm{P}(X \leq 3)$ $\begin{aligned} & =1-0.9569 \\ & =0.0431 \end{aligned}$	M1 for appropriate use of tables or calculation A1 M1 for appropriate probability calculation A1	4
(iii)	$\begin{aligned} & \lambda=10 \times 1.3=13 \\ & \mathrm{P}(X=10)=\mathrm{e}^{-13} \frac{13^{1}}{1!}=0.0859 \end{aligned}$	B1 for mean M1 for calculation A1 CAO	3
(iv)	Mean no. per hour $=60 \times 1.3=78$ Normal approx. to the Poisson, $\quad X \sim \mathrm{~N}(78,78)$ $\begin{aligned} & \mathrm{P}(X \geq 100)=\mathrm{P}\left(Z>\frac{99.5-78}{\sqrt{78}}\right) \\ = & \mathrm{P}(Z>2.434)=1-\Phi(2.434) \\ = & 1-0.9926=0.0074 \end{aligned}$	B1 for Normal approx. B1 for correct parameters (SOI) B1 for continuity corr. M1 for correct Normal probability calculation using correct tail A1 CAO, (but FT wrong or omitted CC)	5
(v)	Either $\begin{aligned} & \mathrm{P}(\text { At least one })=1-\mathrm{e}^{-\lambda} \frac{\lambda^{0}}{0!}=1-\mathrm{e}^{-\lambda} \geq 0.99 \\ & \mathrm{e}^{-\lambda} \leq 0.01 \\ & -\lambda \leq \ln 0.01, \text { so } \lambda \geq 4.605 \\ & 1.3 t \geq 4.605, \text { so } t \geq 3.54 \end{aligned}$ Answer $t=4$ Or $\begin{aligned} & t=1, \lambda=1.3, \mathrm{P}(\text { At least one })=1-\mathrm{e}^{-1.3}=0.7275 \\ & t=2, \lambda=2.6, \mathrm{P}(\text { At least one })=1-\mathrm{e}^{-2.6}=0.9257 \\ & t=3, \lambda=3.9, \mathrm{P}(\text { At least one })=1-\mathrm{e}^{-3.9}=0.9798 \\ & t=4, \lambda=5.2, \mathrm{P}(\text { At least one })=1-\mathrm{e}^{-5.2}=0.9944 \end{aligned}$ Answer $t=4$	M1 formation of equation/inequality using $\mathrm{P}(X \geq 1)=1-\mathrm{P}(\mathrm{X}=0)$ with Poisson distribution. A1 for correct equation/inequality M1 for logs A1 for 3.54 A1 for t (correctly justified) M1 at least one trial with any value of t A1 correct probability. M1 trial with either $t=3$ or $t=$ 4 A1 correct probability of $t=3$ and $t=4$ A1 for t	5
		TOTAL	19

Question 3

(i)	$\begin{aligned} & X \sim \mathrm{~N}\left(1720,90^{2}\right) \\ & \begin{aligned} \mathrm{P}(X<1700)= & \mathrm{P}\left(Z<\frac{1700-1720}{90}\right) \\ =\mathrm{P}(Z & <-0.2222) \\ & =\Phi(-0.2222)=1-\Phi(0.2222) \\ & =1-0.5879 \\ & =0.4121 \end{aligned} \end{aligned}$	M1 for standardising A1 M1 use of tables (correct tail) A1CAO NB ANSWER GIVEN	4
(ii)	$\begin{aligned} & \mathrm{P}(2 \text { of } 4 \text { below } 1700) \\ & =\binom{4}{2} \times 0.4121^{2} \times 0.5879^{2}=0.3522 \end{aligned}$	M1 for coefficient M1 for $0.4121^{2} \times 0.5879^{2}$ A1 FT (min 2sf)	3
(iii)	Normal approx with $\begin{aligned} & \mu=n p=40 \times 0.4121=16.48 \\ & \sigma^{2}=n p q=40 \times 0.4121 \times 0.5879=9.691 \\ & \mathrm{P}(X \geq 20)=\mathrm{P}\left(Z \geq \frac{19.5-16.48}{\sqrt{9.691}}\right) \\ & =\mathrm{P}(Z \geq 0.9701)=1-\Phi(0.9701) \\ & =1-0.8340=0.1660 \end{aligned}$	B1 B1 B1 for correct continuity corr. M1 for correct Normal probability calculation using correct tail A1 CAO, (but FT wrong or omitted CC)	5
(iv)	$\mathrm{H}_{0}: \mu=1720$; H_{1} is of this form since the consumer organisation suspects that the mean is below 1720 μ denotes the mean intensity of 25 Watt low energy bulbs made by this manufacturer.	B1 E1 B1 for definition of μ	3
(v)	$\begin{aligned} \text { Test statistic } & =\frac{1703-1720}{\frac{90}{\sqrt{20}}}=\frac{-17}{20.12} \\ & =-0.8447 \end{aligned}$ Lower 5\% level 1 tailed critical value of $z=-1.645$ $-0.8447>-1.645$ so not significant. There is not sufficient evidence to reject H_{0} There is insufficient evidence to conclude that the mean intensity of bulbs made by this manufacturer is less than 1720	M1 must include $\sqrt{20}$ A1FT B1 for -1.645 No FT from here if wrong. Must be -1.645 unless it is clear that absolute values are being used. M1 for sensible comparison leading to a conclusion. FT only candidate's test statistic A1 for conclusion in words in context	5
		TOTAL	20

Question 4

4768 Statistics 3

\begin{tabular}{|c|c|c|c|c|}
\hline \& \[
\begin{aligned}
\& \mathrm{W} \sim \mathrm{~N}(14,0.552) \\
\& G \sim \mathrm{~N}\left(144,0.9^{2}\right)
\end{aligned}
\] \& \& When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only. \& \\
\hline \& \[
\begin{aligned}
\mathrm{P}(G<145) \& =\mathrm{P}\left(Z<\frac{145-144}{0.9}=1.1111\right) \\
\& =0.8667
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 }
\end{aligned}
\] \& \begin{tabular}{l}
For standardising. Award once, here or elsewhere. \\
c.a.o.
\end{tabular} \& 3 \\
\hline \& \[
\begin{aligned}
\& W+G \sim \mathrm{~N}(14+144=158, \\
\& \left.\quad \sigma^{2}=0.55^{2}+0.9^{2}=1.1125\right) \\
\& \mathrm{P}(\text { this }>160)= \\
\& \mathrm{P}\left(Z>\frac{160-158}{1.0547}=1.896\right)=1-0.9710=0.0290
\end{aligned}
\] \& B1
B1

