

GCE

Mathematics

Advanced Subsidiary GCE 4728

Mechanics 1

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

 Telephone:
 0870 770 6622

 Facsimile:
 01223 552610

 E-mail:
 publications@ocr.org.uk

1	t = 5/1.2	M1	5=1.2t or 0=5-1.2t
1	t = 4.17 s	Al	4 1/6 s, 4.166 or better, 4.16 recurring.
		[2]	
ii	$s = (-5)^2/2x1.2$	M1	$s = 5^{2}/2x1.2$ or $5^{2} = 2x1.2s$ or $0 = 5^{2} - 2x1.2s$
	s = 10.4 m	A1	Accept 10 5/12, but not 10
	OR(using(i))	[2]	1 /
	$s = 5x4.17 - 1.2x4.17^2/2$	M1	Time must be > 0 . Accept t from (i)
	s = 10.4 m	A1	Award if -4.17 used.
	OR(using(i)) a = (5(1-0))/2 + 4.17	M1	
	s = (5 (+0))/2 x 4.1/ s = 10.4 m	A1	
iii	Fr = 3x1.2	B1	Accept 3.6, +/-
	R = 3x9.8	B1	Accept 3g, +/-
	$\mu = (3x)1.2/(3x)9.8$	M1	Ratio of 2 positive numerical force terms
	$\mu = 0.122$	A1	Not 0.12
	OR $P = 2 - 0.8$	[4]	
	K = 3X9.8 Mass x appeleration = $\pm \frac{1}{2} \times 1.2$	BI D1	Accept 3g, +/-
	+/-11 x 29 4 = +/-3x 1 2	M1	Fither both positive or both pegative
	$\mu = 0.122$	A1	Ether both positive of both negative.
	P		
2	+/-(0.4x3 - 0.6x1.5)	B1	+/- 0.3
i	+/-(0.4x0.1+0.6v)	B1	Nb the terms have same signs
	(0.4x3 - 0.6x1.5) = +/-(0.4x0.1 + 0.6v)	MI	Equating their total mom before & after $12/20$ or 0.42 moveming, but not 0.42
	speed $ V = 0.433$ ms		Accept 13/30 or 0.43 recurring, but not 0.43
	$+/-(0.4x^3 - 0.4x^0) = +/-1.16$	B1	Momentum change of P
	(0.6v + 0.6x1.5) = 0.6v + 0.9	B1	Momentum change of O
	$1.16 = \pm (0.6v + 0.9)$	M1	Equating momentum changes
	speed $ v = 0.433 \text{ ms}^{-1}$	A1	0.26/0.6 = v
ii	+/-(0.4x0.1 - 0.6v)	B1	Nb the terms have different signs
	(0.4x3 - 0.6x1.5) = +/-(0.6v - 0.4x0.1)	M1	Must use +/- same before momentum as in (i)
	V = 0.56 / PO = 0.1x2 + 0.567x2	Al	May be implied, or in any format $(0,1+0,5(7))=2$
	$PQ = 0.1X3 \pm 0.30/X3$ PO = 2 m		(0.1 ± 0.307) x3 Accept 2 00(1) 2 0 2 00
	OR 2 III	[5]	Accept 2.00(1), 2.0, 2.00
	+/-0.4x3 + 0.4x0.1 and $+/-0.6v + 0.6x1.5$	B1	Both must be correct
	1.24 = +/-0.6v + 0.9	M1	Equating change in momentum
	v = 0.567	A1	May be implied, or in any format
	etc		
3	$H = +/(9 - 5\cos 60)$	M1	$+/(9 + 5\cos 120)$
i i	H = 65 N AG		$+7-(9+3\cos(20))$
1		[2]	
 ;;	$V = +/(12 - 5 \sin 60)$	M1	$+/(12 + 5\cos 150)$
11	V = 7.67 N	A 1	+7-(12 + 3008130) Accept 7 666 or better or 7.6 recurring
		[2]	recept 7.000 of better, of 7.0 recurring
iii	$R^2 = 6.5^2 + 7.67^2$	M1	Uses Pythagoras on forces V(ii) and 6.5
	R = 10.1 N	A1	10.053
	tan A = 6.5/7.67 or 7.67/6.5	M1	Uses trigonometry in relevant triangle
	A = 40(2) or 40.7	A 1	May be implied by Grater and
	A = 40(.3) or 49.7	AI	May be implied by final answer
			As uns is not a milar answer, exact accuracy is
	Bearing = 320°	A1	Or better
		[5]	

