GCE

Mathematics

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

$\begin{array}{\|l\|} \hline \mathbf{1} \\ \text { (i) } \end{array}$	Using $\theta=\omega_{1} t+\frac{1}{2} \alpha t^{2}$, $1020=80 \times 15+\frac{1}{2} \alpha \times 15^{2}$ $\alpha=-1.6$ Angular deceleration is $1.6 \mathrm{rads}^{-2}$	M1 A1 [2]	
(ii)	Using $\theta=\omega_{2} t-\frac{1}{2} \alpha t^{2}$, $\theta=0-\frac{1}{2} \times(-1.6) \times 5^{2}$ Angle is 20 rad	M1 A1 ft [2]	ft is $12.5\|\alpha\|$
(iii)	Using $\omega_{2}{ }^{2}=\omega_{1}{ }^{2}+2 \alpha \theta$, $\begin{aligned} & 0=80^{2}+2 \times(-1.6) \theta \\ & \theta=2000 \end{aligned}$ Number of revolutions is 318 (3 sf)	M1 A1 ft A1 [3]	$\text { Accept } \frac{1000}{\pi}$
2		A1 M1 M1 A1 A1 M1 A1 A1 [9]	Limits not required For $-\mathrm{e}^{-x}$ Limits not required Integration by parts For $-x \mathrm{e}^{-x}-\mathrm{e}^{-x}$ $\int\left(\mathrm{e}^{-x}\right)^{2} \mathrm{~d} x$ or $\int(-\ln y) y \mathrm{~d} y+\left(\frac{1}{3} \ln 3\right) \times \frac{1}{6}$ $-\frac{1}{4} \mathrm{e}^{-2 x}$ or $-\frac{1}{2} y^{2} \ln y+\frac{1}{4} y^{2}$ (dep on M1) Max penalty of 1 mark for correct answers in an unacceptable form (eg decimals)
$\begin{aligned} & \hline \mathbf{3} \\ & \text { (i) } \end{aligned}$	By conservation of angular momentum $\begin{aligned} & I_{2} \times 15=0.9 \times 16 \\ & I_{2}=0.96 \\ & I_{2}=0.9+m \times 0.4^{2} \end{aligned}$ Mass is 0.375 kg	M1 A1 M1 A1 [4]	Using I ω
(ii)	KE before is $\frac{1}{2} \times 0.9 \times 16^{2}$ KE after is $\frac{1}{2} \times 0.96 \times 15^{2}$ Loss of KE is $115.2-108=7.2 \mathrm{~J}$	M1 A1 ft A1 [3]	$\text { Using } \frac{1}{2} I \omega^{2}$ Both expressions correct

$\begin{array}{\|l\|} \hline 4 \\ (\mathrm{i}) \end{array}$	Bearing of \mathbf{v}_{B} is $110-36.87=073.13$ $=073^{\circ}$ (nearest degree)	M1 A1 M1 A1 ag [4]	Velocity triangle with 90° opposite \mathbf{v}_{C} Correct velocity triangle Finding a relevant angle
(ii)	Magnitude is $\sqrt{15^{2}-12^{2}}=9 \mathrm{~ms}^{-1}$ Direction is 90° from \mathbf{v}_{B} Bearing is $73.13+90=163^{\circ} \quad$ (nearest degree)	B1 M1 A1 [3]	Accept 8.95 to 9.05
	Alternative for (ii) (using given answer in (i)) $\begin{aligned} & v^{2}=12^{2}+15^{2}-2 \times 12 \times 15 \cos 37^{\circ} \\ & v=9 \\ & \frac{\sin \beta}{12}=\frac{\sin 37^{\circ}}{v} \\ & \beta=53^{\circ} \end{aligned}$ Bearing is $110+53=163^{\circ}$	B1 M1 A1	or Relative velocity is $\binom{v \sin \theta}{v \cos \theta}=\binom{15 \sin 110}{15 \cos 110}-\binom{12 \sin 73}{12 \cos 73} \approx\binom{2.6}{-8.6}$ or $v^{2}=(2.6 . . .)^{2}+(-8.6 \ldots . .)^{2}$ Accept 8.95 to 9.05 Finding a relevant angle or $\tan \theta=\frac{2.6 \ldots}{-8.6 . . .}$
(iii)	As viewed from B $d=3500 \sin 56.87^{\circ}$ $\text { Shortest distance is } 2930 \text { m (3 sf) }$	M1 M1 A1 [3]	Diagram indicating initial displacement and relative velocity May be implied Accept 2910 to 2950
	Alternative for (iii) $\begin{aligned} & d^{2}=\left(3500 \sin 40^{\circ}\right.+2.6 \ldots . . t)^{2} \\ &+\left(3500 \cos 40^{\circ}-8.6 \ldots t\right)^{2} \\ & \text { Minimum when }-34432+162 t=0 \\ & t=213 \end{aligned} \quad \begin{gathered} \text { Shortest distance is } 2930 \mathrm{~m} \quad(3 \mathrm{sf}) \end{gathered}$	M1 M1 A1	Differentiating or completing the square Accept 2910 to 2950

