Mathematics (MEI)

Advanced Subsidiary GCE 4761

Mechanics 1

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Q 1		mark	notes
(i)	$v^{2}=0^{2}+2 \times 9.8 \times 0.75$ $v= \pm 3.8340 \ldots \text { so } 3.83 \mathrm{~m} \mathrm{~s}^{-1} \text { (3. s. f.) }$	M1 A1 A1	Use of $v^{2}=u^{2}+2 a s$ with $u=0$ and $a= \pm g$. Accept muddled units and sign errors. Allow wrong or wrongly converted units not sign errors cao [SC2 for $38.3 \ldots$ seen WWW and SC3 for $3.83 \ldots$ seen WWW]
		3	

Q 2		mark	notes
(i)	Resolving $\begin{aligned} & \leftarrow 250 \sin 70=234.92 \ldots \text { so } 235 \mathrm{~N}(3 \text { s. f. }) \\ & \uparrow 250 \cos 70=85.5050 \ldots \text { so } 85.5 \mathrm{~N}(3 \text { s. f. }) \end{aligned}$	M1 A1 A1 3	Resolving in at least 1 of horiz or vert. Accept $\sin \leftrightarrow \cos$. No extra terms. Either both expressions correct (neglect direction) or one correct in correct direction cao Both evaluated and directions correct
(ii)	$250 \div 2=125 \mathrm{~N}$	$\mathrm{B} 1$	Accept 125 g only if tension taken to be 250 g in (i)
		4	

Q 3		mark	notes
(i)	$\left(\begin{array}{c} -1 \\ 14 \\ -8 \end{array}\right)+\left(\begin{array}{c} 3 \\ -9 \\ 10 \end{array}\right)+\mathbf{F}=4\left(\begin{array}{c} -1 \\ 2 \\ 4 \end{array}\right)$ $\mathbf{F}=\left(\begin{array}{c} -6 \\ 3 \\ 14 \end{array}\right)$	M1 M1 A1 A1 4	N2L. Allow sign errors in applying N2L. Do not condone $\mathbf{F}=m g a$. Allow one given force omitted. Attempt to add $\left(\begin{array}{l}-1 \\ 14 \\ -8\end{array}\right)$ and $\left(\begin{array}{c}3 \\ -9 \\ 10\end{array}\right)$ Two components correct cao
(ii)	$\mathbf{v}=\left(\begin{array}{c} -3 \\ 3 \\ 6 \end{array}\right)+3\left(\begin{array}{c} -1 \\ 2 \\ 4 \end{array}\right)=\left(\begin{array}{c} -6 \\ 9 \\ 18 \end{array}\right) \text { so }\left(\begin{array}{c} -6 \\ 9 \\ 18 \end{array}\right) \mathrm{m} \mathrm{~s}^{-1} .$ speed is $\sqrt{(-6)^{2}+9^{2}+18^{2}}=21 \mathrm{~m} \mathrm{~s}^{-1}$.	M1 A1 M1 F1	$\mathbf{v}=\mathbf{u}+t \mathbf{a}$ with given \mathbf{u} and \mathbf{a}. Could go via s. If integration used, require arbitrary constant (need not be evaluated) cao isw Allow -6^{2} even if interpreted as -36 . Only FT their \mathbf{v}. FT their \mathbf{v} only. [Award M1 F1 for 21 seen WWW]
		8	

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \text { Q4 } & & \text { mark } & \\
\hline \text { (i) } & \begin{array}{l}\text { Diagram for P or Q } \\
\text { Other diagram }\end{array} & \begin{array}{l}\text { B1 } \\
\text { B1 }\end{array} & \begin{array}{l}\text { Must be properly labelled with arrows } \\
\text { Must be properly labelled with arrows consistent with } \\
1^{\text {st }} \text { diagram } \\
\text { Accept single diagram if clear. }\end{array} \\
\hline \text { (ii) } & \begin{array}{l}\text { Let tension in rope be } T \mathrm{~N} \text { and accn } \uparrow a \mathrm{~m} \mathrm{~s}^{-2}\end{array} & \text { M1 } & \begin{array}{l}\text { N2L applied correctly to either part. Allow } F=\text { mga } \\
\text { and sign errors. Do not condone missing or extra } \\
\text { forces. }\end{array} \\
\hline \begin{array}{l}\text { For box P: N2L } \uparrow \\
1030-75 g-T=75 a \\
\text { For box Q: N2L } \uparrow \\
T-25 g=25 a\end{array} & \text { A1 } & \text { A1 } & \begin{array}{l}\text { Direction of } a \text { consistent with equation for P. [Condone } \\
\text { taking + ve downwards in either equation. }+ \text { ve } \\
\text { direction must be consistent in both equations to }\end{array}
$$

