

Mathematics

Advanced GCE 4733/01

Probability and Statistics 2

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

4733/01

1	(i)(a)	$1 - P(\le 6) = 1 - 0.8675$	M1		1 – .9361 or 1 – .8786 or 1 – .8558: M19721: M0
		= 0.1325	A1	2	Or 0.132 or 0.133
	(b)	Po(0.42)	M1		Po(0.42) stated or implied
		$_{-0.42}$ 0.42 ² = 0.05795	M1		Correct formula, any numerical λ
		$e - \frac{1}{2!}$	A1	3	Answer, art 0.058. Interpolation in tables: M1B2
	(ii)	E.g. "Contagious so incidences do	B2	2	Contextualised reason, referred to conditions: B2. No
		not occur independently", or "more			marks for mere learnt phrases or spurious reasons, e.g.
		cases in winter so not at constant			not just "independently, singly and constant average
		average rate"			rate". See notes.
2	(i)	B(10, 0.35)	M1		B(10, 0.35) stated or implied
		P(< 3)	M1		Tables used, e.g. 0.5138 or 0.3373, or formula ± 1 term
		= 0.2616	A1	3	Answer 0.2616 or better or 0.262 only
	(ii)	Binomial requires being chosen	B2	2	Focus on "Without replacement" negating independence
		independently, which this is not, but			condition. It doesn't negate "constant probability"
		unimportant as population is large			condition but can allow B1 if "selected". See notes
3	(i)	$(32-40) = \Phi^{-1}(0.2) = -0.842$	M1		Standardise and equate to Φ^{-1} , allow "1 –" errors, σ^2 , cc
		$\left(\frac{-\sigma}{\sigma}\right)^{-1}$ (0.2) $(0.2)^{-1}$	B1		0.842 seen
		$\sigma = 9.5[06]$	A1	3	Answer, 9.5 or in range [9.50, 9.51], c.w.o.
	(ii)	B(90, 0.2)	B1		B(90, 0.2) stated or implied
		$\approx N(18, 14.4)$	M1		N, their np
		$(195-18)$ 1 \pm (0.2052)	A1		variance their <i>npa</i> , allow $\sqrt{\text{errors}}$
		$1-\Phi\left[\frac{19.5-16}{\sqrt{14.4}}\right] = 1-\Phi(0.3953)$	M1		Standardise with <i>np</i> and <i>npq</i> , allow $$, cc errors, e.g.
			A1		$396 448 458 486 472$ \sqrt{npa} and cc correct
		= 1 - 0.6537 = 0.3463	A1	6	Answer, a.r.t. 0.346 [NB: 0.3491 from Po: 1/6]
4		$H_0: p = 0.4.$	B1		Fully correct B? Allow π <i>p</i> omitted or μ used in both
_		$H_1: p > 0.4$	B1		or > wrong: B1 only, x or \overline{x} or 6.4 etc: B0
		$R \sim B(16, 0.4)$:	M1		B(16, 0.4) stated or implied, allow $N(6.4, 3.84)$
	(α)	$P(R \ge 11) = 0.0191$	A1		Allow for $P(<10) = 0.9808$ and < 0.99 or $z = 2.092$ or
	~ /				p = 0.018 but not $P(<11) = 0.9951$ or $P(=11) = 0.0143$
		> 0.01	A1		Explicit comp with 01 or $z < 2.326$ not from <11 or $z=11$
	(B)	CR R > 12 and 11 < 12	A1		Must be clear that it's > 12 and not < 11
	(þ)	Probability 0.0049	A1		Needs to be seen, allow 0.9951 here, or $n = 0.047$ from N
		Do not reject H_0 Insufficient	M1		Needs like-with-like $P(R > 11)$ or $CR R > 12$
		evidence that proportion of	A1 FT	7	Conclusion correct on their <i>n</i> or CR contextualised not
		commuters who travel by train has		-	too assertive e.g. "evidence that" needed
		increased			Normal $z = 2.34$ "reject" [no cc] can get 6/7
5	(i)	() 5	M1		$30 + 57/\sqrt{10}$, allow + but not just – allow $\sqrt{\text{errors}}$
	(1)	(a) $30+1.645 \times \frac{5}{\sqrt{10}}$	B1		z = 1.645 seen, allow –
		√10 22.¢	A1		Critical value, art 32.6
		= 32.0	A1 FT	4	"> c" or "> c". FT on c provided > 30, can't be
		Therefore critical region is $t > 32.6$			recovered. Withhold if not clear which is CR
		(b) $P(t < 32.6 \mid \mu = 35)$	M1*		Need their c, final answer < 0.5 and $\mu = 35$ at least, but
		(b) $1(t < 52.0 \mu = 55)$ 32.6 - 35			allow answer > 0.5 if consistent with their (i)
		$\frac{32.0}{5}$ [=-1.5178]	dep*M1		Standardise their CV with 35 and $\sqrt{10}$ or 10
		5/√10	AÎ	3	Answer in range [0.064, 0.065], or 0.115 from 1.96 in (a)
	<u>/:'\</u>	0.0645	N/1		
	(11)	$(32.6 - \mu) = 0$			Standardise <i>c</i> with μ , equate to Φ^{-1} , can be implied by:
		$\mu = 32.6$	AIFT		$\mu = \text{their } c$
		20 + 0.6m = 32.6		4	Equate and solve for m , allow from 30 or 35
		m = 21	AI	4	Answer, a.r.t. 21, c.a.o.
					MR: 0.05: M1 A0 M1, 16.7 A1 FT
					Ignore variance throughout (ii)

