GCE

Mathematics

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010

Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL

Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1	$\begin{aligned} & \mathrm{t}=5 / 1.2 \\ & \mathrm{t}=4.17 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	$\begin{array}{\|l\|} \hline 5=1.2 \mathrm{t} \text { or } 0=5-1.2 \mathrm{t} \\ 41 / 6 \mathrm{~s}, 4.166 \text { or better, } 4.16 \text { recurring. } \end{array}$	
ii	$\begin{aligned} & \mathrm{s}=(-5)^{2} / 2 \times 1.2 \\ & \mathrm{~s}=10.4 \mathrm{~m} \end{aligned}$ OR (using(i)) $\begin{aligned} & \mathrm{s}=5 \times 4.17-1.2 \times 4.17^{2} / 2 \\ & \mathrm{~s}=10.4 \mathrm{~m} \end{aligned}$ OR (using(i)) $\begin{aligned} & \mathrm{s}=(5(+0)) / 2 \times 4.17 \\ & \mathrm{~s}=10.4 \mathrm{~m} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ {[2]} \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{gathered}$	$\mathrm{s}=5^{2} / 2 \times 1.2 \text { or } 5^{2}=2 \times 1.2 \mathrm{~s} \text { or } 0=5^{2}-2 \times 1.2 \mathrm{~s}$ Accept 10 5/12, but not 10 Time must be >0. Accept $\|t\|$ from (i) Award if \|-4.17	used.
iii	$\begin{aligned} & \mathrm{Fr}=3 \times 1.2 \\ & \mathrm{R}=3 \times 9.8 \\ & \mu=(3 \mathrm{x}) 1.2 /(3 \mathrm{x}) 9.8 \\ & \mu=0.122 \\ & O R \\ & \mathrm{R}=3 \times 9.8 \\ & \text { Mass } \times \text { acceleration }=+/-3 \times 1.2 \\ & +/-\mu \times 29.4=+/-3 \times 1.2 \\ & \mu=0.122 \end{aligned}$	B1 B1 M1 A1 [4] B1 B1 M1 A1	Accept 3.6, +/- Accept 3g, +/- Ratio of 2 positive numerical force terms Not 0.12 Accept 3g, +/- Either both positive or both negative.	

2	$\begin{aligned} & \hline+-(0.4 \times 3-0.6 \times 1.5) \\ & +/-(0.4 \times 0.1+0.6 \mathrm{v}) \\ & (0.4 \times 3-0.6 \times 1.5)=+/-(0.4 \times 0.1+0.6 \mathrm{v}) \\ & \text { speed }\|\mathrm{v}\|=0.433 \mathrm{~ms}^{-1} \\ & O R \\ & +/-(0.4 \times 3-0.4 \times 0.1)=+/-1.16 \\ & (0.6 \mathrm{v}+0.6 \mathrm{x} 1.5)=0.6 \mathrm{v}+0.9 \\ & 1.16=+/-(0.6 \mathrm{v}+0.9) \\ & \text { speed }\|\mathrm{v}\|=0.433 \mathrm{~ms}^{-1} \\ & \hline \end{aligned}$	B1 B1 M1 A1 $[4]$ B1 B1 M1 A1	$+/-0.3$ Nb the terms have same signs Equating their total mom before \& after Accept $13 / 30$ or 0.43 recurring, but not 0.43 Momentum change of P Momentum change of Q Equating momentum changes $0.26 / 0.6=v$
ii	$\begin{aligned} & +/-(0.4 \times 0.1-0.6 \mathrm{v}) \\ & (0.4 \times 3-0.6 \times 1.5)=+/-(0.6 \mathrm{v}-0.4 \mathrm{x} 0.1) \\ & \mathrm{v}=0.567 \\ & \mathrm{PQ}=0.1 \mathrm{x} 3+0.567 \times 3 \\ & \mathrm{PQ}=2 \mathrm{~m} \\ & O R \\ & +/-0.4 \times 3+0.4 \times 0.1 \text { and }+/-0.6 \mathrm{v}+0.6 \times 1.5 \\ & 1.24=+/-0.6 \mathrm{v}+0.9 \\ & \mathrm{v}=0.567 \end{aligned}$ etc	B1 M1 A1 M1 A1 [5] B1 M1 A1	Nb the terms have different signs Must use +/- same before momentum as in (i) May be implied, or in any format $(0.1+0.567) \times 3$ Accept 2.00(1), 2.0, 2.00 Both must be correct Equating change in momentum May be implied, or in any format

