Mathematics (MEI)

Advanced GCE 4762

Mechanics 2

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610

Q 1		mark		sub
(i)	For P $\begin{aligned} & 200 \times 5+250=200 v_{\mathrm{p}} \\ & v_{\mathrm{P}}=6.25 \text { so } 6.25 \mathbf{i} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ For Q $\begin{aligned} & 250 \times 5-250=250 v_{\mathrm{Q}} \\ & v_{\mathrm{Q}}=4 \text { so } 4 \mathbf{i} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Award for I-M Accept no i and no units Must have impulse in opposite sense Must indicate direction. Accept no units.	4
(ii)	i direction positive PCLM: $2250=200 \times 4.5+250 w_{\mathrm{Q}}$ $w_{\mathrm{Q}}=5.4 \text { so } 5.4 \mathrm{i} \mathrm{~m} \mathrm{~s}^{-1}$ NEL: $\frac{w_{\mathrm{Q}}-4.5}{4-6.25}=-e$ $e=0.4$	M1 F1 E1 M1 A1 A1	PCLM used. Allow error in LHS FT from (i) Any form. FT only from (i) NEL . Allow sign errors Signs correct. FT only from (i) cao	6
(iii)	i direction positive Suppose absolute vel of object is $-V \mathbf{i}$ $200 \times 4.5=-20 V+180 \times 5.5$ $V=4.5$ speed of separation is $5.5+4.5=10 \mathrm{~m} \mathrm{~s}^{-1}$	M1 B1 A1 A1 F1	Applying PCLM. All terms present. Allow sign errors. Correct masses All correct (including signs) FT their V.	5
(iv)	$\begin{aligned} & 180 \times 5.5+250 \times 5.4=430 W \\ & W=5.4418 \ldots \text { so } 5.44 \mathrm{i} \mathrm{~m} \mathrm{~s}^{-1}(3 \mathrm{s.} \mathrm{f.}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Using correct masses and velocities cao	2
				17

Q 2		mark		sub
(i)	$20\binom{\bar{x}}{\bar{y}}=15\binom{20}{0}+3\binom{0}{100}+2\binom{25}{200}$ $\begin{aligned} & \bar{x}=17.5 \\ & \bar{y}=35 \end{aligned}$	M1 B1 A1 A1 A1	Method to obtain at least 1 coordinate '100' or '25' correct Either one RHS term correct or one component of two RHS terms correct	5
(ii)	$\begin{aligned} & 25\binom{\bar{x}}{\bar{y}}=\binom{350}{700}+5\binom{40}{200} \\ & \text { so } \bar{x}=22, \bar{y}=68 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \end{aligned}$	Using (i) or starting again Clearly shown.	2
(iii)	We need the edge that the \bar{x} position is nearest $\begin{aligned} & \bar{x}=22 \text {; distances are } 22 \text { to } \mathrm{PQ}, 18 \text { to } \mathrm{SR} \\ & 15 \text { to } \mathrm{QR} \\ & \text { so edge } \mathrm{QR} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \\ & \text { B1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	This may be implied One distance correct All distances correct	4
(iv)	Moments about RS In sense $x \mathrm{O} y$ $T \sin 50 \times 200-T \cos 50 \times 40$ $\begin{aligned} & -20 g \times(40-17.5)=0 \\ & T=34.5889 \ldots \text { so } 34.6 \mathrm{~N}(3 \mathrm{s.f.}) \end{aligned}$	M1 B1 M1 A1 B1 A1 A1	Moments about RS attempted Use of weight not mass below. FT mass from here Attempt to find moment of T about RS, including attempt at resolution. May try to find perp dist from G to line of action of the force. $40-17.5$ All correct allowing sign errors cao (except for use of mass)	7
				18