receive both A1s]\end{array}\right]\)| 3 |
| :--- |

Q 5		mark	notes
(i)	$\begin{aligned} & 270-\arctan \left(\frac{6}{4}\right) \\ & =213.69 \ldots \text { so } 214^{\circ} \end{aligned}$	M1 A1 2	Award for $\arctan p$ seen where $p= \pm \frac{6}{4}$ or $\frac{4}{6}$, or equivalent cao
(ii)	Need $(-4+3 k) \mathbf{i}+(-6-2 k) \mathbf{j}=\lambda(7 \mathbf{i}-9 \mathbf{j}) *$ either so $\frac{-4+3 k}{-6-2 k}=\frac{7}{-9}$. or equivalent $k=6$ or $\begin{aligned} & -4+3 k=7 \lambda \\ & -6-2 k=-9 \lambda \\ & k=6 \end{aligned}$ trial and error method	M1 M1 A1 A1 M1 A1 A1	Attempt to get LHS in the direction of $(7 \mathbf{i}-9 \mathbf{j})$. Could be done by finding (tangents of) angles. Accept the use of $\lambda=1$. Attempt to solve their *. Allow $=\frac{7}{9}, \frac{9}{7},-\frac{9}{7}$ Expression correct Award full marks for $k=6$ found WWW Attempt to solve their *. Must have both equations. Correct equations Award full marks for $k=6$ found WWW M1 any attempt to find the value of k and 'test' M1 Systematic attempt in (the equivalent of) their * Award full marks for $k=6$ found WWW
		6	

Q6		mark	notes
(i)	Vertically $y=8 t-4.9 t^{2}$ Horizontally $x=12 t$	M1 A1 B1	Use of $s=u t+0.5 a t^{2}$ with $g= \pm 9.8, \pm 10$. Accept $u=0$ or $14.4 \ldots$ or $14.4 \sin \theta$ or $u \sin \theta$ but not 12. Allow use of +3.6 . Accept derivation of -4.9 not clear. cao.
(ii)	either Require $y=-3.6$ so $-3.6=8 t-4.9 t^{2}$ Use of formula or $4.9(t-2)\left(t+\frac{18}{49}\right)=0$ Roots are 2 and $-\frac{18}{49}(=-0.367346 \ldots)$ Horizontal distance is $12 \times 2=24$ so 24 m or Require $y=-3.6$ so $-3.6=8 t-4.9 t^{2}$ Eliminate t between $x=12 t$ and $-3.6=8 t-4.9 t^{2}$ so $0=3.6+\frac{8 x}{12}-\frac{4.9 x^{2}}{144}$ Use of formula or factorise + ve root is 24 so 24 m or Methods that divide the motion into sections Projection to highest point (A) Highest point to level of jetty (B) Level of jetty to sea (C) Combination of A, B and C may be used (A) 0.8163.. s; 9.7959.. m: (B) $0.816 \ldots \mathrm{~s}$; 9.7959.. m (C): $0.3673 \ldots \mathrm{~s} ; 4.4081 \ldots \mathrm{~m}$	M1 M1 A1 M1 F1 M1 M1 A1 M1 F1 M1 M1 A1 A1 A1 \square	Equating their y to ± 3.6 or equiv. Any form. A method for solving a 3 term quadratic to give at least 1 root. Allow their y and re-arrangement errors. WWW. Accept no reference to $2^{\text {nd }}$ root [Award SC3 for $t=2$ seen WWW] FT their \boldsymbol{x} and t. FT only their t (as long as it is +ve and is not obtained with sign error(s) e.g. - ve sign just dropped) Equating their y to ± 3.6 or equiv. Any form. Expressions in any form. Elimination must be complete Accept in any form. May be implied. A method for solving a 3 term quadratic to give at least 1 root. Allow their y and re-arrangement errors. FT from their quadratic after re-arrangement. Must be +ve . Attempt to find times or distances for sections that give the total horizontal distance travelled Correct method for one section to find time or distance Any time or distance for a section correct $2^{\text {nd }}$ time or distance correct (The two sections must not be A and B) cao
		8	