A1 \& | Mean. |
| :--- |
| Variance. Accept sd (= 1.0547...). |
| c.a.o. | \& 3

\hline \& | $\begin{aligned} & H=W_{1}+\ldots+W_{7}+G_{1}+\ldots+G_{6} \sim \mathrm{~N}(962, \\ & \left.\sigma^{2}=0.55^{2}+\ldots+0.55^{2}+0.9^{2}+\ldots+0.9^{2}=6.9775\right) \\ & \mathrm{P}(960<\text { this }<965)= \\ & \mathrm{P}\left(\frac{960-962}{2 \cdot 6415}=-0.7571<Z<\frac{965-962}{2 \cdot 6415}=1.1357\right) \\ & \quad=0.8720-(1-0.7755)=0.6475 \end{aligned}$ |
| :--- |
| Now want $\mathrm{P}(\mathrm{B}(4,0.6475) \geq 3)$ $\begin{aligned} & =4 \times 0.6475^{3} \times 0.3525+0.6475^{4} \\ & =0.38277+0.17577=0.5585 \end{aligned}$ | \& B1

B1
M1

A1
M1

M1

A1 \& | Mean. |
| :--- |
| Variance. Accept sd (= 2.6415). |
| Two-sided requirement. |
| c.a.o. |
| Evidence of attempt to use binomial. |
| ft c 's p value. |
| Correct terms attempted. ft c's p |
| value. Accept $1-\mathrm{P}(\ldots \leq 2)$ |
| c.a.o. | \& 7

\hline \& | $\begin{aligned} & D=H_{1}-H_{2} \sim \mathrm{~N}(0, \\ &6.9775+6.9775=13.955) \end{aligned}$ |
| :--- |
| Want h s.t. $\mathrm{P}(-h<D<h)=0.95$ |
| i.e. $\mathrm{P}(D<h)=0975$ $\therefore h=\sqrt{13.955} \times 1.96=7.32$ | \& B1

B1
M1

B1

A1 \& | Mean. (May be implied.) |
| :--- |
| Variance. Accept sd (=3.7356). |
| Ft $2 \times$ c's 6.9775 from (iii). |
| Formulation of requirement as 2sided. |
| For 1.96. |
| c.a.o. | \& 5

\hline \& \& \& \& 18

\hline
\end{tabular}

Q2				
(i)	$\begin{aligned} & \mathrm{H}_{0}: \mu=1 \\ & \mathrm{H}_{1}: \mu<1 \end{aligned}$ where μ is the mean weight of the cakes.	B1	Both hypotheses. Hypotheses in words only must include "population". For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\bar{X}=\ldots$ " or similar unless \bar{X} is clearly and explicitly stated to be a population mean.	
	$\bar{x}=0.957375 \quad s_{n-1}=0.07314(55)$	B1	$s_{n}=0.06842$ but do NOT allow this here or in construction of test statistic, but FT from there.	
	Test statistic is $\frac{0.957375-1}{\frac{0.07314}{\sqrt{8}}}$	M1	Allow c's \bar{x} and/or s_{n-1}. Allow alternative: $1+(\mathrm{c}$'s -1.895$)$ $\times \frac{0.07314}{\sqrt{8}}(=0.950997)$ for subsequent comparison with \bar{x}. (Or $\bar{x}-(\mathrm{c}$'s -1.895$) \times \frac{0.07314}{\sqrt{8}}$ ($=1.006377$) for comparison with 1.)	
	$=-1.648(24) .$	A1	c.a.o. but ft from here in any case if wrong. Use of $1-\bar{x}$ scores M1A0, but ft.	
	Refer to t_{7}.	M1	No ft from here if wrong. $\mathrm{P}(t<-1.648(24))=0.0716 .$	
	Single-tailed 5% point is -1.895 .	A1	Must be minus 1.895 unless absolute values are being compared. No ft from here if wrong.	
	Not significant. Insufficient evidence to suggest that the cakes are underweight on average.	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	ft only c 's test statistic. ft only c 's test statistic.	9
(ii)	CI is given by $0.957375 \pm$	M1		
	$2 \cdot 365$	B1		
	$\times \frac{0.07314}{\sqrt{8}}$	M1		
	$=0.957375 \pm 0.061156=(0.896(2), 1.018(5))$		c.a.o. Must be expressed as an interval. ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{7} is OK .	4
(iii)	$\bar{x} \pm 1.96 \times \sqrt{\frac{0.006}{n}}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { B1 } \\ \text { A1 } \end{array}$	Structure correct, incl. use of Normal. $1.96 .$ All correct.	3

(iv)	$2 \times 1.96 \times \sqrt{\frac{0.006}{n}}<0.025$	M1	Set up appropriate in equation. Condone an equation.		
$n>\left(\frac{2 \times 1.96}{0.025}\right)^{2} \times 0.006=147.517$					
So take $n=148$				\quad M1	Attempt to rearrange and solve.
:---					
A1					
c.a.o. (expressed as an integer). S.C. Allow max M1A1(c.a.o.) when the factor " 2 " is missing. $(n>36.879)$					

Q4	$\mathrm{f}(x)=\frac{2 x}{\lambda^{2}} \quad \text { for } 0<x<\lambda, \lambda>0$			
(i)	$\mathrm{f}(x)>0$ for all x in the domain. $\int_{0}^{\lambda} \frac{2 x}{\lambda^{2}} \mathrm{~d} x=\left[\frac{x^{2}}{\lambda^{2}}\right]_{0}^{\lambda}=\frac{\lambda^{2}}{\lambda^{2}}=1$	$\begin{aligned} & \hline \text { E1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Correct integral with limits. Shown equal to 1 .	3
(ii)	$\begin{aligned} & \mu=\int_{0}^{\lambda} \frac{2 x^{2}}{\lambda^{2}} \mathrm{~d} x=\left[\frac{2 x^{3} / 3}{\lambda^{2}}\right]_{0}^{\lambda}=\frac{2 \lambda}{3} \\ & \mathrm{P}(X<\mu)=\int_{0}^{\mu} \frac{2 x}{\lambda^{2}} \mathrm{~d} x=\left[\frac{x^{2}}{\lambda^{2}}\right]_{0}^{\mu} \\ & \quad=\frac{\mu^{2}}{\lambda^{2}}=\frac{4 \lambda^{2} / 9}{\lambda^{2}}=\frac{4}{9} \end{aligned}$ which is independent of λ.	M1 A1 M1 A1	Correct integral with limits. c.a.o. Correct integral with limits. Answer plus comment. ft c's μ provided the answer does not involve λ.	4
(iii)	$\begin{aligned} & \text { Given } \mathrm{E}\left(X^{2}\right)=\frac{\lambda^{2}}{2} \\ & \sigma^{2}=\frac{\lambda^{2}}{2}-\frac{4 \lambda^{2}}{9}=\frac{\lambda^{2}}{18} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Use of $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\mathrm{E}(X)^{2}$. c.a.o.	2
(iv)	Probability 0.18573 0.25871 Expected f 9.2865 12.9355	$\begin{aligned} & 0.36983 \\ & 18.4915 \\ & \hline \end{aligned}$	$\begin{array}{l\|l\|} \hline & 0.18573 \\ \hline & 9.2865 \\ \hline \end{array}$	
	$\begin{aligned} X^{2} & =3.0094+0.2896+0.1231+3.5152 \\ & =6.937(3) \end{aligned}$ Refer to χ_{3}^{2}. Upper 5\% point is 7.815 . Not significant. Suggests model fits the data for these jars. But with a 10% significance level $(\mathrm{cv}=6.251)$ a different conclusion would be reached.	M1 A1 M1 A1 M1 A1 A1 A1 E1	Probs $\times 50$ for expected frequencies. All correct. Calculation of X^{2}. c.a.o. Allow correct df (= cells -1) from wrongly grouped table and ft . Otherwise, no ft if wrong. $\mathrm{P}\left(X^{2}>6.937\right)=0.0739$. No ft from here if wrong. ft only c 's test statistic. ft only c 's test statistic. Any valid comment which recognises that the test statistic is close to the critical values.	9
				18

