Mathematics

Advanced GCE 4733/01
Probability and Statistics 2

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

$\begin{array}{lc} 1 \quad \text { (i)(a) } \\ & \\ & (\mathrm{b}) \end{array}$	$\begin{gathered} 1-\mathrm{P}(\leq 6)=1-0.8675 \\ \ldots \ldots \ldots \ldots \ldots \ldots . .=\mathbf{0 . 1 3 2 5} \end{gathered}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & 2 \\ \hline \end{array}$	$\begin{aligned} & 1-.9361 \text { or } 1-.8786 \text { or } 1-.8558: \text { M1. .9721: M0 } \\ & \text { Or } 0.132 \text { or } 0.133 \end{aligned}$
	$e^{-0.42} \frac{0.42^{2}(0.42)}{2!}=\mathbf{0 . 0 5 7 9 5}$	$\begin{array}{\|ll} \hline \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	$\mathrm{Po}(0.42)$ stated or implied Correct formula, any numerical λ Answer, art 0.058. Interpolation in tables: M1B2
(ii)	E.g. "Contagious so incidences do not occur independently", or "more cases in winter so not at constant average rate"	B2	Contextualised reason, referred to conditions: B2. No marks for mere learnt phrases or spurious reasons, e.g. not just "independently, singly and constant average rate". See notes.
2 (i)	$\begin{aligned} & \mathrm{B}(10,0.35) \\ & \mathrm{P}(<3) \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{3} \\ \hline \end{array}$	$\mathrm{B}(10,0.35)$ stated or implied Tables used, e.g. 0.5138 or 0.3373 , or formula ± 1 term Answer 0.2616 or better or 0.262 only
(ii)	Binomial requires being chosen independently, which this is not, but unimportant as population is large	B2	Focus on "Without replacement" negating independence condition. It doesn't negate "constant probability" condition but can allow B1 if "selected". See notes
3 (i)	$\left(\frac{32-40}{\sigma}\right)=\Phi^{-1}(0.2)=-0.842$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { B1 } \\ \text { A1 } \end{array}$	Standardise and equate to Φ^{-1}, allow " $1-$ " errors, σ^{2}, cc 0.842 seen Answer, 9.5 or in range [9.50, 9.51], c.w.o.
(ii)	$\begin{aligned} & \begin{array}{l} \mathrm{B}(90,0.2) \\ \approx \mathrm{N}(18,14.4) \\ 1-\Phi\left(\frac{19.5-18}{\sqrt{14.4}}\right)=1-\Phi(0.3953) \\ =1-0.6537=\mathbf{0 . 3 4 6 3} \end{array} . \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	B $(90,0.2)$ stated or implied N , their $n p \ldots$... variance their $n p q$, allow $\sqrt{ }$ errors Standardise with $n p$ and $n p q$, allow $\sqrt{ }$, cc errors, e.g. .396, .448, .458, .486, .472; $\checkmark n p q$ and cc correct Answer, a.r.t. 0.346 [NB: 0.3491 from Po: 1/6]
$\begin{array}{ll}4 & \\ \\ & \\ & (\alpha)\end{array}$	$\begin{aligned} & \mathrm{H}_{0}: p=0.4, \\ & \mathrm{H}_{1}: p>0.4 \\ & R \sim \mathrm{~B}(16,0.4): \\ & \mathrm{P}(R \geq 11)=0.0191 \\ & \quad>0.01 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Fully correct, B2. Allow π. p omitted or μ used in both, or > wrong: B1 only. x or \bar{x} or 6.4 etc: B0 $\mathrm{B}(16,0.4)$ stated or implied, allow $\mathrm{N}(6.4,3.84)$ Allow for $\mathrm{P}(\leq 10)=0.9808$, and <0.99, or $z=2.092$ or $p=0.018$, but not $\mathrm{P}(\leq 11)=0.9951$ or $\mathrm{P}(=11)=0.0143$ Explicit comp with .01 , or $z<2.326$, not from ≤ 11 or $=11$
(β)	CR $R \geq 12$ and $11<12$ Probability 0.0049	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	Must be clear that it's ≥ 12 and not ≤ 11 Needs to be seen, allow 0.9951 here, or $p=.0047$ from N
	Do not reject H_{0}. Insufficient evidence that proportion of commuters who travel by train has increased	$\begin{array}{lll} \hline \text { M1 } & \\ \text { A1 FT } & 7 \end{array}$	Needs like-with-like, $\mathrm{P}(R \geq 11)$ or $\mathrm{CR} R \geq 12$ Conclusion correct on their p or CR, contextualised, not too assertive, e.g. "evidence that" needed. Normal, $z=2.34$, "reject" $[$ no cc] can get $6 / 7$
5 (i)	(a) $\begin{aligned} & 30+1.645 \times \frac{5}{\sqrt{10}} \\ & =32.6\end{aligned}$ Therefore critical region is $\bar{t}>32.6$	M1 B1 A1 4 A1 FT 4	$30+5 z / \sqrt{ } 10$, allow \pm but not just - , allow $\sqrt{ }$ errors $z=1.645$ seen, allow Critical value, art 32.6 " > c" or " \geq c", FT on c provided >30, can't be recovered. Withhold if not clear which is CR
	(b) $\begin{aligned} & \mathrm{P}(\bar{t}<32.6 \mid \mu=35) \\ & \frac{32.6-35}{5 / \sqrt{10}}[=-1.5178] \\ & \mathbf{0 . 0 6 4 5}\end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { dep*M1 } \\ & \text { A1 }{ }_{3} \end{aligned}$	Need their c, final answer <0.5 and $\mu=35$ at least, but allow answer >0.5 if consistent with their (i) Standardise their CV with 35 and $\sqrt{ } 10$ or 10 Answer in range [$0.064,0.065$], or 0.115 from 1.96 in (a)
(ii)	$\begin{aligned} & (32.6-\mu)=0 \\ & \mu=32.6 \\ & 20+0.6 m=32.6 \\ & m=21 \end{aligned}$		Standardise c with μ, equate to Φ^{-1}, can be implied by: $\mu=$ their c Equate and solve for m, allow from 30 or 35 Answer, a.r.t. 21, c.a.o. MR: 0.05: M1 A0 M1, 16.7 A1 FT Ignore variance throughout (ii)

