

Mathematics

Advanced GCE 4734

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

1(i)	Total has Poisson distribution with mean $b = 0.21 \times 5 + 0.24 \times 5 = 2.25$	M1	With ×5
	A = 0.21×5+0.24×5 = 2.25	AI	
	P(≥2) = 1 – e ^{-λ} (1+λ)	M1	λ or 1+ λ in brackets (their λ)
	=0.657	A1	Or interpolation from tables
(ii)	EITHER: Each length is a random sample	4 B1	In context
()	OR: Flaws occur independently on the	1	Accept randomly
	reels	[5]	
		[3]	
2	H ₀ : μ =(or ≥) 170 , H ₁ : μ < 170	B1	For both hypotheses; accept words
	x = 167.5 $s^2 = 5.9$	B1 B1	SR 2-tail test: B0B1B1M1A1M1A0 Max 5/7
		5.	
	EITHER: (α) (167.5 – 170)/ $\sqrt{(5.9/6)}$	M1	Standardise 167.5; + or – for M; /6
	Compare with – 2.015	M1	Explicitly Allow 2.571
	OR: $(\beta) 170 - t\sqrt{(5.9/6)}$ = 168.0	M1 A1	Finding critical value or region. With $t= 2.015$ or 2.571
	Compare 167.5 with CV and reject H ₀	M1	Explicitly. Allow correct use of <i>t</i>
	There is sufficient evidence at the 5%	A 1	M0 if z used
	dispenses less than 170 ml on average.	AI	but conclusion "correct"
		[7]	
3(i)	H ₀ : There is no association between the	B1	SR difference in proportions
	area in which a shopper lives and the day		B1 define and evaluate p_1 and p_2
	(H ₁ : All alternatives)		B1 for $p=0.42$
	E-Values 27.3 14.7	M1	M1A1 for $z = \pm 1.827$ or 1.835 (no pe)
	37.7 20.3 $v^2 = (4 \ 3-0 \ 5)^2 (27 \ 3^{-1} + 37 \ 7^{-1} + 14 \ 7^{-1} + 20 \ 3^{-1})$	A1	M1A0 Max 5/8
	= 2.606	M1 ft	At least one E value correct (M1)
	Compare with 2.706 Do not reject H_0 .	A1	All correct(A1)
	association.	AI	(M1FtE)
		M1	All correct (A1); 2.606 or 2.61 (A1)
	SR: If H_0 association, lose 1 st B1 and last	A1	Or use calculator ($p = 0.106$) SR: B1
		0	SR: If H_0 association, lose 1 st B1 and
			last M1A1
(ji)	Conclusion the same since critical value >	B1	OR from <i>z</i> =±2.17. SR
	2.706	1	, or (
	(and test statistic unchanged)		
		1	1
		[9]	

4(i)	<i>s</i> ² = (1183.65-246.6 ² /70)/69	M1	AEF
	Use $\overline{x} \pm zs/\sqrt{70}$	M1	Allow without ft or with s^2 ; with 70
	s /√(70)	A1	Their s
	1.645	A1	
	(3.10. 3.94)	A1 5	A0 if interval not indicated
(ii)	Change 90 to around 90	B1 1	Or equivalent
(iii)	$4(0.9)^{3}(0.1) + 0.9^{4}$	M1	Use of bino with $p=0.9$ or 0.1 and 4
(,			and
	=0 9477	A1 2	Correct terms considered art 0.948
	0.0117	181	
		[0]	
5(i)	$e^{-2.25} - e^{-4}$	M1	Or find last entry using $F(x)$
5(1)	× 150	Δ1	
	= 13.1	Δ1	Or 2 7 if found first
	_ 13.1 Last: 150 _ sum=2.7		Or 13.1 any accuracy
<i>(</i> ;;)	(H.: Data fits the model, H.: Data does		At least two correct
(11)	$(\Pi_0, Data \Pi_0 \text{ the model}, \Pi_1, Data uses$	ы	All correct
	Combine last two colls	M1*Don	In range 13.2 to 13.5
	$\frac{1}{2} = 7 \frac{9^2}{22} 2 + 11 \frac{9^2}{61} 6 + 7 \frac{4^2}{20} 4 + \frac{1}{2}$		SD: If last 2 colls are not combined
	$\chi = 7.0753.2 \pm 11.0701.0 \pm 7.4759.4 \pm 11.0701.0 \pm 7.4759.4$		$POM1 \wedge 1 \wedge 1/for 12 = 5 M1 \wedge 1$
	-122(46)		If no explicit comparison D1 if
	-13.3(40)		
		A 1 #	conclusion follows
	Π_0	AIII Den* C	
	(There is sufficient evidence at the $2\frac{1}{2}$ %	Dep o	
	significance level that) the model is not a	[40]	
	good fit		
	good fit		
6(i)	Anxiety scores; have normal	B2	Context + 2 valid points B2
6(i)	Anxiety scores; have normal distributions;	B2	Context + 2 valid points B2 Context + 1VP, no context +2VP B1
6(i)	Anxiety scores; have normal distributions; common variance; independent samples	B2	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$	B2 B1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$	B2 B1 B1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 =
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$	B2 B1 B1 M1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18)
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$	B2 B1 B1 M1 A1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct +
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615	B2 B1 B1 M1 A1 A1 D1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13)
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$	B2 B1 B1 M1 A1 A1 B1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or +
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$	B2 B1 B1 M1 A1 A1 B1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not	B2 B1 B1 M1 A1 A1 B1 M1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0	B2 B1 B1 M1 A1 A1 B1 M1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H ₀ There is insufficient evidence at the 5%	B2 B1 B1 M1 A1 A1 B1 M1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or +, +. M0 if t not ±1.699,±2.045
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is	B2 B1 B1 M1 A1 B1 M1 M1 A1 ft	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes	B2 B1 B1 M1 A1 B1 M1 A1 ft A1 ft 10	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or +, +. M0 if t not ±1.699,±2.045 In context, not over-assertive
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes	B2 B1 B1 M1 A1 B1 M1 A1 ft A1 ft 10	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1;
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes	B2 B1 B1 M1 A1 B1 M1 A1 ft A1 ft 10	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or +, +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or ≥ st, t = ±1.699 or ±2.015
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes	B2 B1 B1 M1 A1 B1 M1 A1 ft A1 ft 10	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or +, +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or ≥ st, t = ±1.699 or ±2.015 M1A1
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ (t) = (32.16 - 38.21)/ $\sqrt{[105.9(18^{-1}+13^{-1})]}$ = - 1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes	B2 B1 B1 M1 A1 B1 M1 A1 ft A1 ft 10	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or +, +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or ≥ st, t = ±1.699 or ±2.015 M1A1 t= ±1.699 B1; G= 6.11(2) A1;
6(i)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes	B2 B1 B1 M1 A1 B1 M1 A1 ft 10	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or +, +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or ≥ st, t = ±1.699 or ±2.015 M1A1 t= ±1.699 B1; G= 6.11(2) A1; 6.112> 6.05 and reject H ₀ etcM1A1
6(i) (ii)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes Sample sizes are too small (to appeal to	B2 B1 B1 M1 A1 B1 M1 A1 ft 10 B1 1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or +, +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or ≥ st, t = ±1.699 or ±2.015 M1A1 t= ±1.699 B1; G= 6.11(2) A1; 6.112> 6.05 and reject H ₀ etcM1A1
6(i) (ii)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ (t) = (32.16 – 38.21)/ $\sqrt{[105.9(18^{-1}+13^{-1})]}$ = - 1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes Sample sizes are too small (to appeal to CLT)	B2 B1 B1 A1 A1 B1 M1 A1 ft B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or ≥ st, t = ±1.699 or ±2.015 M1A1 t= ±1.699 B1; G= 6.11(2) A1; 6.112> 6.05 and reject H ₀ etcM1A1
6(i) (ii)	good fit Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ (t) = (32.16 – 38.21)/ $\sqrt{[105.9(18^{-1}+13^{-1})]}$ = - 1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes Sample sizes are too small (to appeal to CLT)	B2 B1 B1 A1 A1 B1 M1 A1 ft B1 B1 B1 B1 B1 1 [11]	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or ≥ st, t = ±1.699 or ±2.015 M1A1 t= ±1.699 B1; G= 6.11(2) A1; 6.112> 6.05 and reject H ₀ etcM1A1