4769 Statistics 4

Q1 Follow-through all intermediate results in this question, unless obvious nonsense.
(i) $\mathrm{P}(X \geq 2)=1-\theta-\theta(1-\theta)=(1-\theta)^{2}$ [o.e.]
$\mathrm{L}=[\theta]^{n_{0}}[\theta(1-\theta)]^{n_{1}}\left[(1-\theta)^{2}\right]^{n-n_{0}-n_{1}}$
M1 Product form
A1 Fully correct
$=\theta^{n_{0}+n_{1}}(1-\theta)^{2 n-2 n_{0}-n_{1}}$
A1 BEWARE PRINTED
ANSWER
(ii) $\quad \ln \mathrm{L}=\left(n_{0}+n_{1}\right) \ln \theta+\left(2 n-2 n_{0}-n_{1}\right) \ln (1-\theta) \quad$ M1 A1
$\frac{d \ln \mathrm{~L}}{d \theta}$
M1
$=\frac{n_{0}+n_{1}}{\theta}-\frac{2 n-2 n_{0}-n_{1}}{1-\theta}$
A1
$=0$ M1
$\Rightarrow(1-\hat{\theta})\left(n_{0}+n_{1}\right)=\hat{\theta}\left(2 n-2 n_{0}-n_{1}\right)$
$\Rightarrow \hat{\theta}=\frac{n_{0}+n_{1}}{2 n-n_{0}}$
(iii)
$\mathrm{E}(X)=\sum_{x=0}^{\infty} x \theta(1-\theta)^{x}$
M1
$=\theta\left\{0+(1-\theta)+2(1-\theta)^{2}+3(1-\theta)^{3}+\ldots\right\}$
$=\frac{1-\theta}{\theta}$
Divisible, for algebra; e.g.
by "GP of GPs"
A2 BEWARE PRINTED
ANSWER
So could sensibly use (method of moments)
$\widetilde{\theta}$ given by $\frac{1-\widetilde{\theta}}{\widetilde{\theta}}=\bar{X}$
$\Rightarrow \widetilde{\theta}=\frac{1}{1+\bar{X}}$
BEWARE PRINTED

To use this, we need to know the exact numbers of E1 faults for components with "two or more".
$\bar{x}=\frac{14}{100}=0 \cdot 14$
$\tilde{\theta}=\frac{1}{1+0.14}=0.8772$
Also, from expression given in question,
$\operatorname{Var}(\widetilde{\theta})=\frac{0 \cdot 8772^{2}(1-0 \cdot 8772)}{100}$
$=0.000945$

CI is given by $0.8772 \pm 1.96 \times \sqrt{0.000945}=$ ($0 \cdot 817,0 \cdot 937$)

M1 For 0.8772
B1 For 1.96
M1 For $\sqrt{0 \cdot 000945}$

Q2			
(i) $\operatorname{Mgf} \text { of } \mathrm{Z}=\mathrm{E}\left(\mathrm{e}^{t Z}\right)=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{t z-\frac{z^{2}}{2}} d z$ Complete the square $\begin{aligned} & t z-\frac{z^{2}}{2}=-\frac{1}{2}(z-t)^{2}+\frac{1}{2} t^{2} \\ & =\mathrm{e}^{\frac{t^{2}}{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-(z-t)^{2}} \frac{t^{2}}{2} d t=\mathrm{e}^{\frac{t^{2}}{2}} \end{aligned}$ Pdf of $\mathrm{N}(\mathrm{t}, 1)$ $\therefore \int=1$	M1 M1 A1 A1 M1 M1 M1 A1	For taking out factor $\mathrm{e}^{\frac{t^{2}}{2}}$ For use of pdf of $\mathrm{N}(\mathrm{t}, 1)$ For $\int \mathrm{pdf}=1$ For final answer $\mathrm{e}^{\frac{t^{2}}{2}}$	8
$\text { (ii) } \begin{array}{ll} & Y \text { has mgf } M_{Y}(t) \\ & \operatorname{Mgf} \text { of } a Y+b \text { is } \mathrm{E}\left[\mathrm{e}^{t(a Y+b)}\right] \\ & =\mathrm{e}^{b t} \mathrm{E}\left[\mathrm{e}^{(a t) Y}\right]=\mathrm{e}^{b t} M_{Y}(a t) \end{array}$	$\begin{gathered} \text { M1 } \\ 1 \\ 1 \\ 1 \end{gathered}$	For factor $\mathrm{e}^{b t}$ For factor $\mathrm{E}\left[\mathrm{e}^{(a t) Y}\right]$ For final answer	4
$\begin{gathered} \text { (iii) } \quad Z=\frac{X-\mu}{\sigma} \text {, so } X=\sigma Z+\mu \\ \therefore M_{X}(t)=\mathrm{e}^{\mu t} \cdot \mathrm{e}^{\frac{(\sigma t)^{2}}{2}}=\mathrm{e}^{\mu t+\frac{\sigma^{2} t^{2}}{2}} \end{gathered}$	$\begin{gathered} \hline \text { M1 } \\ 1 \\ 1 \\ 1 \end{gathered}$	For factor ${ }^{\mu t}$ For factor $\mathrm{e}^{\frac{(\sigma t)^{2}}{2}}$ For final answer	4
(iv) $\begin{aligned} & W=\mathrm{e}^{X} \\ & \mathrm{E}\left(W^{k}\right)=\mathrm{E}\left[\left(\mathrm{e}^{X}\right)^{k}\right]=\mathrm{E}\left(\mathrm{e}^{k X}\right)=M_{X}(k) \end{aligned}$ $\begin{aligned} & \therefore \mathrm{E}(W)=M_{X}(1)=\mathrm{e}^{\mu+\frac{\sigma^{2}}{2}} \\ & \mathrm{E}\left(W^{2}\right)=M_{X}(2)=\mathrm{e}^{2 \mu+2 \sigma^{2}} \\ & \therefore \operatorname{Var}(W)=\mathrm{e}^{2 \mu+2 \sigma^{2}}-\mathrm{e}^{2 \mu+\sigma^{2}}\left[=\mathrm{e}^{2 \mu+\sigma^{2}}\left(\mathrm{e}^{\sigma^{2}}-1\right)\right] \end{aligned}$	M1 A1 A1 M1 A1 M1 A1 A1	For $\mathrm{E}\left[\left(\mathrm{e}^{X}\right)^{k}\right]$ For $\mathrm{E}\left(\mathrm{e}^{k X}\right)$ For $M_{X}(k)$	8

