GCE

Mathematics

Advanced GCE 4730

Mechanics 3

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1	For included angle marked α or for $0.8(10.5-8.5 \cos \alpha)=4 \cos \beta$ For opposite side marked $4 / 0.8$ (or 4) or for $--0.8 \times 8.5 \sin \alpha=4 \sin \beta$ $\begin{aligned} & 8.4^{2}+6.8^{2}-2 \times 8.4 \times 6.8 \cos \alpha=4^{2} \\ & \alpha=28.1^{\circ} \end{aligned}$	M1 A1 A1 M1 Alft A1 [6]	For triangle with two of its sides marked 0.8×10.5 and 0.8×8.5 (or 10.5 and 8.5) or for using $\mathrm{I}=\Delta \mathrm{mv}$ in one direction. Allow B1 for omission of 0.8 Allow B1 for omission of 0.8 For using the cosine rule or for eliminating β ft 0.8 mis-used or not used
2(i)	$\left[100 \mathrm{a}=2 \mathrm{a} \mathrm{~V}_{\mathrm{B}}\right]$ Vertical component at B is 50 N Vertical component at C is 150 N	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{gathered}$	For taking moments about A for AB
(ii)	$\begin{aligned} & 100(0.5 a)+(\sqrt{3} a) F=150 a \text { or } \\ & 100 a+100(1.5 a)=150 a+(\sqrt{3} a) F \end{aligned}$ Frictional force is 57.7 N Direction is to the right	M1 A1ft A1 B1 [4]	For taking moments about B for BC (3 terms needed) or about A for the whole (4 terms needed)
3(i)	$\begin{aligned} & \mathrm{u}=4 \\ & \mathrm{v}=2 \end{aligned}$	B1 B1 [2]	
(ii)	$\begin{aligned} & \mathrm{mu}=\mathrm{ma}+\mathrm{mb}(\text { or } \mathrm{u}=\mathrm{b}-\mathrm{a}) \\ & \mathrm{u}=\mathrm{b}-\mathrm{a}(\text { or } m \mathrm{u}=\mathrm{ma}+\mathrm{mb}) \\ & \mathrm{a}=0 \text { and } \mathrm{b}=4 \mathrm{~ms}^{-1} \end{aligned}$ Speed of A is $2 \mathrm{~ms}^{-1}$ and direction at 90° to the wall Speed of B is $4 \mathrm{~ms}^{-1}$ and direction parallel to the wall	M1 A1 B1 Alft Alft Alft [6]	For using the principle of conservation of momentum or for using NEL with $\mathrm{e}=1$ ft incorrect u ft incorrect v ft incorrect u
4(i)	$\begin{aligned} & {\left[0.25 \mathrm{dv} / \mathrm{dt}=3 / 50-\mathrm{t}^{2} / 2400\right]} \\ & \\ & \mathrm{v}=12 \mathrm{t} / 50-\mathrm{t}^{3} / 1800 \\ & {[\mathrm{v}(12)=1.92]} \\ & {\left[0.25 \mathrm{dv} / \mathrm{dt}=\mathrm{t}^{2} / 2400-3 / 50 \rightarrow\right.} \\ & \left.\quad \mathrm{v}=\mathrm{t}^{3} / 1800-12 \mathrm{t} / 50+\mathrm{C}_{2}\right] \\ & {\left[1.92=0.96-2.88+\mathrm{C}_{2}\right]} \\ & \mathrm{v}=\mathrm{t}^{3} / 1800-12 \mathrm{t} / 50+3.84 \\ & \mathrm{v}(24)=5.76=3 \times \mathrm{v}(12) \end{aligned}$	M1 M1 A1 M1 M1 M1 A1 A1 [8]	For using Newton's second law ($1^{\text {st }}$ or 2 ${ }^{\text {nd }}$ stage) For attempting to integrate ($1^{\text {st }}$ stage) and using $\mathrm{v}(0)=0$ (may be implied by the absence of $+\mathrm{C}_{1}$) For evaluating v when force is zero For using Newton's second law ($2^{\text {nd }}$ stage) and integrating For using $\mathrm{v}(12)=1.92$

