

Mathematics (MEI)

Advanced GCE 4762

Mechanics 2

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:	0870 770 6622
Facsimile:	01223 552610

Q 1		mark		sub
(i)	For P $200 \times 5 + 250 = 200v_{p}$ $v_{p} = 6.25 \text{ so } 6.25 \text{ i m s}^{-1}$ For Q $250 \times 5 - 250 = 250v_{Q}$ $v_{Q} = 4 \text{ so } 4 \text{ i m s}^{-1}$	M1 E1 M1 A1	Award for I-M Accept no i and no units Must have impulse in opposite sense Must indicate direction. Accept no units.	
(ii)	i direction positive PCLM: $2250 = 200 \times 4.5 + 250w_Q$ $w_Q = 5.4 \text{ so } 5.4 \text{ im s}^{-1}$ NEL: $\frac{w_Q - 4.5}{4 - 6.25} = -e$ e = 0.4	M1 F1 E1 M1 A1 A1	PCLM used. Allow error in LHS FT from (i) Any form. FT only from (i) NEL . Allow sign errors Signs correct. FT only from (i) cao	6
(iii) (iv)	i direction positive Suppose absolute vel of object is – Vi $200 \times 4.5 = -20V + 180 \times 5.5$ V = 4.5 speed of separation is $5.5 + 4.5 = 10$ m s ⁻¹ $180 \times 5.5 + 250 \times 5.4 = 430W$	M1 B1 A1 A1 F1 M1	Applying PCLM. All terms present. Allow sign errors. Correct masses All correct (including signs) FT their V. Using correct masses and velocities	5
	W = 5.4418 so 5.44 i m s ⁻¹ (3 s. f.)	A1	cao	2

(i) $20\left(\frac{\overline{x}}{\overline{y}}\right) = 15\left(\frac{20}{0}\right) + 3\left(\frac{0}{100}\right) + 2\left(\frac{25}{200}\right)$ M1Method to obtain at least 1 coordinateB1A1H1B1'100' or '25' correct $\overline{x} = 17.5$ $\overline{y} = 35$ A1A1(ii) $25\left(\frac{\overline{x}}{\overline{y}}\right) = \left(\frac{350}{700}\right) + 5\left(\frac{40}{200}\right)$ M1Using (i) or starting again $\overline{x} = 22, \ \overline{y} = 68$ M1Using (i) or starting again2(iii)We need the edge that the \overline{x} position is nearestM1This may be implied $\overline{x} = 22, \ \overline{y} = 68$ M1One distance correct(iii)We need the edge that the \overline{x} position is nearestM1 $\overline{x} = 22; \ distances are 22 to PQ, 18 to SRso edge QRB1A1(iv)Moments about RSIn sense xOyT \sin 50 \times 200 - T \cos 50 \times 40M1A1M1Attempt to find moment of T about RS, includingattempt at resolution. May try to find perp distfrom Gto line of action of the force.-20g \times (40 - 17.5) = 0T = 34.5889 so 34.6 N (3 s. f.)A1$	Q 2		mark		sub
(ii) $25\left(\frac{\overline{x}}{\overline{y}}\right) = \left(\frac{350}{700}\right) + 5\left(\frac{40}{200}\right)$ M1Using (i) or starting again5(iii) $25\left(\frac{\overline{x}}{\overline{y}}\right) = \left(\frac{350}{700}\right) + 5\left(\frac{40}{200}\right)$ M1Using (i) or starting again2(iii)we need the edge that the \overline{x} position is nearestM1This may be implied2(iii)We need the edge that the \overline{x} position is nearestM1This may be implied2(iv)We need the edge that the \overline{x} position is nearestM1This may be implied4(iv)Moments about RS In sense xOy T sin $50 \times 200 - T \cos 50 \times 40$ M1Moments about RS attempted Use of weight not mass below. FT mass from here In sense xOy T sin $50 \times 200 - T \cos 50 \times 40$ M1Moments about RS attempted Is attempt at resolution. May try to find perp dist from G to line of action of the force.A1 $-20g \times (40 - 17.5) = 0$ $T = 34.5889 so 34.6 N (3 s. f.)$ A1 -17.5 A1A1 $A1$ $Creext allowing sign errorscao (except for use of mass)7$	(i)	$20\left(\frac{\overline{x}}{\overline{y}}\right) = 15\left(\frac{20}{0}\right) + 3\left(\frac{0}{100}\right) + 2\left(\frac{25}{200}\right)$ $\overline{x} = 17.5$ $\overline{y} = 35$	M1 B1 A1 A1 A1	Method to obtain at least 1 coordinate '100' or '25' correct Either one RHS term correct or one component of two RHS terms correct	
(iii) $25\left(\frac{\overline{x}}{\overline{y}}\right) = \left(\frac{350}{700}\right) + 5\left(\frac{40}{200}\right)$ so $\overline{x} = 22, \ \overline{y} = 68$ M1Using (i) or starting again Clearly shown.2(iii)We need the edge that the \overline{x} position is nearestM1This may be implied2(iii)We need the edge that the \overline{x} position is nearestM1This may be implied2(iv)Moments about RS In sense xOy $T \sin 50 \times 200 - T \cos 50 \times 40$ M1M1Moments about RS attempted Use of weight not mass below. FT mass from here In a for $M1$ M1 $-20g \times (40 - 17.5) = 0$ $T = 34.5889 \text{ so } 34.6 \text{ N} (3 \text{ s. f.})$ M1M1Attempt to find moment of T about RS, including attempt at resolution. May try to find perp dist from G to line of action of the force.7					5
(iii)We need the edge that the \overline{x} position is nearestM1This may be implied $\overline{x} = 22$; distances are 22 to PQ, 18 to SR 15 to QR so edge QRB1 B1 A1One distance correct All distances correct4(iv)Moments about RS In sense xOy $T \sin 50 \times 200 - T \cos 50 \times 40$ M1 B1 B1 B1Moments about RS attempted Use of weight not mass below. FT mass from here In sense xOy $T \sin 50 \times 200 - T \cos 50 \times 40$ M1 Attempt to find moment of T about RS, including attempt at resolution. May try to find perp dist from G to line of action of the force.A1 B1 B1 All correct allowing sign errors cao (except for use of mass)7	(ii)	$25\left(\frac{\overline{x}}{\overline{y}}\right) = \begin{pmatrix} 350\\700 \end{pmatrix} + 5\begin{pmatrix} 40\\200 \end{pmatrix}$ so $\overline{x} = 22$, $\overline{y} = 68$	M1 E1	Using (i) or starting again Clearly shown.	2
(iv)Moments about RSM1 B1Moments about RS attempted Use of weight not mass below. FT mass from hereIn sense xOy $T \sin 50 \times 200 - T \cos 50 \times 40$ M1Attempt to find moment of T about RS, including attempt at resolution. May try to find perp dist from G to line of action of the force. $-20g \times (40 - 17.5) = 0$ A1 $T = 34.5889$ so 34.6 N (3 s. f.)A1 $r = 34.5889$ so 34.6 N (3 s. f.)A1	(iii)	We need the edge that the \overline{x} position is nearest $\overline{x} = 22$; distances are 22 to PQ, 18 to SR 15 to QR so edge QR	M1 B1 B1 A1	This may be implied One distance correct All distances correct	4
	(iv)	Moments about RS In sense xOy $T \sin 50 \times 200 - T \cos 50 \times 40$ $-20g \times (40 - 17.5) = 0$ T = 34.5889 so 34.6 N (3 s. f.)	M1 B1 M1 A1 B1 A1 A1	Moments about RS attempted Use of weight not mass below. FT mass from here Attempt to find moment of <i>T</i> about RS, including attempt at resolution. May try to find perp dist from G to line of action of the force. 40 - 17.5 All correct allowing sign errors cao (except for use of mass)	7

