GCE

Mathematics (MEI)

Advanced GCE 4763

Mechanics 3

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1(a)(i)	$\mathrm{AP}=\sqrt{2.4^{2}+0.7^{2}}=2.5$ Tension $T=70 \times 0.35 \quad(=24.5)$ Resultant vertical force on P is $2 T \cos \theta-m g$ $\begin{aligned} & =2 \times 24.5 \times \frac{2.4}{2.5}-4.8 \times 9.8 \\ & =47.04-47.04=0 \end{aligned}$ Hence P is in equilibrium	M1 A1 M1 B1 B1 E1	6	Attempting to resolve vertically For $T \times \frac{2.4}{2.5}$ (or $T \cos 16.3^{\circ} \mathrm{etc}$) For 4.8×9.8 Correctly shown
(ii)	$\mathrm{EE}=\frac{1}{2} \times 70 \times 0.35^{2}$ Elastic energy is 4.2875 J	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	(M0 for $\frac{1}{2} \times 70 \times 0.35$) Note If 70 is used as modulus instead of stiffness: (i) M1A0M1B1B1E0 (ii) M1 A1 for 1.99
(iii)	Initial $\mathrm{KE}=\frac{1}{2} \times 4.8 \times 3.5^{2}$ By conservation of energy $\begin{aligned} 4.8 \times 9.8 h & =2 \times 4.2875+\frac{1}{2} \times 4.8 \times 3.5^{2} \\ 47.04 h & =8.575+29.4 \end{aligned}$ Height is $0.807 \mathrm{~m} \mathrm{(} 3 \mathrm{sf}$)	B1 M1 F1 A1	4	Equation involving EE, KE and PE (A0 for 0.8$) \mathrm{ft}$ is $\frac{2 \times(\mathrm{ii})+29.4}{47.04}$
(b)(i)	$\begin{aligned} & {[\text { Force }]=\mathrm{ML} \mathrm{~T}^{-2}} \\ & {[\text { Stiffness }]=\mathrm{M} \mathrm{~T}^{-2}} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	2	Deduct 1 mark if units are used
(ii)	$\begin{gathered} \mathrm{LT}^{-1}=\mathrm{M}^{\alpha}\left(\mathrm{MT}^{-2}\right)^{\beta} \mathrm{L}^{\gamma} \\ \quad \gamma=1 \\ \beta=\frac{1}{2} \\ 0=\alpha+\beta \\ \alpha=-\frac{1}{2} \end{gathered}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$		Considering powers of M When [Stiffness] is wrong in (i), allow all marks ft provided the work is comparable and answers are non-zero

\begin{tabular}{|c|c|c|c|c|}
\hline 2 (i) \& \begin{tabular}{l}
\[
\begin{aligned}
\& R \cos \theta=m g \quad[\theta \text { is angle between } \mathrm{OB} \text { and vertical }] \\
\& R \times 0.8=0.4 \times 9.8
\end{aligned}
\] \\
Normal reaction is 4.9 N
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1
\end{tabular} \& 3 \& Resolving vertically \\
\hline (ii) \& \begin{tabular}{l}
\[
\begin{align*}
R \sin \theta \& =m \frac{v^{2}}{r} \\
4.9 \times 0.6 \& =0.4 \times \frac{v^{2}}{1.5} \\
v^{2} \& =11.025 \tag{3sf}
\end{align*}
\] \\
Speed is \(3.32 \mathrm{~ms}^{-1}\)
\end{tabular} \& M1
A1

A1 \& 3 \& For acceleration $\frac{v^{2}}{r}$ or $r \omega^{2}$ or $4.9 \times 0.6=0.4 \times 1.5 \omega^{2}$ ft is $1.5 \sqrt{R}$