Q3

(i) $\bar{x}=126 \cdot 2 s=8.7002 s^{2}=75.69 \dot{3}$
$\bar{y}=133.9 s=10.4760 s^{2}=109.74 \dot{6}$

$$
\left.\begin{array}{l}
H_{0}: \mu_{A}=\mu_{B} \\
H_{0}: \mu_{A} \neq \mu_{B} \\
\text { e the population means. }
\end{array}\right\}
$$

A1 A1 if all correct. [No mark for use of s_{n}, which are 8.2537 and 9.6989 respectively.]
1 Do not accept $\bar{X}=\bar{Y}$ or similar.

Where μ_{A}, μ_{B} are the population means.
Pooled s^{2}
$=\frac{9 \times 75 \cdot 69 \dot{3}+6 \times 109 \cdot 47 \dot{6}}{15}=\frac{681 \cdot 24+658 \cdot 48}{15}$
$=89.314 \dot{6}$
B1
[$\mathrm{V}=9 \cdot 4506$]
Test statistic is
$\frac{126 \cdot 2-133 \cdot 9}{\sqrt{89 \cdot 314 \dot{6}} \sqrt{\frac{1}{10}+\frac{1}{7}}}=-\frac{7 \cdot 7}{4 \cdot 6573}=-1.653$
M1
A1

Refer to t_{15}
1 No FT if wrong
Double-tailed 10% point is 1.753
1 No FT if wrong
Not significant
No evidence that population mean concentrations differ.
There may be consistent differences between days
...) which should be allowed for.
Assumption: Normality of population of differences. 1
Differences are $7 \cdot 4-1 \cdot 2$ 11.1 5.5 6.2 3.7-0.3 1.83.6
[$\left.\bar{d}=4 \cdot 2, \mathrm{~s}=3.862\left(s^{2}=14.915\right)\right]$
Use of $s_{n}(=3.641)$ is not acceptable, even in a
denominator of $\left.s_{n} / \sqrt{n-1}\right]$

Test statistic is $\frac{4 \cdot 2-0}{3 \cdot 862 / \sqrt{9}}=3 \cdot 26$
Refer to t_{8}
Double-tailed 5\% point is 2.306
Significant
Seems population means differ
A1 Can be awarded here if NOT awarded in part (i)

4771 Decision Mathematics 1

Question 1

Question 2.

(i)	A's c takes 2, leaving 3.	
	You have to take 1.	
	A's c takes one and you lose.	M1
(ii)	A's c takes 3 leaving 3.	A1
	Then as above.	
(iii)	A's c takes 3 leaving 4. You can then take 1, leading to a win.	M1
		A1

Question 3.

Intersection of $2 x+5 y=60$ and $x+y=18$ is at $(10,8)$ A1

Question 4.

Question 5.

Question 6.

4772 Decision Mathematics 2

Question 1.

Question 2.

Question 3.

(i) a is the number of acres of land put to crop A, etc
$\mathrm{a}+\mathrm{b} \leq 20$ is equivalent to $\mathrm{a}+\mathrm{b} \leq \mathrm{c}+\mathrm{d}$
Given that $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d} \leq 40$, the maximisation will ensure that $\mathrm{a}+\mathrm{b}+\mathrm{c}+$
$\mathrm{d}=40$ (and it's easier to solve using simplex).
(ii)

P	a	b	c	d	s 1	l 2	RHS
1	-50	-40	-40	-30	0	0	0
0	1	1	0	0	1	0	20
0	1	1	1	1	0	1	40
1	0	10	-40	-30	50	0	1000
0	1	1	0	0	1	0	20
0	0	0	1	1	-1	1	20
1	0	10	0	10	10	40	1800
0	1	1	0	0	1	0	20
0	0	0	1	1	-1	1	20

20 acres to A and 20 acres to C, giving profit of $£ 1800$
(iii) Max $50 \mathrm{a}+40 \mathrm{~b}+40 \mathrm{c}+30 \mathrm{~d}$
st $\quad a+b \leq 20$
$\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d} \leq 40$
$a+b+c+d \geq 40$

A	P	a	b	c	d	s 1	s2	sur	art	R
1	0	1	1	1	1	0	0	-1	0	40
0	1	-50	-40	-40	-30	0	0	0	0	0
0	0	1	1	0	0	1	0	0	0	20
0	0	1	1	1	1	0	1	0	0	40
0	0	1	1	1	1	0	0	-1	1	40

Minimise A (to zero) then drop A row and art column and continue normally

OR

P	a	b	c	d	s1	s2	sur	art	R
1	-50	-40	-40	-30	0	0	M	0	-40M
	-M	-M	-M	-M					
0	1	1	0	0	1	0	0	0	20
0	1	1	1	1	0	1	0	0	40
0	1	1	1	1	0	0	-1	1	40

Proceed as per simplex, regarding M as a large fixed number.