3	$\begin{aligned} & \mathrm{H}=+/-(9-5 \cos 60) \\ & \mathrm{H}=6.5 \mathrm{~N} \end{aligned}$	AG	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	$+/-(9+5 \cos 120)$
ii	$\begin{aligned} & \mathrm{V}=+/-(12-5 \sin 60) \\ & \mathrm{V}=7.67 \mathrm{~N} \end{aligned}$		$\begin{gathered} \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	$+/-(12+5 \cos 150)$ Accept 7.666 or better, or 7.6 recurring
iii	$\begin{aligned} & \mathrm{R}^{2}=6.5^{2}+7.67^{2} \\ & \mathrm{R}=10.1 \mathrm{~N} \\ & \tan \mathrm{~A}=6.5 / 7.67 \text { or } 7.67 / 6.5 \\ & \mathrm{~A}=40(.3) \text { or } 49.7 \\ & \text { Bearing }=320^{\circ} \end{aligned}$		M1 A1 M1 A1 A1 [5]	Uses Pythagoras on forces V(ii) and 6.5 10.053.. Uses trigonometry in relevant triangle May be implied by final answer As this is not a final answer, exact accuracy is not an issue Or better

$\begin{aligned} & \hline 4 \\ & \text { i } \end{aligned}$	$\begin{aligned} & 3.2-0.2 \mathrm{t}^{2}=0 \\ & \mathrm{t}=4 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Puts 0 for v and attempts to solve QE Accept dual solution +/-4
ii	$\begin{aligned} \mathrm{a} & =-2 \mathrm{x} 0.2 \mathrm{t} \\ \mathrm{a} & =-0.4 \mathrm{x} 4 \\ \mathrm{a} & =-1.6 \mathrm{~ms}^{-2} \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { D*M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Differentiates v Substitutes $+\mathrm{ve} \mathrm{t}(\mathrm{i})$ in derivative of v Negative only
iii	$\begin{aligned} & \mathrm{s}=3.2 \mathrm{t}-0.2 \mathrm{t}^{3} / 3(+\mathrm{c}) \\ & \mathrm{t}=0, \mathrm{~s}=0 \mathrm{soc}=0 \\ & \mathrm{~s}(4)=3.2 \mathrm{x} 4-0.2 \mathrm{x} 4^{3} / 3 \\ & \mathrm{~s}=8.53 \mathrm{~m} \end{aligned}$	M1* A1 B1 D*M1 A1 [5]	Integrates v , not multiplication by t Or correct use of limits 0 and 4 Accept without/loss of c 8 8/15 Accept with/without c

5	$\begin{aligned} & +/-3 \times 20 / 2 \\ & 30 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Use area of scalene triangle(s). Not suvat. Accept -30
ii	$\begin{aligned} & (\mathrm{t}+4) \times 3 / 2=30 \text { or } 3 \mathrm{t} / 2=30-4 \times 3 \\ & \mathrm{t}=16 \text { or } \mathrm{t}=12 \\ & \mathrm{~T}=76 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$ [4]	Equates scalene trapezium area to distance (i) $[(T-60)+4] \times 3 / 2=30$, award A2
iii	$\begin{aligned} & \mathrm{T}(\mathrm{accn})=3 / 0.4 \quad(=7.5 \mathrm{~s}) \\ & \operatorname{decn}=3 /([76-60]-4-7.5) \\ & \operatorname{decn}=(+/-) 2 / 3 \mathrm{~ms}^{-2} \\ & O R \\ & \mathrm{~S}(\mathrm{accn})=3^{2} /(2 \times 0.4) \quad(=11.25 \mathrm{~m}) \\ & \operatorname{decn}=3^{2} /[2 \times(30-3 \times 4-11.25)] \\ & \operatorname{decn}=(+/-) 2 / 3 \mathrm{~ms}^{-2} \end{aligned}$	B1 M1 A1 [3] B1 M1 A1	Or $3=$ decn $x([76-60]-4-7.5)$ (+/-) 0.667 or better - accept 0.6 recurring (+/-) 0.667 or better - accept 0.6 recurring