\hline (iii) \& By conservation of energy

\[
$$
\begin{aligned}
\frac{1}{2} m u^{2} & =m g \times 2.5 \\
u^{2} & =5 g \quad(u=7) \\
R-m g & =m \times \frac{u^{2}}{2.5} \\
R-m g & =2 m g \\
R & =3 m g
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| M1 |
| E1 | \& 4 \& | Equation involving KE and PE |
| :--- |
| Vertical equation of motion (must have three terms) |
| Correctly shown or $R=11.76$ and $3 \times 0.4 \times 9.8=11.76$ |

\hline | (iv) |
| :--- |
| (v) | \& | $\begin{aligned} & \frac{1}{2} m v^{2}=m g \times 2.5 \cos \theta \\ & v^{2}=5 g \cos \theta \\ & R-m g \cos \theta=m \times \frac{v^{2}}{2.5} \\ & \text { When } R=2 m g \quad(=7.84), \\ & 2 m g-m g \cos \theta=\frac{m v^{2}}{2.5} \\ & 2 m g-\frac{m v^{2}}{5}=\frac{m v^{2}}{2.5} \\ & 7.84-0.08 v^{2}=0.16 v^{2} \\ & v^{2}=\frac{98}{3} \end{aligned}$ |
| :--- |
| Speed is $5.72 \mathrm{~m} \mathrm{~s}^{-1} \quad(3 \mathrm{sf})$ $\cos \theta=\frac{v^{2}}{5 g}=\frac{2}{3} \quad\left(\theta=48.2^{\circ} \text { or } 0.841 \mathrm{rad}\right)$ |
| Tangential acceleration is $g \sin \theta$ |
| Tangential acceleration is $7.30 \mathrm{~ms}^{-2}$ | \& M1

A1 \& 8 \& | Mark (iv) and (v) as one part Equation involving KE, PE and an angle (θ is angle with vertical) [$\frac{1}{2} m v^{2}=m g h$ can earn M1A1, but only if $\cos \theta=h / 2.5$ appears somewhere] |
| :--- |
| Equation of motion towards O (must have three terms, and the weight must be resolved) |
| Obtaining an equation for v Obtaining an equation for θ These two marks are each dependent on M1M1 above |
| [$g \sin \theta$ in isolation only earns M1 if the angle θ is clearly indicated] |

\hline
\end{tabular}

3 (i)	$\begin{align*} & \text { Volume is } \begin{array}{l} \int_{1}^{5} \pi\left(\frac{1}{x}\right)^{2} \mathrm{~d} x \\ =\pi\left[-\frac{1}{x}\right]_{1}^{5} \quad\left(=\frac{4}{5} \pi\right) \end{array} \\ & \begin{aligned} \int \pi x y^{2} \mathrm{~d} x & =\int_{1}^{5} \pi x\left(\frac{1}{x}\right)^{2} \mathrm{~d} x \end{aligned} \\ & =\pi[\ln x]_{1}^{5} \quad(=\pi \ln 5) \\ & \bar{x}=\frac{\pi \ln 5}{\frac{4}{5} \pi}=\frac{5 \ln 5}{4} \quad(2.012) \end{align*}$	M1 A1 M1 A1 A1	π may be omitted throughout Limits not required For $-\frac{1}{x}$ Limits not required For $\ln x$ $S R$ If exact answers are not seen, deduct only the first A1 affected
(ii)	$\begin{align*} & \text { Area is } \int_{1}^{5} \frac{1}{x} \mathrm{~d} x \\ & =[\ln x]_{1}^{5} \quad(=\ln 5) \\ & \begin{aligned} & \int x y \mathrm{~d} x=\int_{1}^{5} x\left(\frac{1}{x}\right) \mathrm{d} x \quad\left(=[x]_{1}^{5}=4\right) \\ & \bar{x}=\frac{4}{\ln 5} \quad(2.485) \end{aligned} \\ & \begin{aligned} \int \frac{1}{2} y^{2} \mathrm{~d} x & =\int_{1}^{5} \frac{1}{2}\left(\frac{1}{x}\right)^{2} \mathrm{~d} x \end{aligned} \tag{2.485}\\ & \quad=\left[-\frac{1}{2 x}\right]_{1}^{5} \quad\left(=\frac{2}{5}\right) \\ & \bar{y}=\frac{2 / 5}{\ln 5}= \end{align*}$	M1 A1 M1 A1 M1 A1 A1	Limits not required For $\ln x$ Limits not required For $\int\left(\frac{1}{x}\right)^{2} \mathrm{~d} x$ For $-\frac{1}{2 x}$
(iii)	CM of R_{2} is $\left(\frac{2}{5 \ln 5}, \frac{4}{\ln 5}\right)$	B1B1 ft	Do not penalise inexact answers in this part
(iv)	$\begin{aligned} & \bar{x}=\frac{(\ln 5)\left(\frac{4}{\ln 5}\right)+(\ln 5)\left(\frac{2}{5 \ln 5}\right)+(1)\left(\frac{1}{2}\right)}{\ln 5+\ln 5+1} \\ & \text { CM is }\left(\frac{4.9}{2 \ln 5+1}, \frac{4.9}{2 \ln 5+1}\right) \quad(1.161,1.161) \end{aligned}$	B1 M1 M1 A1 cao	For CM of R_{3} is $\left(\frac{1}{2}, \frac{1}{2}\right)$ (one coordinate is sufficient) Using $\sum m x$ with three terms Using $\frac{\sum m x}{\sum m}$ with at least two terms in each sum