$\begin{aligned} & \hline 5 \\ & \text { (i) } \end{aligned}$	$\begin{aligned} I & =\int_{-a}^{5 a} \frac{m}{6 a} x^{2} \mathrm{~d} x \text { or } \int_{-a}^{5 a} \rho x^{2} \mathrm{~d} x \\ & =\left[\frac{m}{18 a} x^{3}\right]_{-a}^{5 a}=\frac{m}{18 a}\left(125 a^{3}+a^{3}\right) \text { or } 42 \rho a^{3} \\ & =\frac{126 m a^{3}}{18 a}=7 m a^{2} \end{aligned}$	M1 M1 A1 M1 A1 ag [5]	$(\delta m) x^{2}$ or $(\rho \delta x) x^{2}$ or integrating x^{2} Using $\delta m=\frac{m \delta x}{6 a}$ or $\rho=\frac{m}{6 a}$ Correct integral expression for I $\begin{aligned} & \text { eg } I=\int_{0}^{5 a} \ldots+\int_{0}^{a} \cdots \\ & I=\int_{-3 a}^{3 a} \ldots+m(2 a)^{2} \\ & I=2 \int_{0}^{3 a} \ldots+m(2 a)^{2} \\ & I=\int_{0}^{6 a} \ldots-m(3 a)^{2}+m(2 a)^{2} \end{aligned}$ Evaluating definite integral Dependent on integrating x^{2}
(ii)	WD by couple is $\frac{6 m g a}{\pi} \times 3 \pi \quad(=18 m g a)$ Gain of PE is $m g(4 a)$ $18 m g a=4 m g a+\frac{1}{2}\left(7 m a^{2}\right) \omega^{2}$ Angular speed is $\sqrt{\frac{4 g}{a}}$	M1 A1 B1 M1 A1 ft A1 [6]	Using $C \theta$ Equation involving WD, PE and $\frac{1}{2} I \omega^{2}$

$\begin{array}{\|l} \hline 6 \\ \text { (i) } \end{array}$	$\frac{\mathrm{d} V}{\mathrm{~d} \theta}=m g a(3 \cos \theta+4 \sin \theta-3)$ When $\theta=0, \frac{\mathrm{~d} V}{\mathrm{~d} \theta}=\operatorname{mga}(3+0-3)=0$ so $\theta=0$ is a position of equilibrium $\frac{\mathrm{d}^{2} V}{\mathrm{~d} \theta^{2}}=m g a(-3 \sin \theta+4 \cos \theta)$ When $\theta=0, \frac{\mathrm{~d}^{2} V}{\mathrm{~d} \theta^{2}}=4 m g a>0$ hence the equilibrium is stable	B1 M1 A1 ag M1 A1 ag [5]	Considering $\frac{\mathrm{d} V}{\mathrm{~d} \theta}=0$ Correctly shown Considering $\frac{\mathrm{d}^{2} V}{\mathrm{~d} \theta^{2}}$ (or other method) $V^{\prime \prime}=4 m g a \Rightarrow$ Stable M1AO $V^{\prime \prime}=4 m g a \Rightarrow$ Minimum \Rightarrow Stable M1A1
(ii)	Speed of P and Q is $a \dot{\theta}$ KE is $\frac{1}{2}(5 m)(a \dot{\theta})^{2}+\frac{1}{2}(3 m)(a \dot{\theta})^{2}$ or $\frac{1}{2}(8 m)(a \dot{\theta})^{2}$ $\begin{aligned} & =\frac{5}{2} m a^{2} \dot{\theta}^{2}+\frac{3}{2} m a^{2} \dot{\theta}^{2} \\ & =4 m a^{2} \dot{\theta}^{2} \end{aligned}$	M1 A1 ag [2]	Or moment of inertia of P is $5 \mathrm{ma}^{2}$ $\frac{5}{2} m a^{2} \dot{\theta}^{2}+\frac{3}{2} m a^{2} \dot{\theta}^{2} \quad$ M1A1 $\frac{1}{2}\left(5 m a^{2}\right) \dot{\theta}^{2}+\frac{1}{2}\left(3 m a^{2}\right) \dot{\theta}^{2} \quad$ M1AO $\frac{1}{2}\left(8 m a^{2}\right) \dot{\theta}^{2} \quad$ M1AO
(iii)	$\begin{aligned} & V+4 m a^{2} \dot{\theta}^{2}=K \\ & \frac{\mathrm{~d} V}{\mathrm{~d} \theta} \dot{\theta}+8 m a^{2} \dot{\theta} \ddot{\theta}=0 \\ & m g a(3 \cos \theta+4 \sin \theta-3) \dot{\theta}+8 m a^{2} \dot{\theta} \ddot{\theta}=0 \\ & \text { For small } \theta, \sin \theta \approx \theta, \cos \theta \approx 1 \\ & m g a(3+4 \theta-3)+8 m a^{2} \ddot{\theta} \approx 0 \\ & \ddot{\theta} \approx-\frac{g}{2 a} \theta \\ & \text { Approximate period is } 2 \pi \sqrt{\frac{2 a}{g}} \end{aligned}$	M1 A1 M1 A1 ft A1 [5]	$=0$ is required for A1 (may be implied by later work) Linear approximation (ft is dep on M1M1)