Q 3		mark		sub
(i)	a.c. moments about A $1 \times T-2 \times 300=0 \text { so } T=600$ Resolving $\begin{aligned} & \rightarrow X=0 \\ & \uparrow T-Y=300 \\ & \text { so } Y=300 \end{aligned}$	E1 B1 M1 A1	Justified	4
(ii)	Diagram The working below sets all internal forces as tensions; candidates need not do this.	B1 B1	All external forces marked consistent with (i) All internal forces with arrows and labels	2
(iii)	Let angle DAB be θ. $\cos \theta=\frac{1}{2}, \sin \theta=\frac{\sqrt{3}}{2}$ A $\uparrow-300-T_{\mathrm{AB}} \sin \theta=0$ so $T_{\mathrm{AB}}=-200 \sqrt{3}$ so force is $200 \sqrt{3}$ (C) $\mathrm{A} \rightarrow T_{\mathrm{AD}}+T_{\mathrm{AB}} \cos \theta=0$ so $T_{\mathrm{AD}}=100 \sqrt{3}$ so force is $100 \sqrt{3}$ C $\uparrow T_{\mathrm{CD}} \sin \theta-300=0$ so $T_{\mathrm{CD}}=200 \sqrt{3}$ so force is $200 \sqrt{3}$ $\mathrm{C} \leftarrow T_{\mathrm{BC}}+T_{\mathrm{CD}} \cos \theta=0$ so $T_{\mathrm{BC}}=-100 \sqrt{3}$ so force is $100 \sqrt{3}$ B $\uparrow T_{\mathrm{AB}} \sin \theta+T_{\mathrm{BD}}=0$ so $T_{\mathrm{BD}}=300$ so force is $300(\mathrm{~T})$	B1 M1 M1 A1 F1 F1 F1 F1 F1	Or equivalent seen Attempt at equilibrium at pin-joints 1 equilib correct, allowing sign errors All T/C consistent with their calculations and diagrams	9
(iv)	AD, AB, BC, CD $300 \mathrm{~N}, X$ and Y not changed. Equilibrium equations at A and C are not altered B $\uparrow T_{\mathrm{AB}} \sin \theta+T^{\prime}{ }_{\mathrm{BD}}+600=0$ so $T^{\prime}{ }_{\mathrm{BD}}=-300$ so force is 300 (C)	B1 E1 M1 A1	C not needed. [If 300 N (C) given WWW, award SC1 (NB it must be made clear that this is a compression)]	4
				19

Q 4		mark		sub
(i)	Let friction be $F \mathrm{~N}$ and normal reaction $R \mathrm{~N}$ $\begin{aligned} & F_{\max }=58 \cos 35 \\ & R=16 g+58 \sin 35 \end{aligned}$ $\begin{aligned} & F_{\max }=\mu R \\ & \text { so } \mu=0.249968 \ldots \text { about } 0.25 \end{aligned}$	B1 M1 A1 M1 E1	Need not be explicit Both terms required.	5
(ii)	WD is $70 \cos 35 \times 3=210 \cos 35$ so $172.0219 . . .=172 \mathrm{~J}$ (3 s. f.) Average power is WD/time so $34.4043 \ldots .=34.4 \mathrm{~W}$ (3 s. f.)	M1 A1 M1 A1	Use of WD $=$ Fd. Accept $\cos 35$ omitted. cao	4
(iii)	Using the constant acceleration result $s=\frac{1}{2}(u+v) t$ with $s=3, u=0, v=1.5$ and $t=5$ we see that $3 \neq \frac{1}{2}(0+1.5) \times 5=3.75$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \end{aligned}$	Attempt to substitute in suvat (sequence) Conclusion clear	2
(iv)	$\begin{aligned} & 172.0219 \ldots \\ & =\frac{1}{2} \times 16 \times 1.5^{2} \\ & +0.25 \times(16 g+70 \sin 35) \times 3 \\ & + \text { WD } \end{aligned}$ so WD by S is 6.30916... $\text { so } 6.31 \text { J (3 s. f.) }$	M1 M1 A1 M1 A1 A1 A1	Using W -E equn, allow 1 missing term KE term attempted correct Attempt at using new F in $F_{\max }=\mu R$ All correct cao	7
				18

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

