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INSTRUCTIONS TO CANDIDATES

• Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided
on the Answer Booklet.

• Use black ink. Pencil may be used for graphs and diagrams only.

• Read each question carefully and make sure that you know what you have to do before starting your answer.
• Answer all the questions.
• Do not write in the bar codes.
• Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is

specified in the question or is clearly appropriate.
• You are permitted to use a graphical calculator in this paper.
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• The number of marks is given in brackets [ ] at the end of each question or part question.
• You are reminded of the need for clear presentation in your answers.

• The total number of marks for this paper is 72.
• This document consists of 4 pages. Any blank pages are indicated.
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1 The line l
1

passes through the points (0, 0, 10) and (7, 0, 0) and the line l
2

passes through the points

(4, 6, 0) and (3, 3, 1). Find the shortest distance between l
1

and l
2
. [7]

2 A multiplicative group with identity e contains distinct elements a and r, with the properties r6 = e

and ar = r5a.

(i) Prove that rar = a. [2]

(ii) Prove, by induction or otherwise, that rnarn = a for all positive integers n. [4]

3 In this question, w denotes the complex number cos 2
5
π + i sin 2

5
π.

(i) Express w2, w3 and w∗ in polar form, with arguments in the interval 0 ≤ θ < 2π. [4]

(ii) The points in an Argand diagram which represent the numbers

1, 1 + w, 1 + w + w2, 1 + w + w2 + w3, 1 + w + w2 + w3 + w4

are denoted by A, B, C, D, E respectively. Sketch the Argand diagram to show these points and

join them in the order stated. (Your diagram need not be exactly to scale, but it should show the

important features.) [4]

(iii) Write down a polynomial equation of degree 5 which is satisfied by w. [1]

4 (i) Use the substitution y = xß to find the general solution of the differential equation

x
dy

dx
− y = x cos(y

x
),

giving your answer in a form without logarithms. (You may quote an appropriate result given in

the List of Formulae (MF1).) [6]

(ii) Find the solution of the differential equation for which y = π when x = 4. [2]

5 Convergent infinite series C and S are defined by

C = 1 + 1
2

cos θ + 1
4

cos 2θ + 1
8

cos 3θ + . . . ,

S = 1
2

sin θ + 1
4

sin 2θ + 1
8

sin 3θ + . . . .

(i) Show that C + iS =
2

2 − eiθ
. [4]

(ii) Hence show that C =
4 − 2 cos θ

5 − 4 cos θ
, and find a similar expression for S. [4]
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6 (i) Find the general solution of the differential equation

d2y

dx2
+ 2

dy

dx
+ 17y = 17x + 36. [7]

(ii) Show that, when x is large and positive, the solution approximates to a linear function, and state

its equation. [2]

7 A line l has equation r = (−7

−3

0

) + λ( 2

−2

3

). A plane Π passes through the points (1, 3, 5) and

(5, 2, 5), and is parallel to l.

(i) Find an equation of Π , giving your answer in the form r.n = p. [4]

(ii) Find the distance between l and Π . [4]

(iii) Find an equation of the line which is the reflection of l in Π , giving your answer in the form

r = a + tb. [4]

8 A set of matrices M is defined by

A = ( 1 0

0 1
), B = (ω 0

0 ω2 ), C = (ω2 0

0 ω
), D = (0 1

1 0
), E = ( 0 ω2

ω 0
), F = ( 0 ω

ω2 0
),

where ω and ω2 are the complex cube roots of 1. It is given that M is a group under matrix

multiplication.

(i) Write down the elements of a subgroup of order 2. [1]

(ii) Explain why there is no element X of the group, other than A, which satisfies the equation X5 = A.

[2]

(iii) By finding BE and EB, verify the closure property for the pair of elements B and E. [4]

(iv) Find the inverses of B and E. [3]

(v) Determine whether the group M is isomorphic to the group N which is defined as the set of

numbers {1, 2, 4, 8, 7, 5} under multiplication modulo 9. Justify your answer clearly. [3]
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