7(i)	Use $\sum F + \sum M \sim N(\mu, \sigma^2)$	M1	Sum of indep normal variables is
	$\mu = 1104.9$	A1	normal
	$\sigma^2 = 6 \times 9.3^2 + 9 \times 8.5^2$	M1	
	= 1169.2	AT	Otop douding compact toil NO -//45
	$P(>1150) = 1 - \Psi([1150 - 100])$		Standardise, correct tall. MU 0/V15
	- 0.0027	A I	Accept .094
/ii\	- 0.0937	<u>0</u> M1	Considering two cases
(")	II UTIKTOWIT WI, PLOD $\frac{1}{2}$, OF all U SWI as		
	before.		
	If unknown W, prob $\frac{1}{2}$, 7W and 8M	B1 B1	Mean and variance
	Having N(1093.3,1183.4)		
		A1	
	$P(> 1150)= 1 - \Phi(1.648) = 0.0497$	M1	Use of $\frac{1}{2}$
	$P = \frac{1}{2} \times 0.0936 + \frac{1}{2} \times 0.0497$	A1	ART 0.072
	= 0.07165	6	
		[12]	
8(i)	$X = \frac{1}{4}S^2$	B1	
	$r \sim r^s 8 \sim [4]^s$		
	$F(s) = \int_{1}^{1} \frac{1}{3s^{3}} ds = \left[-\frac{1}{3s^{2}} \right]_{1}^{1}$	M1	
	$=\frac{4}{2}(1-1/s^2)$	A1	Ignore range here
	$G(x) = P(X \le x) = P(S \le 2\sqrt{x})$	M1	SR: B1 for $G(x)=F(2\sqrt{x})$ without
	$= F(2\sqrt{x})$		justification and with correct result
			ft F
	$= \frac{4}{3} - \frac{1}{3x}$	A1 ft	
	$\begin{bmatrix} 1 & 1 \\ 1 \leq r \leq 1 \end{bmatrix}$		
	$g(x) = \begin{cases} \overline{3x^2} & \overline{4} \stackrel{\leq x \leq 1}{}, \end{cases}$	M1	For G' (a)
	0 otherwise.	ы	For range
		7	
(ii)	EITHER: $G(m) = \frac{1}{2}$	M1	ft G(<i>x</i>) in (i)
	$\implies \frac{4}{3} - \frac{1}{3x} = \frac{1}{2}$	A1 ft	CAO
	$\Rightarrow m = \frac{2}{5}$	A1	
	5	/	
	\mathbf{OD} , \mathbf{f}^m 1 , 1	N/1	
	OR: $\int_{1/4}^{1/4} \frac{1}{3x^2} dx = \frac{1}{2}$		
	$\begin{bmatrix} 1 \end{bmatrix}^m 1$		
	$\Rightarrow \left\lfloor -\frac{3x}{3x} \right\rfloor_{1/4} = \frac{1}{2}$	A1	Allow wrong $\frac{1}{4}$
	$\Rightarrow m = \frac{2}{2}$	A1	CAO
	5		
		3	
		[10]	
1		1	1

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

