GCE

Mathematics

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1(i)	Total has Poisson distribution with mean $\begin{aligned} & \lambda=0.21 \times 5+0.24 \times 5=2.25 \\ & P(\geq 2)=1-e^{-\lambda}(1+\lambda) \\ & =0.657 \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A } \end{array}$	With $\times 5$ λ or $1+\lambda$ in brackets (their λ) Or interpolation from tables
(ii)	EITHER: Each length is a random sample OR: Flaws occur independently on the reels	$\begin{aligned} & \text { B1 } \\ & \left.1 \begin{array}{l} 1 \\ \hline \end{array}\right] \end{aligned}$	İn context Accept randomly
2	$\begin{aligned} & \mathrm{H}_{0}: \mu=(\mathrm{or} \geq) 170, \mathrm{H}_{1}: \mu<170 \\ & \bar{x}=167.5 \\ & s^{2}=5.9 \end{aligned}$ EITHER: $(\alpha)(167.5-170) / \sqrt{ }(5.9 / 6)$ $=-2.52(1)$ Compare with -2.015 OR: $\begin{gathered} (\beta) 170-t \sqrt{ }(5.9 / 6) \\ =168.0 \end{gathered}$ Compare 167.5 with CV and reject H_{0} There is sufficient evidence at the 5% significance level that the machine dispenses less than 170 ml on average.	B1 B1 B1 M1 A1 M1 M1 A1 M1 A1 [7]	For both hypotheses; accept words SR 2-tail test: B0B1B1M1A1M1A0 Max 5/7 Standardise 167.5; + or - for M; /6 seen Explicitly Allow 2.571 Finding critical value or region. With $t=2.015$ or 2.571 Explicitly. Allow correct use of $\|t\|$ M0 if z used SR: B1 if no explicit comparison but conclusion "correct"
3(i)	H_{0} : There is no association between the area in which a shopper lives and the day they shop (H_{1} : All alternatives) $\begin{array}{lll}\text { E-Values } & 27.3 & 14.7\end{array}$ $37.7 \quad 20.3$ $\begin{aligned} x^{2} & =(4.3-0.5)^{2}\left(27.3^{-1}+37.7^{-1}+14.7^{-1}+20.3^{-1}\right) \\ & =2.606 \end{aligned}$ Compare with 2.706 Do not reject H_{0}. There is insufficient evidence of an association. SR: If H_{0} association, lose $1^{\text {st }} \mathrm{B} 1$ and last M1A1	B1 M1 A1 M1 ft A1 A1 M1 A1 8	SR difference in proportions B1 define and evaluate p_{1} and p_{2} with H_{0} B1 for $p=0.42$ M1A1 for $z= \pm 1.827$ or 1.835 (no pe) M1A0 Max 5/8 At least one E value correct (M1) All correct(A1) At least one X^{2}, no or wrong cc, (M1FtE) All correct (A1); 2.606 or 2.61 (A1) Or use calculator ($p=0.106$) SR: B1 if no explicit comparison, as Q2 SR: If H_{0} association, lose $1^{\text {st }} \mathrm{B} 1$ and last M1A1
(ii)	Conclusion the same since critical value $>$ 2.706 (and test statistic unchanged)	B1 1 [9]	OR from $z= \pm 2.17, S R$

