Mathematics (MEI)

Advanced GCE 4768

Statistics 3

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Q1	$\mathrm{D} \sim \mathrm{N}(2018, \sigma=96)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	Systematic Sampling. It lacks any element of randomness. Choose a random starting point in the range $1-10$.	B1 E1 E1	May be implied by the next mark. Allow reasonable alternatives e.g. "the list may contain cycles." Beware proposals for a different sampling method.	[3]
(ii)	$\begin{aligned} \mathrm{P}(D>2100) & =\mathrm{P}\left(Z>\frac{2100-2018}{96}=0.8542\right) \\ & =1-0.8034=0.1966 \end{aligned}$	M1 A1 A1	For standardising. Award once, here or elsewhere. c.a.o.	[3]
(iii)	$\begin{aligned} D_{1}+D_{2}+D_{3} \sim & \mathrm{~N}(6054 \\ & \left.\sigma^{2}=96^{2}+96^{2}+96^{2}=27648\right) \\ \mathrm{P}(\text { this }<6000)= & \mathrm{P}\left(Z<\frac{6000-6054}{166.277}=-0.3248\right) \\ = & 1-0.6273=0.3727 \end{aligned}$ Must assume that the months are independent. This is unlikely to be realistic since e.g. consecutive months may not be independent.	B1 B1 A1 E1 E1	Mean. Variance. Accept sd (= 166.277). c.a.o. Reference to independence of months. Any sensible comment.	[5]
(iv)	$\begin{aligned} & \text { Claim } \sim \mathrm{N}(2018 \times 0.45+21200 \times 0.10=3028.10, \\ & \qquad 96^{2} \times 0.45^{2}+1100^{2} \times 0.10^{2}=13966.24 \\ & \mathrm{P}(3000<\text { this }<3300) \\ & =\mathrm{P}\left(\frac{3000-3028.1}{118.18}<Z<\frac{3300-3028.1}{118.18}\right) \\ & =\mathrm{P}(-0 \cdot 2378<Z<2.3008) \\ & =0.9893-(1-0.5940)=0.5833 \end{aligned}$	M1 A1 M1 A1 M1 A1 A1	Mean. c.a.o. Variance. Accept sd (= 118.18). c.a.o. Formulation of requirement: a two-sided inequality. Ft c's parameters. c.a.o.	[7]
			Total	[18]

Q4	$\mathrm{f}(x)=\lambda \mathrm{e}^{-\lambda x}$ for $x \geq 0$, where $\lambda>0$.		Given $\int_{0}^{\infty} x^{r} \mathrm{e}^{-\lambda x} \mathrm{~d} x=\frac{r!}{\lambda^{r+1}}$	
(i)	$\begin{aligned} \int_{0}^{\infty} \mathrm{f}(x) \mathrm{d} x & =\int_{0}^{\infty} \lambda \mathrm{e}^{-\lambda \mathrm{x}} \mathrm{~d} x \\ & =\left[-\mathrm{e}^{-\lambda \mathrm{x}}\right]_{0}^{\infty} \\ & =\left(0-\left(-\mathrm{e}^{0}\right)\right)=1 \end{aligned}$	M1 M1 A1 G1 G1	Integration of $\mathrm{f}(x)$. Use of limits or the given result. Convincingly obtained (Answer given.) Curve, with negative gradient, in the first quadrant only. Must intersect the y-axis. $(0, \lambda)$ labelled; asymptotic to x-axis.	[5]
(ii)	$\begin{aligned} \mathrm{E}(X)= & \int_{0}^{\infty} \lambda x \mathrm{e}^{-\lambda x} \mathrm{~d} x \\ & =\lambda \frac{1}{\lambda^{2}}=\frac{1}{\lambda} \\ \mathrm{E}\left(X^{2}\right)= & \int_{0}^{\infty} \lambda x^{2} \mathrm{e}^{-\lambda x} \mathrm{~d} x \\ & =\lambda \frac{2}{\lambda^{3}}=\frac{2}{\lambda^{2}} \\ \operatorname{Var}(X)= & \mathrm{E}\left(X^{2}\right)-\mathrm{E}(X)^{2}=\frac{2}{\lambda^{2}}-\left(\frac{1}{\lambda}\right)^{2}=\frac{1}{\lambda^{2}} \end{aligned}$	M A M A1 M A1	Correct integral. c.a.o. (using given result) Correct integral. c.a.o. (using given result) Use of $\mathrm{E}\left(X^{2}\right)-\mathrm{E}(X)^{2}$	[6]
(iii)	$\begin{aligned} & \mu=6 \quad \therefore \lambda=\frac{1}{6} \\ & \bar{X} \sim(\text { approx }) N\left(6, \frac{6^{2}}{50}\right) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Obtained λ from the mean. Normal. Mean. ft c 's λ. Variance. ft c's λ.	[4]
(iv)	```EITHER can argue that 7.8 is more than 2 SDs from \(\mu\). \((6+2 \sqrt{0.72}=7.697 ;\) must refer to \(\mathrm{SD}(\overline{\mathrm{X}})\), not \(\mathrm{SD}(\mathrm{X})\)) i.e. outlier. \(\Rightarrow\) doubt. OR formal significance test: \(\frac{\frac{7.8}{}-6}{\sqrt{0.72}}=2.121\), refer to \(\mathrm{N}(0,1)\), sig at (eg) \(5 \%\) \(\Rightarrow\) doubt.```	M M1 A1 M1 M1 A1	A 95% C.I would be $(6.1369,9.4631)$. Depends on first M, but could imply it. $\mathrm{P}(\|Z\|>2.121)=0.0339$	[3]
			Total	[18]

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