6 (a)	$\begin{aligned} & \mathrm{N}(24,24) \\ & 1-\Phi\left(\frac{30.5-24}{\sqrt{24}}\right)=1-\Phi(1.327) \\ &=\mathbf{0 . 0 9 2 3} \end{aligned}$	B1 B1 M1 A1 A1 5	Normal, mean 24 stated or implied Variance or SD equal to mean Standardise 30 with λ and $\sqrt{ } \lambda$, allow cc or $\sqrt{ }$ errors, e.g. .131 or $.1103 ; 30.5$ and $\sqrt{ } \lambda$ correct Answer in range [0.092, 0.0925]
(b)(i)	p or np [= 196] is too large	B1 1	Correct reason, no wrong reason, don't worry about 5 or 15
(ii)	$\begin{aligned} & \text { Consider }(200-E) \\ & (200-E) \sim \operatorname{Po}(4) \\ & \mathrm{P}(\geq 6) \quad[=1-0.7851] \\ & \quad=\mathbf{0 . 2 1 4 9} \end{aligned}$	M1 M1 M1 A1 4	Consider complement $\operatorname{Po}(200 \times 0.02)$ Poisson tables used, correct tail, e.g. 0.3712 or 0.1107 Answer a.r.t. 0.215 only
7 (α)	$\begin{aligned} & \mathrm{H}_{0}: \mu=56.8 \\ & \mathrm{H}_{1}: \mu \neq 56.8 \\ & \bar{x}=17085 / 300=56.95 \\ & \frac{300}{299}\left(\frac{973847}{300}-56.9^{2}\right) \\ & \quad=2.8637 \ldots \\ & z=\frac{56.95-56.8}{\sqrt{2.8637 / 300}}=1.535 \\ & 1.535<1.645 \text { or } 0.0624>0.05 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B2 } \\ \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$	Both correct One error: B1, but not \bar{X}, etc 56.95 or 57.0 seen or implied Biased [2.8541] : M1M0A0 Unbiased estimate method, allow if $\div 299$ seen anywhere Estimate, a.r.t. 2.86 [not 2.85] Standardise with $\sqrt{ } 300$, allow $\sqrt{ }$ errors, cc $z \in[1.53,1.54]$ or $p \in$ [0.062, 0.063], not -1.535 Compare explicitly z with 1.645 or p with 0.05 , or $2 p>0.1$, not from $\mu=56.95$
(β)	$\begin{aligned} & \mathrm{CV}_{56.8 \pm 1.645 \times \sqrt{\frac{2.8637}{300}}}^{56.96>56.95} \end{aligned}$	M1 A1 A1 FT	$\begin{aligned} & 56.8+z \sigma / \sqrt{300} \text {, needn't have } \pm \text {, allow } \sqrt{ } \text { errors } \\ & z=1.645 \\ & c=56.96, \text { FT on } z \text {, and compare } 56.95 \quad\left[c_{L}=56.64\right] \end{aligned}$
	Do not reject H_{0}; insufficient evidence that mean thickness is wrong	M1 A1 FT	Consistent first conclusion, needs 300, correct method and comparison Conclusion stated in context, not too assertive, e.g. "evidence that" needed
8 (i)	$\int_{1}^{\infty} k x^{-a} \mathrm{~d} x=\left[k \frac{x^{-a+1}}{-a+1}\right]_{1}^{\infty}$ Correctly obtain $k=a-1$ AG	M1 B1 A1 3	Integrate $\mathrm{f}(x)$, limits 1 and ∞ (at some stage) Correct indefinite integral Correctly obtain given answer, don't need to see treatment of ∞ but mustn't be wrong. Not k^{-a+1}
(ii)	$\begin{aligned} & \int_{1}^{\infty} 3 x^{-3} \mathrm{~d} x=\left[3 \frac{x^{-2}}{-2}\right]_{1}^{\infty}=11 / 2 \\ & \int_{1}^{\infty} 3 x^{-2} \mathrm{~d} x=\left[3 \frac{x^{-1}}{-1}\right]_{1}^{\infty}-\left(1 \frac{1}{2}\right)^{2} \end{aligned}$ Answer 3/4	M1 M1 A1 M1 A1 5	Integrate $x \mathrm{f}(x)$, limits 1 and ∞ (at some stage) [x^{4} is not MR] Integrate $x^{2} \mathrm{f}(x)$, correct limits Either $\mu=11 / 2$ or $\mathrm{E}\left(X^{2}\right)=3$ stated or implied, allow $k, k / 2$ Subtract their numerical μ^{2}, allow letter if subs later Final answer $3 / 4$ or 0.75 only, cwo, e.g. not from $\mu=-1 \frac{1}{2}$. [SR: Limits 0, 1: can get (i) B1, (ii) M1M1M1]
(iii)	$\begin{aligned} & \int_{1}^{2}(a-1) x^{-a} \mathrm{~d} x=\left[-x^{-a+1}\right]_{1}^{2}=0.9 \\ & 1-\frac{1}{2^{a-1}}=0.9, \quad 2^{a-1}=10 \\ & a=4.322 \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { M } \\ & \text { dep*M1 } \\ & \text { M1 indept } \\ & \text { A1 } \quad 4 \\ & \hline \end{aligned}$	Equate $\int \mathrm{f}(x) \mathrm{d} x$, one limit 2, to 0.9 or 0.1 . [Normal: 0 ex 4] Solve equation of this form to get $2^{a-1}=$ number Use logs or equivalent to solve $2^{a-1}=$ number Answer, a.r.t. 4.32. T\&I: (M1M1) B2 or B0