4(i)	$\begin{aligned} & s^{2}=\left(1183.65-246.6^{2} / 70\right) / 69 \\ & \text { Use } \bar{x} \pm z s / \sqrt{ }(70) \\ & s / \sqrt{ }(70) \\ & 1.645 \\ & (3.10,3.94) \end{aligned}$	M1 M1 A1 A1 A1 5	AEF Allow without ft or with s^{2}; with 70 Their s A0 if interval not indicated
(ii)	Change 90 to around 90	B1	Or equivalent
(iii)	$\begin{aligned} & 4(0.9)^{3}(0.1)+0.9^{4} \\ & =0.9477 \end{aligned}$	$\begin{array}{cc} \mathrm{M} 1 & \\ & \\ \mathrm{~A} 1 & 2 \\ & {[8]} \end{array}$	Üse of bino with $p=0.9$ or 0.1 and 4 and Correct terms considered. art 0.948
5(i)	$\begin{aligned} & \mathrm{e}^{-2.25}-\mathrm{e}^{-4} \\ & \times 150 \\ & =13.1 \\ & \text { Last: } 150-\text { sum }=2.7 \end{aligned}$	M1 A1 A1 A1 ft 4	Or find last entry using $F(x)$ Or 2.7 if found first Or 13.1 any accuracy
(ii)	(H_{0} : Data fits the model, H_{1} : Data does not fit) Combine last two cells $\begin{aligned} & x^{2}=7.8^{2} / 33.2+11.6^{2} / 61.6+7.4^{2} / 39.4+ \\ & 11.2^{2} / 15.8 \\ & =13.3(46) \end{aligned}$ Compare with 9.348 (or 11.14), reject H_{0} (There is sufficient evidence at the $2 \frac{1}{2} \%$ significance level that) the model is not a good fit	B1 M1*Dep A1 A1 M1 A1 ft Dep* 6 [10]	At least two correct All correct In range 13.2 to 13.5 SR: If last 2 cells are not combined B0M1A1A1 (for 13.5) M1A1 If no explicit comparison B1 if conclusion follows
6(i)	Anxiety scores; have normal distributions; common variance; independent samples $\begin{aligned} & \mathrm{H}_{0}: \mu_{E}=\mu_{C}, \mathrm{H}_{1}: \mu_{E}<\mu_{C} \\ & s^{2}=(1923.56+1147.58) / 29(=105.9) \\ & \left.(t)=(32.16-38.21) / \sqrt{2} 105.9\left(18^{-1}+13^{-1}\right)\right] \\ & =-1.615 \\ & t_{\text {crit }}=-1.699 \end{aligned}$ Compare - 1.615 with -1.699 and do not reject H_{0} There is insufficient evidence at the 5\% significance level to show that anxiety is reduced by listening to relaxation tapes	$\begin{array}{ll}\text { B2 } & \\ & \\ \text { B1 } & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ \text { B1 } & \\ \text { M1 } & \\ & \\ \text { A1 ft } & \\ & 10\end{array}$	```Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg \(s^{2}=\) 1923.56/(17or18) All correct 47.5/(12or13) Or + Or + ; accept art \(\pm 1.70\) Or + , +. M0 if \(t\) not \(\pm 1.699, \pm 2.045\)``` In context, not over-assertive OR Find CV or CR: B2B1B1; $\mathrm{C}=$ or $\geq s t, t= \pm 1.699$ or ± 2.015 M1A1 $t= \pm 1.699 \mathrm{~B} 1 ; \mathrm{G}=6.11(2) \mathrm{A} 1$; $6.112>6.05$ and reject H_{0} etcM1A1
(ii)	Sample sizes are too small (to appeal to CLT)	B1 1 [11]	

7(i)	$\begin{aligned} & \text { Use } \sum F+\sum M \sim \mathrm{~N}\left(\mu, \sigma^{2}\right) \\ & \mu=1104.9 \\ & \sigma^{2}=6 \times 9.3^{2}+9 \times 8.5^{2} \\ & =1169.2 \\ & \mathrm{P}(>1150)=1-\Phi([1150- \\ & 1104.9] / \sqrt{ }(1169.2) \\ & \quad=0.0 . \end{aligned}$	M1 A1 M1 A1 M1 A1 $\mathbf{6}$	Sum of indep normal variables is normal Standardise, correct tail. M0 $\sigma / \sqrt{ } 15$ Accept 094
(ii)	If unknown M, prob $\frac{1}{2}, 6 F$ and 9 M as before. If unknown W, prob $\frac{1}{2}, 7 \mathrm{~W}$ and 8 M Having $N(1093.3,1183.4)$ $\begin{aligned} & P(>1150)=1-\Phi(1.648)=0.0497 \\ & P=\frac{1}{2} \times 0.0936+\frac{1}{2} \times 0.0497 \\ & =0.07165 \end{aligned}$	M1 B1 B1 A1 M1 A1 A [12]	Considering two cases Mean and variance Use of $\frac{1}{2}$ ART 0.072
8(i)	$\begin{aligned} & X=\frac{1}{4} S^{2} \\ & \quad F(s)=\int_{1}^{s} \frac{8}{3 s^{3}} \mathrm{~d} s=\left[-\frac{4}{3 s^{2}}\right]_{1}^{s} \\ & \quad=\frac{4}{3}\left(1-1 / s^{2}\right) \\ & \mathrm{G}(x) \\ & =\mathrm{P}(X \leq x)=\mathrm{P}(S \leq 2 \sqrt{ } x) \\ & \\ & =\mathrm{F}(2 \sqrt{ } x) \end{aligned}$	M1 A1 M1 A1 ft M1 B1 7	Ignore range here SR: B1 for $\mathrm{G}(x)=\mathrm{F}(2 \sqrt{ } x)$ without justification and with correct result ft F For $\mathrm{G}^{\prime}(a)$ For range
(ii)	EITHER: $\mathrm{G}(m)=\frac{1}{2}$ $\begin{aligned} & \Rightarrow \frac{4}{3}-\frac{1}{3 x}=\frac{1}{2} \\ & \Rightarrow m=\frac{2}{5} \end{aligned}$ $\begin{aligned} & \text { OR: } \begin{array}{l} \int_{1 / 4}^{m} \frac{1}{3 x^{2}} \mathrm{~d} x=\frac{1}{2} \\ \Rightarrow\left[-\frac{1}{3 x}\right]_{1 / 4}^{m}=\frac{1}{2} \\ \Rightarrow \quad m=\frac{2}{5} \end{array} \end{aligned}$	M1 A1 ft A1 M1 M1 A1 A1 3 $[10]$	$\mathrm{ft} \mathrm{G}(x)$ in (i) CAO Allow wrong $\frac{1}{4}$ Allow wrong $\frac{1}{4}$ CAO

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