6	(a)	N(24, 24)	B1	Normal, mean 24 stated or implied
		$(30.5-24) - 1 - \Phi(1.327)$	B1	Variance or SD equal to mean
		$1-\Phi\left(\frac{1}{\sqrt{24}}\right) = 1$	M1	Standardise 30 with λ and $\sqrt{\lambda}$, allow cc or $\sqrt{\gamma}$ errors, e.g.
		- 0 0923	A1	.131 or .1103 ; 30.5 and $\sqrt{\lambda}$ correct
		- 0.0725	A1 5	Answer in range [0.092, 0.0925]
	(b)(i)	p or np [= 196] is too large	B1 1	Correct reason, no wrong reason, don't worry about 5 or 15
	(ii)	Consider $(200 - E)$	M1	Consider complement
		$(200 - E) \sim Po(4)$	M1	Po(200×0.02)
		$P(\geq 6) [= 1 - 0.7851]$	M1	Poisson tables used, correct tail, e.g. 0.3712 or 0.1107
		= 0.2149	A1 4	Answer a.r.t. 0.215 only
7		$H_0: \mu = 56.8$	B2	Both correct
		$H_1: \mu \neq 56.8$		One error: B1, but <i>not</i> \overline{x} , etc
		$\overline{x} = 17085/300 = 56.95$	B1	56.95 or 57.0 seen or implied
		300 (973847	M1	Biased [2.8541] : M1M0A0
		$\frac{1}{299} \left(\frac{-56.95^2}{300} \right)$	M1	Unbiased estimate method, allow if ÷ 299 seen anywhere
		- 2 8637	A1	Estimate, a.r.t. 2.86 [not 2.85]
		= 2.0037	M1	Standardise with $\sqrt{300}$, allow $\sqrt{\text{errors}}$, cc
	(α)	$z = \frac{28637}{\sqrt{2.8637/300}} = 1.555$	Al	$z \in [1.53, 1.54]$ or $p \in [0.062, 0.063]$, not – 1.535
		$\sqrt{2.80377500}$ 1 535 < 1 645 or 0 0624 > 0 05	Al	Compare explicitly z with 1.645 or p with 0.05, or
		1.555 < 1.045 01 0.0024 > 0.05		$2p > 0.1$, not from $\mu = 56.95$
	(β)	CV	M1	$56.8 + z\sigma/\sqrt{300}$, needn't have \pm , allow $\sqrt{100}$ errors
		$56.8 \pm 1.645 \times \sqrt{-300}$	A1	z = 1.645
		56.96 > 56.95	A1 FT	$c = 56.96$, FT on z, and compare 56.95 $[c_L = 56.64]$
		Do not reject H_0 ;	M1	Consistent first conclusion, needs 300, correct method
				and comparison
		insufficient evidence that mean	A1 FT	Conclusion stated in context, not too assertive, e.g.
		thickness is wrong	11	"evidence that" needed
8	(i)	x^{-a+1}	M1	Integrate $f(x)$, limits 1 and ∞ (at some stage)
		$\int_{1} kx^{-a} dx = \left k \frac{a}{-a+1} \right $	B1	Correct indefinite integral
			A1 3	Correctly obtain given answer, don't need to see
		Correctly obtain $k = a - 1$ AG		treatment of ∞ but mustn't be wrong. Not k^{-a+1}
	(ii)	$\begin{bmatrix} \infty & 2 & -3 \end{bmatrix} = \begin{bmatrix} 2 & x^{-2} \end{bmatrix}^{\infty} = 1 $	M1	Integrate $xf(x)$, limits 1 and ∞ (at some stage)
		$\int_{1} 5x dx = \left 5 \frac{-2}{-2} \right _{1} = 1 \frac{1}{2}$		$[x^4 \text{ is } not \text{ MR}]$
		Γ _1]∞	M1	Integrate $x^2 f(x)$, correct limits
		$\int_{1}^{\infty} 3x^{-2} dx = \left 3\frac{x}{1} \right - (1\frac{1}{2})^{2}$	A1	Either $\mu = 1\frac{1}{2}$ or $E(X^2) = 3$ stated or implied, allow $k, k/2$
			M1	Subtract their numerical μ^2 , allow letter if subs later
		Answer ³ / ₄	Al 5	Final answer ³ / ₄ or 0.75 only, cwo, e.g. not from $\mu = -1\frac{1}{2}$.
				[SR: Limits 0, 1: can get (i) B1, (ii) M1M1M1]
	(iii)	$\int_{a}^{2} (a-1)x^{-a} dx = \left[-x^{-a+1}\right]_{a}^{2} = 0.9$	M1*	Equate $\int f(x)dx$, one limit 2, to 0.9 or 0.1.
		\mathbf{J}_1 · · · · · · · · · · · · · · · · · · ·		[Normal: 0 ex 4]
		$1 - \frac{1}{2} = 0.9, \ 2^{a-1} = 10$	dep*M1	Solve equation of this form to get 2^{a-1} = number
		2^{a-1} , 2 10	M1 indept	Use logs or equivalent to solve 2^{a-1} = number
		<i>a</i> = 4.322	A1 4	Answer, a.r.t. 4.32. T&I: (M1M1) B2 or B0

