

Mathematics (MEI)

Advanced GCE 4767

Statistics 2

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Question 1

-												
(i)	<i>x</i>	6	17	9	20	13	15	11	14		MI for attempt at	
	У	6	13	10	11	9	7	12	15		ranking (allow all	
	Rank <i>x</i>	8	2	7	1	5	3	6	4		Taliks levelsed)	
	Rank y	8	2	5	4	6	7	3	1		M1 for d^2	
	d	0	0	2	-3	-1	-4	3	3			
	d^2	0	0	4	9	1	16	9	9			
	$\Sigma d^2 = 48$							A1 CAO for Σd^2				
	$r_s = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)} = 1 - \frac{6 \times 48}{8 \times 63}$							M1 for method for r_s				
	$n(n^{2} - 1) = 0.429 \text{ (to 3 s.f.)} [allow 0.43 \text{ to 2 s.f.}]$								A1 f.t. for $ r_s < 1$ NB No ranking scores zero	5		
(ii)												
	H_0 : no association between <i>X</i> and <i>Y</i> in the population							B1 for H ₀				
	H ₁ : some positive association between X and Y in the							B1 for H ₁				
	population								B1 for population SOI	3		
									NB H ₀ H ₁ <u>not</u> ito ρ			
	One tail test critical value at 5% level is 0.6429								B1 for ± 0.6429			
	Since $0.429 < 0.6429$, there is insufficient evidence to reject H_0 ,							M1 for sensible comparison with c.v., provided that r < 1				
	i.e. conclude that there is not enough evidence to show positive association between the two judges' scores.							Al for conclusion in context f.t. their r_s and sensible cv	3			
(iii)	A bivariate Normal distribution is required.							B1				
	Scatter diagram.							G1 labelled axes				
	Suitable discussion							E1 E1	5			
											TOTAL	16

Question 2

	Counts have a uniform average rate of occurrence	E1	2
(i)	All counts are independent	E1	
(ii)	Variance = 3.4	B1	1
			I
(iii)	(A) Either $P(X=3) = 0.5584 - 0.3397 = 0.2187$ Or $P(X=3) = e^{-3.4} \frac{3.4^3}{31} = 0.2186$	M1 for use of tables or calculation A1	2
	(B) Using tables: $P(X \ge 3) = 1 - P(X \le 2)$	M1 for 1 - $P(X \le 2)$	_
	= 1 - 0.3397	M1 correct use of	
		Poisson tables	3
	= 0.6603	A1	•
(iv)	$\lambda = 12 \times 3.4 = 40.8$	B1 for mean	
	$P(X=40) = e^{-40.8} \frac{40.8^{40}}{40!} = 0.0625$	M1 for calculation A1	3
(v) (vi)	Mean no. per hour = $12 \times 3.4 = 40.8$ Using Normal approx. to the Poisson, $X \sim N(40.8, 40.8)$ $P(X \ge 40) = P\left(Z > \frac{39.5 - 40.8}{\sqrt{40.8}}\right)$ $= P(Z > -0.2035) = \Phi(0.2035)$ = 0.5806 Overall mean = 4.8 $P(X \ge 8) = 1 - P(X \le 7)$ = 1 - 0.8867 = 0.1133	 B1 for Normal approx. B1 for correct parameters (SOI) B1 for correct continuity corr. M1 for probability using correct tail A1 CAO (3 s.f.) B1 for 4.8 M1 A1 	5
		TOTAL	3 19

Question 3

			1
(i)	(A) $P(X < 65) = P(Z < 65 - 63)$	M1 for standardizing	
	$P(Z < \frac{1}{5.2})$ $= P(Z < 0.3846)$ $= \Phi(0.3846) = 0.6497$ (60-63 (65-63))	M1 for structure A1 CAO (min 3 s.f.), NB When a candidate's answers suggest that (s)he appears to have neglected to use the difference column of the Normal distribution tables penalise the first occurrence only	3
	(B) $P(60 < X < 65) = P\left(\frac{36 - 65}{5.2} < Z < \frac{65 - 65}{5.2}\right)$ = $P(-0.5769 < Z < 0.3846)$ = $\Phi(0.3846) - (1 - \Phi(0.5769))$ = $0.6497 - (1 - 0.7181)$ = 0.3678	M1 for standardizing both M1 for correct structure	
	0.5070	A1 CAO 3s.f.	3
(ii)	$P(All 5 between 60 and 65) = 0.3678^5 = 0.00673$	M1 A1 FT (min 2sf)	
(•••)			2
(111)	From tables $\Phi^{-1}(0.95) = 1.645$ $\frac{k-63}{5.2} = -1.645$	B1 for ± 1.645 seen M1 for correct equation in k	
	$x = 63 - 5.2 \times 1.645 = 54.45$ mins	A1 CAO	3
(iv)	H ₀ : $\mu = 63$ minutes; H ₁ : $\mu < 63$ minutes. Where μ denotes the population mean time on the new course.	B1 for use of 63 B1 for both correct B1 for definition of μ	3
	Test statistic = $\frac{61.7 - 63}{5.2/\sqrt{15}} = \frac{-1.3}{1.3426}$ = -0.968	M1 must include √15 A1	
	5% level 1 tailed critical value of $z = 1.645$ -0.968 > -1.645 so not significant. There is not sufficient evidence to reject H ₀	B1 for ±1.645 M1 for sensible comparison leading to a conclusion	
	There is insufficient evidence to conclude that the new course results in lower times.	A1 FT for correct conclusion in words in context	5
1			13

4767

Question 4

(i)	H ₀ : no associatio running;	n between ca	tegory of runne	r and type of	B1	1	
(-)	H ₁ : some association between category of runner and type of running.						
	or running,				$M1 \Lambda 2$ for expected		
	EXPECTED	Junior	Senior	Veteran	values (to 2 dp)		
	Track	5.13	7.84	6.03	(allow A1 for at least		
	Road	6.48	9.90	7.62	one row or column		
	Both	5.40	8.25	6.35	correct)		
	CONTRIBUTN	Junior	Senior	Veteran	M1 for valid attempt at		
	Track	2.9257	0.0032	2.6949	$(\Omega - F)^2/F$		
	Road	0.9468	0.3663	2.5190	A1 for all correct		
	Both	0.3615	0.3694	0.0192	NB These M1A1 marks cannot be implied by a correct final value of X^2		
	$X^2 = 10.21$				M1 for summation A1 for X^2	7	
	Refer to X_4^2				B1 for 4 deg of f		
	Critical value at	5% level =	B1 CAO for cv				
		57010001	B1 FT their 'sensible'				
	Result is signific	cant	X^2				
	There is evide association betw running. NB if H_0 H_1 reverse first B10r final E1	nce to sug veen catego ed, or 'correlat	E1 must be consistent with their X^2	4			
(ii)	• Juniors appear be track runners more often than expected and road less often than expected.				E1 E1		
	• Seniors t categorie	tend to be as tes of running	E1 E1				
	• Veterans expected	tend to be i and track r	ore than n expected.	E1 E1	6		
				TOTAL	18		

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010

