

Mathematics

Advanced GCE 4730

Mechanics 3

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

1			For triangle with two of its sides marked
			0.8 x 10.5 and 0.8 x 8.5 (or 10.5 and 8.5)
		M1	or for using I = Δmv in one direction.
	For included angle marked α or for		
	$0.8(10.5 - 8.5\cos\alpha) = 4\cos\beta$ For opposite side marked 4/0.8 (or 4) or for	A1	Allow B1 for omission of 0.8
	$-0.8 \times 8.5 \sin \alpha = 4 \sin \beta$	A1	Allow B1 for omission of 0.8
	·····		For using the cosine rule or for eliminating
		M1	β
	$8.4^2 + 6.8^2 - 2x8.4x6.8\cos\alpha = 4^2$	A1ft	ft 0.8 mis-used or not used
	$\alpha = 28.1^{\circ}$	A1	
		[6]	
2(i)	$[100a = 2aV_B]$	M1	For taking moments about A for AB
	Vertical component at B is 50 N	A1	
	Vertical component at C is 150 N	A1	
(;;)		[3]	For taking moments about B for BC (3
(ii)			terms needed) or about A for the whole (4
		M1	terms needed) of about A for the whole (4
	$100(0.5a) + (\sqrt{3} a)F = 150a$ or		
	$100a + 100(1.5a) = 150a + (\sqrt{3} a)F$	A1ft	
	Frictional force is 57.7 N	A1	
	Direction is to the right	B1	
		[4]	
3(i)	u = 4	B1	
	v = 2	B1	
		[2]	
(ii)			For using the principle of conservation of
		M1	momentum or for using NEL with $e = 1$
	mu = ma + mb (or $u = b - a$)	A1	
	u = b - a (or $mu = ma + mb$)	B1	
	$a = 0$ and $b = 4ms^{-1}$	A1ft	ft incorrect u
	Speed of A is 2ms ⁻¹ and direction at 90° to		
	the wall Speed of P is $4ms^{-1}$ and direction parallel to	A1ft	ft incorrect v
	Speed of B is 4ms ⁻¹ and direction parallel to the wall	A1ft	ft incorrect u
		[6]	
		[0]	
4(i)		1	For using Newton's second law (1 st or 2 nd
	$[0.25 \text{ dv/dt} = 3/50 - t^2/2400]$	M1	stage)
			For attempting to integrate (1 st stage) and
			using $v(0) = 0$ (may be implied by the
	2	M1	absence of $+ C_1$)
	$v = 12t/50 - t^3/1800$	A1	
	[v(12) = 1.92]	M1	For evaluating v when force is zero
	$[0.25 \text{ dv/dt} = t^2/2400 - 3/50 \rightarrow$	N/1	For using Newton's second law (2 nd stage)
	$v = t^3/1800 - 12t/50 + C_2$	M1	and integrating For using $y(12) = 1.02$
	$[1.92 = 0.96 - 2.88 + C_2]$ v = t ³ /1800 - 12t/50 + 3.84	M1 A1	For using $v(12) = 1.92$
	v = t/1800 - 12030 + 3.84 $v(24) = 5.76 = 3 \times v(12)$	A1 A1	AG
		[8]	
			<u> </u>