4733/01

Specimen Verbal Answers

1	α	"Cases of infection must occur randomly, independently, singly and at	
		constant average rate"	B0
	β	Above + "but it is contagious"	B1
	γ	Above + "but not independent as it is contagious"	B2
	δ	"Not independent as it is contagious"	B2
	3	"Not constant average rate", or "not independent"	B0
	λ	"Not constant average rate because contagious" [needs more]	B1
	ζ	"Not constant average rate because more likely at certain times of year"	B2
	μ	Probabilities changes because of different susceptibilities	B0
	ν	Not constant average rate because of different susceptibilities	B2
	η	Correct but with unjustified or wrong extra assertion [scattergun]	B1
	θ	More than one correct assertion, all justified	B2
	π	Valid reason (e.g. "contagious") but not referred to conditions	B1
[Focu	ıs is on e	explaining why the required assumptions might not apply. No credit for regi	urgitating
learn	t phrase	s, such as "events must occur randomly, independently, singly and at cons	stant

average rate, even if contextualised.]

2 Don't need either "yes" or "no".

α	"No it doesn't invalidate the calculation" [no reason]	B0
β	"Binomial requires not chosen twice" [false]	B0
γ	"Probability has to be constant but here the probabilities change"	B0
δ	Same but "probability of being chosen" [false, but allow B1]	B1
3	"Needs to be independently chosen but probabilities change" [confusion]	B0
ζ	"Needs to be independent but one choice affects another" [correct]	B2
η	"The sample is large so it makes little difference" [false]	B0
θ	"The population is large so it makes little difference" [true]	B2
λ	Both correct and wrong reasons (scattergun approach)	B1

[Focus is on modelling conditions for binomial: On every choice of a member of the sample, each member of the population is equally likely to be chosen; and each choice is independent of all other choices.

Recall that in fact even without replacement the probability that any one person is chosen is the same for each choice. Also, the binomial "independence" condition <u>does</u> require the possibility of the same person being chosen twice.]

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