6	$\mathrm{T}-0.85 \mathrm{~g} \sin 30=0.85 \mathrm{a}$	B1	Either equation correct
i	$0.55 \mathrm{~g}-\mathrm{T}=0.55 \mathrm{a}$	B1	Both eqns correct and consistent 'a' direction
a	$\mathrm{a}=1.225 / 1.4$	M1	Solves 2 sim eqn
	$\mathrm{a}=0.875$	A1	
	$\mathrm{T}=4.91$	$\begin{aligned} & \mathrm{A} 1 \\ & {[5]} \end{aligned}$	4.908 or better - has to be positive
b	$\mathrm{F}=2 \mathrm{~T} \cos 30$	M1	Or Pythagoras or cosine rule
	$\mathrm{F}=8.5(02 .$.	A1ft [2]	$\operatorname{cv}(4.91) \mathrm{x} \sqrt{ } 3$
ii		M1	Uses $\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{a}(1.5)$, u non-zero, a from (i)
	$\mathrm{v}^{2}=1.3^{2}+2 \times 0.875 \times 1.5(=4.315)$	A1ft	$\mathrm{v}=2.077 \ldots . .\left(\mathrm{v}^{2}=1.69+3 \mathrm{xcv}(0.875)\right)$
	$\mathrm{a}=+/-\mathrm{g} \sin 30$	B1	$\mathrm{a}=+/-4.9$
	$0=4.315-2 \mathrm{x} 4.9 \mathrm{~s}$	M1	Uses $0^{2}=u^{2}+/-2$ as, with a not g or (i), u not 1.3
	($\mathrm{s}=0.44 \ldots$)	A1	May be implied - need not be 3sf
	$\mathrm{S}=1.94$	A1 [6]	

7	$\begin{aligned} & \mathrm{Fr}=4+5 \sin 60 \\ & \mathrm{Fr}=8.33 \\ & \mathrm{R}=12-5 \cos 60 \\ & \mathrm{R}=9.5 \\ & \mu=(4+5 \sin 60) /(12-5 \cos 60) \\ & \mu=0.877 \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ {[6]} \end{gathered}$	All 4 + component 5 (4 + 4.333(01)) May be implied +/-(All 12 - component 5 (12-2.5)) May be implied, + ve from correct work Friction/Reaction, $\mathrm{Fr}>4, \mathrm{R}<12$, both positive
ii	$\begin{aligned} & \text { Upper block } \\ & \mu=5 \sin 60 /(9-5 \cos 60) \quad(=4.3 / 6.5) \\ & \mu=0.666 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \quad[2] \\ \hline \end{gathered}$	(Component 5)/(9-component 5)
iii	Upper mass $=9 / \mathrm{g}$ $(9 / \mathrm{g}) \mathrm{a}=5 \sin 60-0.1(9-5 \cos 60)$ $\mathrm{a}=4.01$ Lower mass Tractive force $=4+0.1(9-5 \cos 60)(=4.65)$ Max Friction $=0.877(3+(9-5 \cos 60)(=8.33)$ Tractive force $<$ Max Friction $\mathrm{a}=0$ OR for Lower Mass $\mathrm{ma}=4+0.1(9-5 \cos 60)-0.877(3+9-5 \cos 60)$ -ve a caused by friction impossible, hence $a=0$	B1 M1 A1 M1 A1 A1 $[6]$ M1 A1 A1	$0.918(36 .$. N2L 0.918 (36..) $\mathrm{a}=4.33(01 .)-.0.1 \times 6.5$ where friction $=0.1 x(9-$ component 5$)$ Compares TF (tractive force) and max friction N2L with 3 force terms:

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