Q 3		mark		sub
(i)	a.c. moments about A $1 \times T - 2 \times 300 = 0$ so $T = 600$ Resolving $\rightarrow X = 0$ $\uparrow T - Y = 300$ so $Y = 300$	E1 B1 M1 A1	Justified	4
(ii)	Diagram The working below sets all internal forces as tensions; candidates need not do this.	B1 B1	All external forces marked consistent with (i) All internal forces with arrows and labels	2
(iii)	Let angle DAB be θ . $\cos \theta = \frac{1}{2}$, $\sin \theta = \frac{\sqrt{3}}{2}$ A $\uparrow -300 - T_{AB} \sin \theta = 0$ so $T_{AB} = -200\sqrt{3}$ so force is $200\sqrt{3}$ (C) A $\rightarrow T_{AD} + T_{AB} \cos \theta = 0$ so $T_{AD} = 100\sqrt{3}$ so force is $100\sqrt{3}$ (T) C $\uparrow T_{CD} \sin \theta - 300 = 0$ so $T_{CD} = 200\sqrt{3}$ so force is $200\sqrt{3}$ (T) C $\leftarrow T_{BC} + T_{CD} \cos \theta = 0$ so $T_{BC} = -100\sqrt{3}$ so force is $100\sqrt{3}$ (C) B $\uparrow T_{AB} \sin \theta + T_{BD} = 0$ so $T_{BD} = 300$ so force is 300 (T)	B1 M1 M1 A1 F1 F1 F1 F1 F1 F1	Or equivalent seen Attempt at equilibrium at pin-joints 1 equilib correct, allowing sign errors All T/C consistent with their calculations and diagrams	9
(iv)	AD, AB, BC, CD 300 N, X and Y not changed. Equilibrium equations at A and C are not altered B $\uparrow T_{AB} \sin \theta + T'_{BD} + 600 = 0$ so $T'_{BD} = -300$ so force is 300 (C)	B1 E1 M1 A1	C not needed. [If 300 N (C) given WWW, award SC1 (NB it must be made clear that this is a compression)]	4 19

Q 4		mark		sub
(i)	Let friction be <i>F</i> N and normal reaction <i>R</i> N $F_{max} = 58\cos 35$ $R = 16g + 58\sin 35$ $F_{max} = \mu R$ so $\mu = 0.249968$ about 0.25	B1 M1 A1 M1 E1	Need not be explicit Both terms required.	5
(ii)	WD is 70cos35×3=210cos35 so 172.0219 = 172 J (3 s. f.) Average power is WD/time so 34.4043 = 34.4 W (3 s. f.)	M1 A1 M1 A1	Use of WD = Fd . Accept cos 35 omitted. cao	4
(iii)	Using the constant acceleration result $s = \frac{1}{2}(u+v)t$ with $s = 3$, $u = 0$, $v = 1.5$ and $t = 5$ we see that $3 \neq \frac{1}{2}(0+1.5) \times 5 = 3.75$	M1 E1	Attempt to substitute in <i>suvat</i> (sequence) Conclusion clear	2
(iv)	172.0219 = $\frac{1}{2} \times 16 \times 1.5^2$ +0.25×(16g + 70 sin 35)×3 + WD so WD by S is 6.30916 so 6.31 J (3 s. f.)	M1 M1 A1 M1 A1 A1 A1	Using W-E equn, allow 1 missing term KE term attempted correct Attempt at using new F in $F_{max} = \mu R$ All correct cao	7 18

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