Mark Scheme

(::)	Skotch has $y(0) = 0$ and along decreasing		
(ii)	Sketch has $v(0) = 0$ and slope decreasing (convex upwards) for $0 < t < 12$	B1	
	Sketch has slope increasing (concave	DI	
	upwards) for $12 < t < 24$	B1	
	Sketch has $v(t)$ continuous, single valued	DI	
	and increasing (except possibly at $t = 12$)		
	with v(24) seen to be $> 2v(12)$	B1	
	with $V(24)$ seen to be $\geq 2V(12)$	[3]	
5(i)	For using amplitude as a coefficient of a	1191	
5(1)	relevant trigonometric function.	B1	
	For using the value of ω as a coefficient of t	DI	
	in a relevant trigonometric function.	B1	
	$x_1 = 3 \cos t$ and $x_2 = 4 \cos 1.5 t$	B1	
		[3]	
(ii)			For using distance travelled by P_2 for
		M1	$0 < t < 5\pi/3$ is $5A_2$
	Part distance is 20m	A1	_
			For subtracting displacement of P ₂ when
	[20 - (-3.62)]	M1	t = 5.99 from part distance.
	Distance travelled by P_2 is 23.6 m	A1	_
		[4]	
(iii)		M1	For differentiating x_1 and x_2
	$\dot{x}_1 = -3 \sin t; \ \dot{x}_2 = -6 \sin 1.5 t$	A1	
			For evaluating when $t = 5.99$ (must use
		M1	radians)
	$v_1 = 0.867$, $v_2 = -2.55$; opposite directions	A1	
		[4]	
	Alternative for (iii):		
			For using $v^2 = n^2(a^2 - x^2)$ (must use radians
		M1	to find values of x)
	$v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$	A1	
	$[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$		For using the idea that v starts –ve and
	$4\pi/3 < 5.99 < 2\pi \rightarrow \mathbf{v}_2 < 0]$	M1	changes sign at intervals of T/2 s
	$v_1 = 0.867, v_2 = -2.55$; opposite directions	Al	
6(i)	PE loss at lowest allowable point = $25W$	B1	$\mathbf{E}_{\mathbf{r}} = \mathbf{E}_{\mathbf{r}} + \frac{2}{2} \mathbf{r} \mathbf{r}$
		N/1	For using EE = $\lambda x^2/(2L)$; may be scored in
	$EE = 22000 - 5^2 / (2 - 20)$	M1	(i) or in (ii)
	EE gain = $32000x5^2/(2x20)$	A1	For equating DE lass and EE as in and
	[25W - 20000]	M1	For equating PE loss and EE gain and
	[25W = 20000] Value of W is 800	M1	attempting to solve for W
		A1 [5]	
(ii)	[800 = 32000x/20]	M1	For using $W = \lambda x/L$ at max speed
(11)	$\begin{bmatrix} 000 - 32000x/20 \end{bmatrix}$	11/1	For using $W = AX/L$ at max speed For using the principle of conservation of
		M1	energy (3 terms required)
	$\frac{1}{2}(800/9.8)v^2$	1411	energy (5 terms required)
	$= 800 \times 20.5 - 32000 \times 0.5^{2}/(2 \times 20)$	A1	
	Maximum speed is 19.9ms^{-1}	A1 A1	
		[4]	
(iii)		· · · · · · · · · · · · · · ·	For applying Newton's second law to
		M1	jumper at lowest point (3 terms needed)
	$(800) \ddot{x}/g = 800 - 32000 \ge 5/20$	A1	Jumper at to nest point (5 terms needed)
	Max. deceleration is 88.2 ms^{-2}	Al	
		[3]	
L			I]

7(i)			For using the principle of conservation of
	$\left[\frac{1}{2} \text{ mv}^2 - \frac{1}{2} \text{ m 6}^2 = \text{mg}(0.7)\right]$	M1	energy for P (3 terms needed)
	Speed of P before collision is 7.05ms ⁻¹	A1	
	Coefficient of restitution is 0.695	B1ft	ft 4.9 \div speed of P before collision
		[3]	
(ii)			For using the principle of conservation of
	$\left[\frac{1}{2} \text{ mv}^2 = \frac{1}{2} \text{ m } 4.9^2 - \text{mg} 0.7(1 - \cos \theta)\right]$	M1	energy for Q
	$v^2 = 3.43(3 + 4\cos\theta)$	A1	Accept any correct form
			For using Newton's second law radially
		M1	with $a_r = v^2/r$
	$T - mg\cos\theta = mv^2/0.7$	A1	
	$[T - m9.8\cos\theta = m3.43(3 + 4\cos\theta)/0.7]$	M1	For substituting for v^2
	Tension is 14.7m(1 + $2\cos\theta$)N	Al	AG
	Tension is 14.7m(1 + 20050)iv	[6]	
(iii)	$T = 0 \rightarrow \theta = 120^{\circ}$	B1	
			For using $a_r = -g\cos\theta$
			{or $3.43(3 + 4\cos\theta)/0.7$ }
		M1	or $a_t = -gsin \theta$
	Radial acceleration is $(\pm)4.9 \text{ ms}^{-1}$ or		
	transverse acceleration is $(\pm)8.49 \text{ ms}^{-1}$	A1	
	Radial acceleration is $(\pm)4.9 \text{ ms}^{-1}$ and		
	transverse acceleration is $(\pm)8.49 \text{ ms}^{-1}$	B1	
		[4]	
			SR for candidates with a sin/cos mix in the
			work for M1 A1 B1 immediately above.
			(max. 1/3)
			Radial acceleration is $(\pm)8.49 \text{ ms}^{-1}$ and
			transverse acceleration is $(\pm)4.9 \text{ ms}^{-1}$ B1
(iv)	$[V^2 = 3.43 \{3 + 4(-0.5)\} \times 0.5^2 \text{ or}$		E . U (1200) (00
	$V^2 = (-g\cos 120^\circ x \ 0.7) \ x \ \cos^2 60^\circ]$ $V^2 = 0.8575$	M1	For using $V = v(120^\circ) \times \cos 60^\circ$
		A1	AG
	$[mgH = \frac{1}{2}m(4.9^2 - 0.8575) \text{ or}$	M1	For using the principle of conservation of
	$mg(H - 1.05) = \frac{1}{2} m(3.43 - 1.05) = \frac{1}$	M1	energy
	0.8575)]	A1	
	Greatest height is 1.18 m	[4]	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010