Specimen Verbal Answers

$1 \alpha \quad \begin{aligned} & \text { "Cases of infection must occur randomly, independently, singly and at } \\ & \text { constant average rate" }\end{aligned}$ B0
$\beta \quad$ Above + "but it is contagious" B1
$\gamma \quad$ Above + "but not independent as it is contagious" B2
$\delta \quad$ "Not independent as it is contagious" B2
$\varepsilon \quad$ "Not constant average rate", or "not independent" B0
$\lambda \quad$ "Not constant average rate because contagious" [needs more] B1
$\zeta \quad$ "Not constant average rate because more likely at certain times of year" B2
$\mu \quad$ Probabilities changes because of different susceptibilities B0
$v \quad$ Not constant average rate because of different susceptibilities B2
$\eta \quad$ Correct but with unjustified or wrong extra assertion [scattergun] B1
θ More than one correct assertion, all justified B2
$\pi \quad$ Valid reason (e.g. "contagious") but not referred to conditions B1
[Focus is on explaining why the required assumptions might not apply. No credit for regurgitating learnt phrases, such as "events must occur randomly, independently, singly and at constant average rate, even if contextualised.]

2 Don't need either "yes" or "no".
α "No it doesn't invalidate the calculation" [no reason] B0
β "Binomial requires not chosen twice" [false] B0
γ "Probability has to be constant but here the probabilities change" B0
$\delta \quad$ Same but "probability of being chosen" [false, but allow B1] B1
$\varepsilon \quad$ "Needs to be independently chosen but probabilities change" [confusion] B0
$\zeta \quad$ "Needs to be independent but one choice affects another" [correct] B2
η "The sample is large so it makes little difference" [false] B0
$\theta \quad$ "The population is large so it makes little difference" [true] B2
$\lambda \quad$ Both correct and wrong reasons (scattergun approach) B1
[Focus is on modelling conditions for binomial: On every choice of a member of the sample, each member of the population is equally likely to be chosen; and each choice is independent of all other choices.
Recall that in fact even without replacement the probability that any one person is chosen is the same for each choice. Also, the binomial "independence" condition does require the possibility of the same person being chosen twice.]

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