Question 4.
(a) (i),(ii) and (iii)

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$			$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{5}$											
$\mathbf{1}$	∞	22	∞	15	15		$\mathbf{1}$	1	2	3	4
$\mathbf{2}$	22	∞	20	5	23	$\mathbf{2}$	1	2	3	4	5
$\mathbf{3}$	∞	20	∞	40	∞	$\mathbf{3}$	1	2	3	4	5
$\mathbf{4}$	15	5	40	∞	16	$\mathbf{4}$	1	2	3	4	5
$\mathbf{5}$	15	23	∞	16	∞	$\mathbf{5}$	1	2	3	4	5

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$			$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1}$	∞	22	∞	15	15		$\mathbf{1}$	1	2	3	4	5
$\mathbf{2}$	22	44	20	5	23	$\mathbf{2}$	1	1	3	4	5	
$\mathbf{3}$	∞	20	∞	40	∞		$\mathbf{3}$	1	2	3	4	5
$\mathbf{4}$	15	5	40	30	16		$\mathbf{4}$	1	2	3	1	5
$\mathbf{5}$	15	23	∞	16	30	$\mathbf{5}$	1	2	3	4	1	

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$			$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1}$	44	22	42	15	15		$\mathbf{1}$	2	2	2	4	5
$\mathbf{2}$	22	44	20	5	23		$\mathbf{2}$	1	1	3	4	5
$\mathbf{3}$	42	20	40	25	43	$\mathbf{3}$	2	2	2	2	2	
$\mathbf{4}$	15	5	25	10	16	$\mathbf{4}$	1	2	2	2	5	
$\mathbf{5}$	15	23	43	16	30	$\mathbf{5}$	1	2	2	4	1	

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$			$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1}$	44	22	42	15	15	$\mathbf{1}$	2	2	2	4	5	
$\mathbf{2}$	22	44	20	5	23		$\mathbf{2}$	1	1	3	4	5
$\mathbf{3}$	42	20	40	25	43	$\mathbf{3}$	2	2	2	2	2	
$\mathbf{4}$	15	5	25	10	16	$\mathbf{4}$	1	2	2	2	5	
$\mathbf{5}$	15	23	43	16	30	$\mathbf{5}$	1	2	2	4	1	

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$			$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1}$	30	20	40	15	15	$\mathbf{1}$	4	4	4	4	5	
$\mathbf{2}$	20	10	20	5	21		$\mathbf{2}$	4	4	3	4	4
$\mathbf{3}$	40	20	40	25	41	$\mathbf{3}$	2	2	2	2	2	
$\mathbf{4}$	15	5	25	10	16	$\mathbf{4}$	1	2	2	2	5	
$\mathbf{5}$	15	21	41	16	30	$\mathbf{5}$	1	4	4	4	1	

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$			$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1}$	30	20	40	15	15	$\mathbf{1}$	4	4	4	4	5	
$\mathbf{2}$	20	10	20	5	21		$\mathbf{2}$	4	4	3	4	4
$\mathbf{3}$	40	20	40	25	41	$\mathbf{3}$	2	2	2	2	2	
$\mathbf{4}$	15	5	25	10	16		$\mathbf{4}$	1	2	2	2	5
$\mathbf{5}$	15	21	41	16	30	$\mathbf{5}$	1	4	4	4	1	

Shortest distance from $\mathbf{3}$ to $\mathbf{1}$ is 40
($1^{\text {st }}$ row and $3^{\text {rd }}$ column of distance matrix)

M1 distance
A1 1 to 5 etc
A1 rest

B1 route

Not part of the question

Not part of the question

Not part of the question

M1
A1 10 changed dists
M1 2's in r3 of route
A1 rest of route

B1
B1

Shortest route is 3241
3 followed by route matrix $(3,1)=2$ followed by route matrix $(2,1)=4$

$$
\text { followed by route matrix }(4,1)=\mathbf{1}
$$

(iv)

(v) $\mathbf{2 (5)} \mathbf{4 (1 5)} \mathbf{1}$ (15)5(41) $\mathbf{3}$ (20) $\mathbf{2}$ Total length $=96$

$2415(42) 32$

Finds a (hopefully short) route visiting every vertex and returning to B1 the start, or, upper bound to the TSP

4773 Decision Mathematics Computation

Question 1.

	$B_{n+2}=B_{n+1}+\left(0-B_{n}\right)$	M1 A1
(ii)	Oscillation: 2, 4, 2, -2, -4, -2, 2, 4, \ldots	M1 A1 B1
	$B_{n+2}-B_{n+1}+\frac{1}{2} B_{n}=0$	B1
	$2,4,3,1,-0.5,-1, \ldots, 0.00391,-0.00195$	B1
	Oscillatory convergence	B1
(iv)	2, 4, 3, 5, 2 5, 1.625, 1, 0,0,00022, 0,00012	B1
	Faster and uniform convergence	B1 B1
(v)	Auxiliary eqn: $x^{2}-x+\frac{1}{4}=0$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
	$x=\frac{1}{2}$	B1
	$B_{n}=A\left(\frac{1}{2}\right)^{n}+B n\left(\frac{1}{2}\right)^{n}$	B1
	$2=A$	B1
	$4=1+\frac{1}{2} B \text { giving } B=6$	B1
	$B_{n}=(2+6 \mathrm{n})\left(\frac{1}{2}\right)^{\mathrm{n}} \text { or }(1+3 \mathrm{n})\left(\frac{1}{2}\right)^{\mathrm{n}-1}(2+6 n)\left(\frac{1}{2}\right)^{n} \text { or }(1+3 n)\left(\frac{1}{2}\right)^{n}$ "the same"	B1

Question 2.

	$\{\mathrm{S}, \mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{E}\} /\{\mathrm{B}, \mathrm{T}\}$				M1 A1	
	e.g.				M1	variables
	Max	$\mathrm{SA}+\mathrm{S}$			A1	objective
	st	$\mathrm{SA}+\mathrm{BA}$	$+\mathrm{CA}-\mathrm{AB}$			
		$\mathrm{AB}+$	$-\mathrm{BA}-\mathrm{BC}-$		M1	balancing
		AC + D	$+\mathrm{BC}-\mathrm{CA}$	$-\mathrm{CD}=0$	A1	
		$\mathrm{SE}+\mathrm{D}$	$-\mathrm{ED}=0$			
		$\mathrm{CD}+\mathrm{ED}$	$-\mathrm{DC}-\mathrm{DE}-$			
		$\mathrm{SA}<12$				
		$\mathrm{SE}<2$				
		$\mathrm{AB}<10$				
		$\mathrm{BA}<1$			M1	capacities
		AC <1			A1	forwards
		$\mathrm{CA}<1$			A1	backwards
		$\mathrm{BC}<10$				
		$\mathrm{CB}<10$				
		$\mathrm{CD}<10$				
		DC <1				
		ED <18				
		DE <18				
		BT <2				
		DT <10				
	end					
(iv)	OBJECTIVE FUNCTION VALUE					
	1)	30.0000				
	VAR	ABLE	VALUE	REDUCED COST		
	SA		12.000000	0.000000		
	SE		18.000000	0.000000		
	BA		0.000000	0.000000		
	CA		0.000000	0.000000	B1	running
	AB		10.000000	0.000000		
	AC		2.000000	0.000000		
	CB		10.000000	0.000000		
	BC		0.000000	0.000000		
	BT		20.000000	0.000000		
	DC		8.000000	0.000000		
	CD		0.000000	0.000000		
	DE		0.000000	1.000000		
	ED		18.000000	0.000000		
	DT		10.000000	0.000000		
	Solut	on as p	art (i)		B1	

Question 3.

