GCE

Mathematics

Advanced GCE 4725

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1
B1 Establish result true for $n=1$ or $n=2$
M1 Add next term to given sum formula
M1 Attempt to factorise or expand and simplify to correct expression
A1 Correct expression obtained
A1 5 Specific statement of induction conclusion

5

2 (i) (-7)

M1 Obtain a single value
A1 2 Obtain correct answer as a matrix
(ii) $\quad \mathrm{BA}=\left(\begin{array}{ll}5 & -20 \\ 3 & -12\end{array}\right)$

$$
\left(\begin{array}{ll}
-7 & -20 \\
11 & -20
\end{array}\right)
$$

M1 Obtain a 2×2 matrix

A1 All elements correct

B1 4C seen or implied by correct answer
B1ft 4 Obtain correct answer, ft for a slip in BA

6

M1 Express as a sum of 3 terms
M1 Use standard sum results

A1 Correct unsimplified answer
M1 Attempt to factorise
A1 Obtain at least factor of n and a quadratic
A1 6 Obtain correct answer a.e.f.

M1 Express as difference of $2 \sum r^{2}$ series
M1 Use standard result
A1 Correct unsimplified answer
M1 Attempt to factorise
A1 Obtain at least factor of n

A1 Obtain correct answer
4
(i) $5+12 \mathrm{i}$
13
67.4^{0} or 1.18

B1B1 Correct real and imaginary parts
B1ft Correct modulus
B1ft 4 Correct argument
(ii)
M1 Multiply by conjugate
A1 Obtain correct numerator
A1 3 Obtain correct denominator
7
$5 \quad$ (a) $\quad\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
B1B12 Each column correct
SC B2 use correct matrix from MF1 Can be trig form
(b) (i)

B1B12 Stretch, in x-direction sf 5
(ii)

B1B12 Rotation, 60° clockwise
6
$6 \quad$ (i) $\quad \begin{aligned} & \text { (a) } \\ & \text { (b) }\end{aligned}$
B1B12 Circle centre (3, -4), through origin
B1B12 Vertical line, clearly $x=3$
(ii)

B1ft Inside their circle
B1ft 2 And to right of their line, if vertical

7

> Either
> $\alpha+\beta=-2 k \quad \alpha \beta=k$
$y^{2}-4 k y+4 k=0$

Or
$\alpha+\beta=-2 k$
$\frac{-2 k}{\alpha}$
$y=\frac{-2 k}{x}$
$y^{2}-4 k y+4 k=0$

Or

$$
\begin{aligned}
& -k \pm \sqrt{k^{2}-k} \\
& \frac{\alpha+\beta}{\alpha}=\frac{2 k}{k+\sqrt{k^{2}-k}}, \frac{\alpha+\beta}{\beta}=\frac{2 k}{k-\sqrt{k^{2}-k}}
\end{aligned}
$$

$$
y^{2}-4 k y+4 k=0
$$

B1B1 State or use correct results
M1 Attempt to find sum of new roots
A1 Obtain $4 k$
M1 Attempt to find product of new roots
A1 Obtain $4 k$
B1ft 7 Correct quadratic equation a.e.f.

B1 State or use correct result

B1ft Correct quadratic equation a.e.f.

8 (i)
M1 Attempt to rationalise denominator or cross multiply
A1 2 Obtain given answer correctly

M1 Express terms as differences using (i)
M1 Attempt this for at least $1^{\text {st }}$ three terms
A1 $\quad 1^{\text {st }}$ three terms all correct
A1 Last two terms all correct
M1 Show pairs cancelling
A1 6 Obtain correct answer, in terms of n

B1 $\begin{array}{lll}\mathbf{1} & \text { Sensible statement for divergence } \\ & 9 & \end{array}$

M1 Show correct expansion process for 3×3
M1 Correct evaluation of any 2×2
A1 3 Obtain correct answer

M1 Find a pair of inconsistent equations
A1 State inconsistent or no solutions
M1 Find a repeated equation
A1 State non unique solutions
B1 State that det \mathbf{A} is non-zero or find correct solution
B1 6 State unique solution
SC if detA incorrect, can score 2 marks for correct deduction of a unique solution, but only once

10 (i)

$$
\begin{aligned}
& x^{2}-y^{2}=3 \quad x y=2 \\
& z=2+i
\end{aligned}
$$

(ii)
(iii)

$$
w^{3}=2 \pm 11 \mathrm{i}
$$

$$
w=2-\mathrm{i}
$$

M1 Attempt to equate real and imaginary parts
A1 Obtain both results
M1 Eliminate to obtain quadratic in x^{2} or y^{2}
M1 Solve to obtain x or y value
A1 5 Obtain correct answer as a complex no.

B1 $\mathbf{1}$ Obtain given answer correctly

M1 Attempt to solve quadratic equation
A1 Obtain correct answers
M1 Choose negative sign
M1 Relate required value to conjugate of (i)
A1 5 Obtain correct answer
11

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553
© OCR 2010