$\begin{aligned} & \hline 7 \\ & \text { (i) } \end{aligned}$	$\begin{aligned} I & =\frac{1}{3} m\left\{(3 a)^{2}+(4 a)^{2}\right\}+m(5 a)^{2} \\ & =\frac{100 m a^{2}}{3} \end{aligned}$	M1 A1 A1 [3]	Using parallel (or perpendicular) axes rule or $I=\frac{4}{3} m(3 a)^{2}+\frac{4}{3} m(4 a)^{2}$
(ii)	By conservation of energy, $\begin{aligned} \frac{1}{2}\left(\frac{100}{3} m a^{2}\right) \omega^{2} & =m g(4 a-3 a) \\ \frac{50}{3} m a^{2} \omega^{2} & =m g a \end{aligned}$ Angular speed is $\sqrt{\frac{3 g}{50 a}}$ $-m g(3 a)=\left(\frac{100}{3} m a^{2}\right) \alpha$ Angular acceleration is $(-) \frac{9 g}{100 a}$	M1 A1 ft A1 ag M1 A1 [5]	Equation involving KE and PE Using $C=I \alpha$
(iii	$\begin{aligned} & P-m g \cos \theta=m(5 a) \omega^{2} \\ & P-\frac{4}{5} m g=m(5 a)\left(\frac{3 g}{50 a}\right) \\ & P=\frac{11}{10} m g \\ & Q-m g \sin \theta=m(5 a) \alpha \\ & Q-\frac{3}{5} m g=-m(5 a)\left(\frac{9 g}{100 a}\right) \\ & Q=\frac{3}{20} m g \\ & F=\sqrt{P^{2}+Q^{2}}=\frac{1}{20} m g \sqrt{22^{2}+3^{2}} \\ &=\frac{\sqrt{493}}{20} m g \end{aligned}$	M1 A2 M1 A2 ft M1 A1 ag [8]	Equation involving P and $r \omega^{2}$ Give A1 if correct apart from sign(s) (Allow $\frac{3}{5} H+\frac{4}{5} V$ in place of P) Equation involving Q and $r \alpha$ Give A1 if correct apart from sign(s) ft for wrong value of α ft for wrong value of r in second equation (Allow $\frac{3}{5} V-\frac{4}{5} H$ in place of Q) Dependent on previous M1M1
	Alternative for (iii) $\begin{aligned} & H=m(5 a) \omega^{2} \sin \theta-m(5 a) \alpha \cos \theta \\ & H=m(5 a)\left(\frac{3 g}{50 a}\right)\left(\frac{3}{5}\right)+m(5 a)\left(\frac{9 g}{100 a}\right)\left(\frac{4}{5}\right) \\ & V-m g=m(5 a) \omega^{2} \cos \theta+m(5 a) \alpha \sin \theta \\ & V-m g=m(5 a)\left(\frac{3 g}{50 a}\right)\left(\frac{4}{5}\right)-m(5 a)\left(\frac{9 g}{100 a}\right)\left(\frac{3}{5}\right) \\ & H=\frac{27}{50} m g, \quad V=\frac{97}{100} m g \end{aligned}$	M1 A2 ft M1 A2 ft	Equation involving $H, r \omega^{2}$ and $r \alpha$ Give A1 if correct apart from sign(s) Equation involving $V, r \omega^{2}$ and $r \alpha$ Give A1 if correct apart from sign(s)

$\left[\begin{array}{l|l|l|l|}F & =\sqrt{H^{2}+V^{2}}=\frac{1}{100} m g \sqrt{54^{2}+97^{2}} \\ =\frac{\sqrt{12325}}{100} m g=\frac{\sqrt{493}}{20} m g & \text { M1 } & \text { Dependent on previous M1M1 } \\ \text { ag }\end{array}\right]$

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