(ii)	Sketch has $\mathrm{v}(0)=0$ and slope decreasing (convex upwards) for $0<\mathrm{t}<12$ Sketch has slope increasing (concave upwards) for $12<\mathrm{t}<24$ Sketch has v(t) continuous, single valued and increasing (except possibly at $\mathrm{t}=12)$ with v(24) seen to be $>2 \mathrm{v}(12)$	B1	B1

7(i)	$\left[1 / 2 \mathrm{mv}^{2}-1 / 2 \mathrm{~m} 6^{2}=\mathrm{mg}(0.7)\right]$ Speed of P before collision is $7.05 \mathrm{~ms}^{-1}$ Coefficient of restitution is 0.695	M1 A1 B1ft [3]	For using the principle of conservation of energy for P (3 terms needed) ft $4.9 \div$ speed of P before collision
(ii)	$\begin{aligned} & {\left[1 / 2 \mathrm{mv}^{2}=1 / 2 \mathrm{~m} 4.9^{2}-\mathrm{mg} 0.7(1-\cos \theta)\right]} \\ & \mathrm{v}^{2}=3.43(3+4 \cos \theta) \\ & \mathrm{T}-\mathrm{mg} \cos \theta=\mathrm{mv}^{2} / 0.7 \\ & {[\mathrm{~T}-\mathrm{m} 9.8 \cos \theta=\mathrm{m} 3.43(3+4 \cos \theta) / 0.7]} \\ & \text { Tension is } 14.7 \mathrm{~m}(1+2 \cos \theta) \mathrm{N} \end{aligned}$	M1 A1 M1 A1 M1 A1 [6]	For using the principle of conservation of energy for Q Accept any correct form For using Newton's second law radially with $a_{r}=v^{2} / r$ For substituting for v^{2} AG
(iii)	$\mathrm{T}=0 \rightarrow \theta=120^{\circ}$ Radial acceleration is $(\pm) 4.9 \mathrm{~ms}^{-1}$ or transverse acceleration is $(\pm) 8.49 \mathrm{~ms}^{-1}$ Radial acceleration is $(\pm) 4.9 \mathrm{~ms}^{-1}$ and transverse acceleration is $(\pm) 8.49 \mathrm{~ms}^{-1}$	B1 M1 A1 B1 [4]	$\begin{aligned} & \text { For using } \mathrm{a}_{\mathrm{r}}=-\mathrm{g} \cos \theta \\ & \text { or } \mathrm{a}_{\mathrm{t}}=-\mathrm{g} \sin \theta \end{aligned} \quad\{\text { or } 3.43(3+4 \cos \theta) / 0.7\}$
			SR for candidates with a \sin / \cos mix in the work for M1 A1 B1 immediately above. (max. 1/3) Radial acceleration is $(\pm) 8.49 \mathrm{~ms}^{-1}$ and transverse acceleration is $(\pm) 4.9 \mathrm{~ms}^{-1}$ B1
(iv)	$\begin{aligned} & {\left[\mathrm{V}^{2}=3.43\{3+4(-0.5)\} \times 0.5^{2}\right. \text { or }} \\ & \left.\left.\mathrm{V}^{2}=(-\mathrm{g} \cos) 20^{\circ} \times 0.7\right) \times \cos ^{2} 60^{\circ}\right] \\ & \mathrm{V}^{2}=0.8575 \\ & {\left[\mathrm{mgH}=1 / 2 \mathrm{~m}\left(4.9^{2}-0.8575\right)\right. \text { or }} \\ & \mathrm{mg}(\mathrm{H}-1.05)=1 / 2 \mathrm{~m}(3.43- \\ & 0.8575)] \\ & \text { Greatest height is } 1.18 \mathrm{~m} \end{aligned}$	M1 A1 M1 A1 [4]	For using $\mathrm{V}=\mathrm{v}\left(120^{\circ}\right) \mathrm{x} \cos 60^{\circ}$ AG For using the principle of conservation of energy

OCR (Oxford Cambridge and RSA Examinations)
 1 Hills Road
 Cambridge
 CB1 2EU

 OCR Customer Contact Centre

 OCR Customer Contact Centre}

14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553
© OCR 2010