Q 7		mark	notes
(i) (A) (B) (C) (D)	$\begin{aligned} & 4 \mathrm{~m} \\ & 12-(-4)=16 \mathrm{~m} \\ & 1<t<3.5 \\ & t=1, t=3.5 \end{aligned}$	B1 M1 A1 B1 B1 B1 6	Looking for distance. Need evidence of taking account of $+v e$ and -ve displacements. The values 1 and 3.5 Strict inequality Do not award if extra values given.
(ii)	$\begin{aligned} & v=-8 t+8 \\ & a=-8 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { F1 } \\ & \hline \quad 3 \\ & \hline \hline \end{aligned}$	Differentiating
(iii)	$\begin{aligned} & -8 t+8=4 \text { so } t=0.5 \text { so } 0.5 \mathrm{~s} \\ & -8 t+8=-4 \text { so } t=1.5 \text { so } 1.5 \mathrm{~s} \end{aligned}$	B1 B1 2	FT their v. FT their v.
(iv)	method 1 Need velocity at $t=3$ $v(3)=-8 \times 3+8=-16$ either $\begin{aligned} & v=\int 32 \mathrm{~d} t=32 t+C \\ & v=-16 \text { when } t=3 \text { gives } v=32 t-112 \\ & y=\int(32 t-112) \mathrm{d} t=16 t^{2}-112 t+D \end{aligned}$ $y=0$ when $t=3$ gives $y=16 t^{2}-112 t+192$ or $y=-16 \times(t-3)+\frac{1}{2} \times 32 \times(t-3)^{2}$ (so $y=16 t^{2}-112 t+192$) method 2 Since acen is constant, the displacement y is a quadratic function. Since we have $y=0$ at $t=3$ and $t=4$ $y=k(t-3)(\mathrm{t}-4)$ When $t=3.5, y=-4$ so $-4=k \times \frac{1}{2} \times-\frac{1}{2}$ so $k=16\left(\right.$ and $\left.y=16 t^{2}-112 t+192\right)$	B1 M1 A1 B1 M1 A1 5	FT their v from (ii) Accept $32 t+C$ or $32 t$. SC1 if $\int_{3}^{4} 32 \mathrm{~d} t$ attempted. Use of their -16 from an attempt at v when $t=3$ FT their v of the form $p t+q$ with $p \neq 0$ and $q \neq 0$. Accept if at least 1 term correct. Accept no D. cao. Use of $s=u t+\frac{1}{2} a t^{2}$ Use of their $-16($ not 0$)$ from an attempt at v when $t=3$ and 32. Condone use of just t Use of $t \pm 3$ cao Use of a quadratic function (condone no k) Correct use of roots k present Or consider velocity at $t=3$ cao. Accept k without y simplified.
		16	

Q8		mark	notes
(i)	N2L i direction $\begin{aligned} & 150=250 a \\ & a=0.6 \text { so } 0.6 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	Use of N2L. Allow $F=m g a$. Accept no reference to direction
(ii)	$\begin{aligned} & 150 \mathrm{~N} \\ & -\mathbf{i} \text { direction } \end{aligned}$	B1 B1 2	Allow correct description or arrow [Accept '- 150 in i direction' for B1 B1]
(iii)	For force only in direction perp to \mathbf{i} $300 \sin 40=450 \sin \theta$ $\theta=25.37300 \ldots$ so 25.4° (3 s. f.) In \mathbf{i} direction $300 \cos 40+150+450 \cos \theta$ $786.4017 \ldots$ so $786 \mathbf{i} \mathrm{~N}$ (3 s. f.)	M1 B1 A1 M1 A1 A1 6	Resolution of both terms attempted. Allow $\sin \leftrightarrow \cos$ if in both terms. Allow 250 or 250 g present. $300 \sin 40$ or $450 \sin \theta$ Accept \pm. Accept answer rounding to 25.5. Allow SC1 if seen in this part. Proper resolution attempted of 450 and 300. Allow $\sin \leftrightarrow \cos$ if in both terms Accept use of their θ or just θ. Either resolution correct. Accept their θ or just θ. Accept \sin / cos consistent with use for cpt perpendicular to \mathbf{i}. Accept no reference to direction cao. Allow SC1 WW
(iv)	$\begin{aligned} & \text { Using } s=u t+0.5 a t^{2} \\ & 1=0.5 a \times 2^{2} \\ & a=0.5 \end{aligned}$ Using N2L in \mathbf{i} direction $786.4017 \ldots-F=250 \times 0.5$ $661.4017 \ldots \text { so } 661 \mathrm{~N}(3 \text { s. f.) }$	M1 A1 M1 A1 E1 5	Appropriate (sequence of) suvat [WW M0 A0] Use of $F=m a$ with their 786.4 and their a. No extra forces. Allow sign errors. All correct using their 786.4 and a Use of N2L clearly shown. (Accept 0.5 used WW)
(v)	Using N2L in \mathbf{i} direction either $125-200=250 a_{1}$ or (starting again) $786.4017 \ldots-(200+661.4017 \ldots)=250 a_{1}$ so $a_{1}=-0.3$ Using $v^{2}=u^{2}+2 a_{1} \mathrm{~S}$ $\begin{aligned} & v^{2}=1.8^{2}+2 \times(-0.3) \times 1.65 \\ & v=1.5 \text { so } 1.5 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{array}{\|l} \text { M1 } \\ \\ \text { F1 } \\ \text { M1 } \\ \text { F1 } \\ \text { F1 } \\ \text { A1 } \\ \hline \end{array}$	Use of $F=m a$ with their values. Allow 1 force missing FT only their $786 \ldots$ and their 661 Appropriate (sequence of) suvat with $u \neq 0$. Must be 'new' a obtained by using N2L. Only FT use of \pm their a_{1} cao
		20	

OCR (Oxford Cambridge and RSA Examinations)

1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