(i)
e.g.

	5
-1	4
1	5
1	6
1	7
1	8
1	9
-1	8

etc.
(ii) repeating until a player is ruined
repeating 10 times
estimating the probability (theoretical value is 0.2683)
(iii)

e.g.
5 -1 4 1 5 -1 4 -1 3 -1 2 -1 1 -1 0$\quad=\operatorname{if}(\operatorname{rand}()<0.45,1,-1)$
:---

etc.
estimating the run length
The theoretical value is 50 , so there should be some long runs seen.
(iv)

etc
repetitions + probability estimate
(theoretical answer $=0.599$)
(v) As above

How can one tell when a simulation is not emptying the pot?

M1
A1 "if" or equivalent
A1 accumulation

M1
A1
M1 A1

B1 change of parameter
M1 count to ruin
A1 repetitions

M1
A1

M1
A1 termination condition

B1 B1

B1
B1

Question 4.

4776 Numerical Methods

1(i) $\mathrm{f}(x)=1.6(x-0.4)(x-1) /(-0.4)(-1)+2.4 x(x-1) / 0.4(0.4-1)+1.8 x(x-0.4) / 1(1-0.4)$
[M1A1,1,1]
$=4\left(x^{2}-1.4 x+0.4\right)-10\left(x^{2}-x\right)+3\left(x^{2}-0.4 x\right)$
[A1]
$=-3 x^{2}+3.2 x+1.6$
[A1]
(ii) Newton's formula requires equally spaced data

2

$$
\begin{array}{rrrrrr}
x & 1 & 2 & & \\
x^{2}+1 / x-3 & -1 & 1.5 & \text { (change of sign so root) } \\
& & & & & \\
\mathrm{f}(x)=x^{2}+1 / x-3 & \text { so } & \mathrm{f}^{\prime}(x)=2 x-1 / x^{2} & \text { hence NR formula } & \\
r & 0 & 1 & 2 & 3 & \\
x_{r} & 1.5 & 1.532609 & 1.532089 & 1.532089 & \mathbf{1 . 5 3 2 0 9}
\end{array}
$$

3(i) term
mpe
(ii) term
$\begin{array}{lllll}\text { mpre } & 0.000184 & 0.000159 & 0.000343 & 0.000343\end{array}$
$\left.\begin{array}{lll} & & \text { [B1B1B1B1 }\end{array}\right]$

4(i) to 6 dp :

$\sin A$	$\sin B$	LHS	RHS
0.846832	0.841471	0.5361	0.536088

(ii) It is an approximate equality. LHS involves subtraction of nearly equal numbers. LHS involves 2 trig functions, RHS just 1.
(iii) Subtraction of nearly equal quantities is a bigger problem as the difference decreases. RHS involves no such problem.

5

r	x_{r}
0	0.6
1	0.8704
2	0.426048
3	0.967052

[G2]
[M1A1A1]
cobweb diagram showing
[M1A1A1] spiralling out from root
[TOTAL 8]
6(i)

x	$\mathrm{f}(x)$
0	1.732051
0.8	1.777639

$$
\mathrm{T} 1=1.403876
$$

M
[M1]

0.4	1.8	$\mathrm{M} 1=$	1.44	$\mathrm{~T} 2=1.421938$	T	[M1]
0.2	1.777639					values
0.6	1.8	$\mathrm{M} 2=$	1.431056			
[A1,1,1,1]						

(ii) $\quad \mathrm{S} 1=1.427959 \quad$ (a.g.)
[subtotal 6]

$$
\mathrm{S} 2=1.428016
$$

[M1]
[M1A1]
[subtotal 3]
(iii) $\quad \mathrm{S} 4=(2 \mathrm{M} 4+\mathrm{T} 4) / 3=1.428020$
[M1A1] [subtotal 2]
(iv)
$\begin{array}{llll}\mathrm{M} & 1.44 & 1.431056 & 1.428782\end{array}$
$\begin{array}{llll}\text { diffs } & -0.00894 & -0.00227 & \\ \text { ratio } & & 0.254186 & \text { approx } 0.25\end{array}$

S	1.427959	1.428016	1.428020	
diffs		$5.77 \mathrm{E}-05$	$3.99 \mathrm{E}-06$	
ratio			0.069037	(approx 0.0625)

[M1A1]
[M1A1A1]
Reasoning to: integral is secure as $1.42802(0)$
[M1B1]
[subtotal 7]
[TOTAL 18]
7(i)

x	$\mathrm{f}(x)$	1st diff	2nd diff
1	0.6		
1.2	-0.1	-0.7	
1.4	0.4	0.5	1.2

[M1A1]

$$
\begin{aligned}
\mathrm{f}(x) & =0.6+(-0.7)(x-1) / 0.2+1.2(x-1)(x-1.2) /\left(2(0.2)^{2}\right) \\
& =0.6-3.5 x+3.5+15 x^{2}-33 x+18 \\
& =15 x^{2}-36.5 x+22.1
\end{aligned}
$$

[M1A1A1A1
[M1A1]
[subtotal 8]
(ii) $\mathrm{f}^{\prime}(x)=30 x-36.5$
$\mathrm{f}^{\prime}(1.2)=36-36.5=-0.5$
[M1A1]
Central difference:
$(0.4-0.6) /(1.4-1)=-0.2 / 0.4=-0.5$
[M1A1]
Suggests central difference is accurate for quadratics.
[E1]
[subtotal 5]
(iii)
$f^{\prime}(1)=30-36.5=-6.5$
[B1]
Forward difference:
$(-0.1-0.6) /(1.2-1)=-0.7 / 0.2=-3.5$
[M1A1]
Shows that forward difference is not exact for quadratics.
[E1]
Quadratic estimate (-6.5) is likely to be more accurate. (Allow comments saying that we cannot be sure.)

4777 MEI Numerical Computation

1(i) $\quad-1<\mathrm{g}^{\prime}(\alpha)<1$
E.g. Multiply both sides of $x=\operatorname{g}(x)$ by λ and add $(1-\lambda) x$ to both sides.