4	$3.2 - 0.2t^2 = 0$	M1	Puts 0 for v and attempts to solve QE
i	t = 4 s	A1	Accept dual solution +/-4
		[2]	-
ii	a = -2x0.2t	M1*	Differentiates v
	a = -0.4x4	D*M1	Substitutes +ve t(i) in derivative of v
	$a = -1.6 \text{ ms}^{-2}$	A1	Negative only
		[3]	
iii		M1*	Integrates v, not multiplication by t
	$s=3.2t-0.2t^{3}/3$ (+c)	A1	
	t = 0, s = 0 so $c = 0$	B1	Or correct use of limits 0 and 4
	$s(4) = 3.2x4 - 0.2x4^3/3$	D*M1	Accept without/loss of c
	s = 8.53 m	A1	8 8/15 Accept with/without c
		[5]	

5	+/-3x20/2	M1	Use area of <u>scalene</u> triangle(s). Not suvat.
i	30 m	A1	Accept -30
		[2]	-
ii		M1	Equates scalene trapezium area to distance (i)
	$(t+4)x^{3/2} = 30 \text{ or } 3t/2 = 30 - 4x^{3/2}$	A1	[(T-60)+4]x3/2=30, award A2
	t = 16 or t = 12	A1	
	T = 76	A1	
		[4]	
iii	T(accn) = 3/0.4 (=7.5 s)	B1	
	decn = 3/([76-60] - 4 - 7.5)	M1	Or $3 = \text{decn } x ([76-60] - 4 - 7.5)$
	decn = $(+/-) 2/3 \text{ ms}^{-2}$	A1	(+/-) 0.667 or better - accept 0.6 recurring
	OR	[3]	
	$S(accn) = 3^2/(2x0.4)$ (= 11.25 m)	B1	
	$decn = 3^2 / [2x(30 - 3x4 - 11.25)]$	M1	
	$decn = (+/-) 2/3 \text{ ms}^{-2}$	A1	(+/-) 0.667 or better - accept 0.6 recurring
6	$T - 0.85g \sin 30 = 0.85a$	B1	Either equation correct
i	0.55g - T = 0.55a	B1	Both eqns correct and consistent 'a' direction
а	a = 1.225/1.4	M1	Solves 2 sim eqn
	a = 0.875	A1	
	T = 4.91	A1	4.908 or better – has to be positive
		[5]	
b	$F = 2T\cos 30$	M1	Or Pythagoras or cosine rule
	F = 8.5(02)	A1ft	$cv(4.91)x\sqrt{3}$
		[2]	
ii		M1	Uses $v^2 = u^2 + 2a(1.5)$, u non-zero, a from (i)
	$v^2 = 1.3^2 + 2x0.875x1.5 (=4.315)$	Alft	$v = 2.077(v^2 = 1.69 + 3xcv(0.875))$
	$a = \pm/-gsin30$	B1	a = +/-4.9
	0 = 4.315 - 2x4.9s	M1	Uses $0^2 = u^2 + 2as$, with a not g or (i), u not1.3
	(s = 0.44)	A1	May be implied – need not be 3sf
	S = 1.94	A1	
		[6]	

7	Fr = 4 + 5sin60	M1	All $4 + \text{component } 5 (4 + 4.333(01))$
i	Fr = 8.33	Al	May be implied
	$R = 12 - 5\cos 60$	M1	+/-(All 12 - component 5 (12 - 2.5))
	R = 9.5	A1	May be implied. +ve from correct work
	$\mu = (4 + 5\sin 60)/(12 - 5\cos 60)$	M1	Friction/Reaction, Fr>4, R<12, both positive
	$\mu = 0.877$	A1	
	•	[6]	
ii	Upper block		
	$\mu = 5\sin \frac{60}{(9-5\cos 60)}$ (=4.3/6.5)	M1	(Component 5)/(9-component 5)
	$\mu = 0.666$	A1	
		[2]	
iii	Upper mass = 9/g	B1	0.918(36)
	$(9/g)a = 5\sin 60 - 0.1(9 - 5\cos 60)$	M1	N2L $0.918(36)a = 4.33(01) - 0.1x6.5$
			where friction = $0.1x(9$ -component 5)
	a = 4.01	A1	
	Lower mass		
	Tractive force = $4 + 0.1(9-5\cos 60)$ (= 4.65)	M1	Compares TF (tractive force) and max friction
	Max Friction = $0.877(3+(9-5\cos 60)) = 8.33)$		
	Tractive force < Max Friction	A1	
	a = 0	A1	
	OR for Lower Mass	[6]	
	$ma = 4 + 0.1(9 - 5\cos 60) - 0.877(3 + 9 - 5\cos 60)$	M1	N2L with 3 force terms:
	-ve a caused by friction impossible, hence	A1	
	a = 0	A1	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010