4 (i)	$\begin{aligned} & v=\frac{\mathrm{d} x}{\mathrm{~d} t}=A \omega \cos \omega t-B \omega \sin \omega t \\ & \begin{aligned} a=\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}} & =-A \omega^{2} \sin \omega t-B \omega^{2} \cos \omega t \\ & =-\omega^{2}(A \sin \omega t+B \cos \omega t)=-\omega^{2} x \end{aligned} \end{aligned}$	$\left.\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { E1 } & \\ & 3 \end{array} \right\rvert\,$	Finding the second derivative Correctly shown
(ii)	$\begin{aligned} B & =-16 \\ \omega & =0.25 \\ A & =30 \end{aligned}$	$\left.\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \\ \text { B2 } & \\ \end{array} \right\rvert\,$	When A is wrong, give B 1 for a correct equation involving A [e.g. $A \omega=7.5$ or $\left.7.5^{2}=\omega^{2}\left(A^{2}+B^{2}-16^{2}\right)\right]$ or for $A=-30$
(iii)	Maximum displacement is $(\pm) \sqrt{A^{2}+B^{2}}$ Maximum displacement is 34 m Maximum speed is $(\pm) 34 \omega$ Maximum acceleration is $(\pm) 34 \omega^{2}$ Maximum speed is $8.5 \mathrm{~m} \mathrm{~s}^{-1}$ Maximum acceleration is $2.125 \mathrm{~ms}^{-2}$	M1 A1 M1 F1 F1	Or $7.5^{2}=\omega^{2}\left(\mathrm{amp}^{2}-16^{2}\right)$ Or finding t when $v=0$ and substituting to find x For either (any valid method) Only ft from $\omega \times$ amp Only ft from $\omega^{2} \times$ amp
(iv)	$\begin{aligned} v=7.5 \cos 0.25 t & +4 \sin 0.25 t \\ \text { When } t=15, \quad v & =7.5 \cos 3.75+4 \sin 3.75 \\ & =-8.44 \end{aligned}$ Speed is $8.44 \mathrm{~ms}^{-1}(3 \mathrm{sf})$; downwards	M1 A1 2	
(v)	Period $\frac{2 \pi}{\omega} \approx 25 \mathrm{~s}$, so $t=0$ to $t=15$ is less than one period When $t=15, x=30 \sin 3.75-16 \cos 3.75$ $=-4.02$ Distance travelled is $16+34+34+4.02$ Distance travelled is 88.0 m (3 sf)	M1 M1 M1 A1 cao 4	Take account of change of direction Fully correct strategy for distance

OCR (Oxford Cambridge and RSA Examinations)
 1 Hills Road
 Cambridge
 CB1 2EU

OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553
© OCR 2010