Derivative of rhs set to zero at root: $\lambda \mathrm{g}^{\prime}(\alpha)+1-\lambda=0$
algebra to obtain given result
In practice use an initial estimate x_{0} in place of α

Eg:

r	x_{r}	x_{r}	x_{r}	x_{r}	x_{r}	x_{r}
0	0	0.2	0.4	2	2.2	2.4
1	-0.5	0.096008	0.668255	2.227892	1.925489	1.52639
2	-1.93828	-0.21242	1.358852	1.875308	2.31326	2.497043
3	-3.29971	-1.13247	2.432871	2.36198	1.710416	1.302517
4	-0.02763	-3.21639	1.452591	1.609012	2.470807	2.392685
5	-0.58289	-0.2758	2.479066	2.49761	1.364805	1.542517
6	-2.15131	-1.31696	1.345334	1.300676	2.436576	2.498801
7	-3.00855	-3.40387	2.424072	2.391217	1.444139	1.298298
8	-0.89795	0.277847	1.472555	1.545741	2.475969	2.389305
9	-2.84615	0.322857	2.485535	2.499058	1.352649	1.549934
10	-1.37349	0.451832	1.329994	1.297679	2.4289	2.499347

No convergence in each case
Let $\mathrm{g}(x)=3 \sin x-0.5$
Then $\mathrm{g}^{\prime}(x)=3 \cos x$
So $\lambda=1 /(1-3 \cos \alpha)$
[M1A1]
Smaller root: $\lambda=$

> -0.52446
> $($ approx -0.5)

r	x_{r}
0	0.25
1	0.253894
2	0.254078

	r	x_{r}
NB: must		0
be using		2.1
relaxatio		2.095851
		2

		$\lfloor\mathrm{n}$		
3	0.254087		3	2.095866
4	0.254088		4	2.095866
5	0.254088		5	2.095866

[M1A1]
[M1A1]
[subtotal 17]
[TOTAL 24]

2(i)	$\mathrm{f}(x)$	$=1$	$2 h=2 a+b$
$\mathrm{f}(x)$	$=x, x^{3}$ give $0=0$		
$\mathrm{f}(x)=x^{2}$	$2 h^{3} / 3=2 a \alpha^{2}$		
$\mathrm{f}(x)$	$=x^{4}$	$2 h^{5} / 5=2 a \alpha^{4}$	

Convincing algebra to verify given results
(ii)

L	R	m	h	$\times 1$	$\times 2$	
0	0.785398	0.392699	0.392699	0.088516	0.696882	
function values		1.189207		1.043431	1.35535	setup:
weights		0.349066		0.218166	0.218166	[M3A3]
integral		0.415112		0.227641	0.295691	0.938444 [A1]
L	R	m	h	$\times 1$	$\times 2$	
0	0.392699	0.19635	0.19635	0.044258	0.348441	
function values		1.094949		1.021903	1.167589	
weights		0.174533		0.109083	0.109083	
integral		0.191105		0.111472	0.127364	0.429941
0.392699	0.785398	0.589049	0.19635	0.436957	0.74114	
function values		1.29158		1.211226	1.383901	repeat:
weights		0.174533		0.109083	0.109083	
integral		0.225423		0.132124	0.15096	0.508508
						0.938449 [A1]

Either repeat with h halved to verify that 0.938449 is correct to 6 dp
[M1A1]
Or observe that the method is converging so rapidly that 0.938449 will be correct to 6 dp
[subtotal 12]
(iii) Use routine known to deliver 6dp and vary k :

					$k=$	1.46572
L	R	m	h	$\times 1$	$\times 2$	
0	0.392699	0.19635	0.19635	0.044258	0.348441	
function values		1.136464		1.031946	1.237918	
weights		0.174533		0.109083	0.109083	
integral		0.19835		0.112568	0.135036	0.445954
0.392699	0.785398	0.589049	0.19635	0.436957	0.74114	modify
function values		1.406898		1.297918	1.530164	[M1A1]
weights		0.174533		0.109083	0.109083	
integral		0.24555		0.141581	0.166915	0.554046
						1.000000
k	1.465	1.466	1.467			find k
integral	0.999908	1.000036	1.000163			[M1A1]
	hence $k=1$					

[subtotal 4]
[TOTAL 24]

3(i) Use central difference formulae for 2nd and 1st derivatives to obtain first given result
Hence obtain $y_{1}=h^{2}-y_{-1}$
Use central difference to obtain $y_{1}-y_{-1}=2 h$
Hence given result for y_{1}
[M1]
[subtotal 8]
(ii)

$\begin{array}{ll}1.9 & 1.399287\end{array}$
$2 \quad 1.363785$
$2.1 \quad 1.316838$
$2.2 \quad 1.259773$
$2.3 \quad 1.194096$
$2.4 \quad 1.121445$
$2.5 \quad 1.04354$
$2.6 \quad 0.962141$
$2.7 \quad 0.878993$
$\begin{array}{ll}2.8 & 0.79578\end{array}$
$\begin{array}{ll}2.9 & 0.714082\end{array}$
30.635337
$3.1 \quad 0.560807$
3.20 .491549
$3.3 \quad 0.428404$
$3.4 \quad 0.371982$
$\begin{array}{ll}3.5 & 0.322662\end{array}$
$\begin{array}{ll}3.6 & 0.280597\end{array}$
$\begin{array}{ll}3.7 & 0.245729\end{array}$
$3.8 \quad 0.217808$
$3.9 \quad 0.196416$
$4 \quad 0.180999$
$4.1 \quad 0.170894$
$4.2 \quad 0.165365$
$\begin{array}{ll}4.3 & 0.163635\end{array}$
$4.4 \quad 0.164915$
$4.5 \quad 0.168435$
$4.6 \quad 0.173469$

```
4.7 0.179352
4.8 0.185502
4.9}00.19142
    5 0.196725
```

setup	numbers	graph
[M3]	[A3]	[A3]
		[subtotal 9]

(ii) Obtain formula $y_{1}=a h+0.5 h^{2}$

Modify routine
Trial on a to obtain $a=-1.4$ or -1.5

0.1	0	
a	0.1	-0.13

$\begin{array}{lll}-1.4 & 0.2 & -0.25582\end{array}$
$0.3-0.36107$
$0.4-0.44993$
$\begin{array}{ll}0.5 & -0.5219\end{array}$
$\begin{array}{ll}0.6 & -0.57677\end{array}$
$0.7 \quad-0.6146$
$0.8 \quad-0.63565$
$\begin{array}{ll}0.9 & -0.64047\end{array}$
1 -0.6298
$1.1-0.60462$
$1.2-0.56614$
$1.3-0.51572$
$1.4-0.45494$
$1.5-0.3855$
$1.6-0.3092$
$\begin{array}{ll}1.7 & -0.22792\end{array}$
$1.8-0.14356$
$1.9-0.05802$
$2 \quad 0.026884$
$2.1 \quad 0.109408$
$2.2 \quad 0.187962$
$\begin{array}{ll}2.3 & 0.26113\end{array}$
$2.4 \quad 0.327696$
$\begin{array}{ll}2.5 & 0.386672\end{array}$
$2.6 \quad 0.437316$
$2.7 \quad 0.479135$
$2.8 \quad 0.51189$
$\begin{array}{ll}2.9 & 0.535589\end{array}$
$3 \quad 0.550471$
$3.1 \quad 0.556986$
$3.2 \quad 0.555768$
$3.3 \quad 0.547604$
$3.4 \quad 0.533401$
$\begin{array}{ll}3.5 & 0.514147\end{array}$
$\begin{array}{ll}3.6 & 0.490876\end{array}$
$3.7 \quad 0.464631$
$3.8 \quad 0.43643$
$\begin{array}{ll}3.9 & 0.40724\end{array}$
40.377942
$\begin{array}{ll}4.1 & 0.349319\end{array}$
$4.2 \quad 0.322033$

4.3	0.296623
4.4	0.27349
4.5	0.252909
4.6	0.235026
4.7	0.219875
4.8	0.207386
4.9	0.197404
5	0.189706

4(i) Diagonal dominance: the magnitude of the diagonal element in any row is greater
than or equal to the sum of the magnitudes of the other element.
$|a|>|b|+2$ will ensure convergence. (> required as dominance has to be strict)
[E1]
[E1E1]
[subtotal 3]

4				1	4	2
1	1	2	1	0		
2	4	1	2	0		
1	2	4	1	0		
0	0	1	4	0		
0.25	-0.0625	-0.10938	-0.00391			
0.321289	-0.05103	-0.14691	-0.01808			
0.340733	-0.03941	-0.15599	-0.02648			
0.344469	-0.03388	-0.15715	-0.02989			
0.344515	-0.0319	-0.15681	-0.03098			
0.344124	-0.03134	-0.15648	-0.03124			
0.343886	-0.03123	-0.15633	-0.03127			
0.343789	-0.03123	-0.15627	-0.03127			
0.343758	-0.03124	-0.15625	-0.03126			
0.34375	-0.03125	-0.15625	-0.03125			
0.343749	-0.03125	-0.15625	-0.03125			
0.34375	-0.03125	-0.15625	-0.03125			
0.34375	-0.03125	-0.15625	-0.03125			

setup
[M3A3]
values
[A3]

					a	b
2	1	4	1	1	2	4
1	2	1	4	0		
4	1	2	1	0		
1	4	1	2	0		
0	0	0	0			
0.5	-0.25	-0.875	0.6875			
2.03125	-1.95313	-3.42969	4.605469			
6.033203	-10.5127	-9.11279	22.56519			
12.69934	-46.9236	-13.2195	94.10735			
3.347054	-183.278	37.89147	345.9377			
-156.613	-632.515	456.5137	1115.079			
-1153.81	-1881.51	2690.835	2994.509			
-5937.67	-4365.6	12560.88	5419.593			

(iii) No convergence when $a=2, b=0$
[subtotal 4]
(iv) Use RHSs $1,0,0,0 \quad 0,1,0,0 \quad 0,0,1,0 \quad 0,0,0,1$
to obtain inverse as

0.34375	-0.03125	-0.15625	-0.03125
-0.03125	0.34375	-0.03125	-0.15625
-0.15625	-0.03125	0.34375	-0.03125
-0.03125	-0.15625	-0.03125	0.34375
	[A1]		
[A1]			
[A1]			
[A1]			
[subtotal 5]			

Grade Thresholds

Advanced GCE MEI Mathematics 7895-8 3895-8 June 2009 Examination Series

Unit Threshold Marks

Unit		Maximum Mark	A	B	C	D	E	U
All units	UMS	100	80	70	60	50	40	0
$\mathbf{4 7 5 1}$	Raw	72	59	52	45	39	33	0
$\mathbf{4 7 5 2}$	Raw	72	51	44	38	32	26	0
$\mathbf{4 7 5 3}$	Raw	72	57	52	47	42	37	0
$\mathbf{4 7 5 3 / 0 2}$	Raw	18	15	13	11	9	8	0
$\mathbf{4 7 5 4}$	Raw	90	67	59	51	43	35	0
$\mathbf{4 7 5 5}$	Raw	72	53	45	37	30	23	0
$\mathbf{4 7 5 6}$	Raw	72	51	45	39	33	27	0
$\mathbf{4 7 5 7}$	Raw	72	60	51	42	34	26	0
$\mathbf{4 7 5 8}$	Raw	72	61	55	49	43	36	0
$\mathbf{4 7 5 8 / 0 2}$	Raw	18	15	13	11	9	8	0
$\mathbf{4 7 6 1}$	Raw	72	57	48	39	30	21	0
$\mathbf{4 7 6 2}$	Raw	72	47	40	33	26	20	0
$\mathbf{4 7 6 3}$	Raw	72	55	46	38	30	22	0
$\mathbf{4 7 6 4}$	Raw	72	61	52	43	34	26	0
$\mathbf{4 7 6 6 / G 2 4 1}$	Raw	72	60	53	46	40	34	0
$\mathbf{4 7 6 7}$	Raw	72	57	50	44	38	32	0
$\mathbf{4 7 6 8}$	Raw	72	55	48	41	34	28	0
$\mathbf{4 7 6 9}$	Raw	72	56	49	42	35	28	0
$\mathbf{4 7 7 1}$	Raw	72	63	56	49	42	36	0
$\mathbf{4 7 7 2}$	Raw	72	57	51	45	39	33	0
$\mathbf{4 7 7 3}$	Raw	72	51	44	37	30	24	0
$\mathbf{4 7 7 6}$	Raw	72	62	53	45	37	28	0
$\mathbf{4 7 7 6 / 0 2}$	Raw	18	14	12	10	8	7	0
$\mathbf{4 7 7 7}$	Raw	72	55	47	39	32	25	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{7 8 9 5 - 7 8 9 8}$	600	480	420	360	300	240	0
$\mathbf{3 8 9 5 - 3 8 9 8}$	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{7 8 9 5}$	44.1	65.4	81.4	92.1	97.9	100	10375
$\mathbf{7 8 9 6}$	57.2	78.0	88.9	95.4	98.9	100	1807
$\mathbf{7 8 9 7}$	87.1	93.55	100	100	100	100	31
$\mathbf{7 8 9 8}$	0	0	100	100	100	100	1
$\mathbf{3 8 9 5}$	35.3	52.9	67.4	79.1	88.1	100	16238
$\mathbf{3 8 9 6}$	52.1	70.2	82.4	90.4	95.7	100	2888
$\mathbf{3 8 9 7}$	80.4	88.2	91.2	96.1	97.1	100	102
$\mathbf{3 8 9 8}$	6.3	12.5	18.8	25.0	68.8	100	16

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

