GCE

Mathematics (MEI)

Advanced Subsidiary GCE
Unit 4761: Mechanics 1

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

You should expect to follow through from one part to another unless the scheme says otherwise but not follow through within a part unless the scheme specifies this Each script must be viewed as a whole at some stage so that
(i) a candidate's writing of letters, digits, symbols on diagrams etc can be better interpreted;
(ii) repeated mistakes can be recognised (e.g. calculator in wrong angle mode throughout - penalty 1 in the script and FT except given answers).

You are advised to 'set height' in scoris, particularly for question 7(ii). Questions 5 and 8(v) also spread onto two pages.

Q1		mark	notes
	$v^{2}=11^{2}+2 \times(-9.8) \times 2.4$	M1	Use of $v^{2}=u^{2}+2 a s$ or complete sequence of correct suvat. Accept sign errors in substitution. All correct
	$v=8.6$ so $8.6 \mathrm{~m} \mathrm{~s}^{-1}$.	A1	All cao [Award all marks if 8.6 seen WWW] Do not condone ± 8.6.
		3	

Q2		mark	
	either for u first: $8=\frac{1}{2}(u+2.25) \times 32$ $u=-1.75$ so $1.75 \mathrm{~m} \mathrm{~s}^{-1}$ $2.25=-1.75+32 a$ $a=0.125$ so $0.125 \mathrm{~m} \mathrm{~s}^{-2}$ Directions of u and a are defined	M1	comment

Q 3		mark	Notes
(i)	$\begin{aligned} & -6=-2 \times 3 \\ & \text { so } y=3 \times 3=9 \text { and } z=-4 \times 3=-12 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	May be implied Both correct [Award 2 for both correct answers seen WW]
(ii)	$\begin{aligned} & \left(\begin{array}{c} -2 \\ 3 \\ -4 \end{array}\right)+\left(\begin{array}{c} 3 \\ -5 \\ -1 \end{array}\right)=5 \mathbf{a} \\ & \mathbf{a}=\left(\begin{array}{c} 0.2 \\ -0.4 \\ -1 \end{array}\right) \text { so accn is }\left(\begin{array}{c} 0.2 \\ -0.4 \\ -1 \end{array}\right) \mathrm{m} \mathrm{~s}^{-2} \\ & \text { Magnitude is } \sqrt{0.2^{2}+(-0.4)^{2}+(-1)^{2}} \\ & =1.09544 \ldots \text { so } 1.10 \mathrm{~m} \mathrm{~s}^{-2},(3 \mathrm{s.f.}) \end{aligned}$	M1 B1 A1 M1 F1 5	Use of Newton's $2^{\text {nd }}$ Law in vector form for all 3 cpts of attempted resultant Treat use of wrong vectors as MR. Correct LHS The acceleration may be written as a magnitude in a given direction. FT their values. Condone missing brackets. Condone no - signs. Accept 1.1. Accept surd form. Must come from a vector with 3 non-zero components for a
		7	

Q 4		mark	Comment
(i)		B1 B1 2	Any one force in correct direction correctly labelled with arrow or all forces with correct directions and arrows. A force may be replaced by its components if labelled correctly eg $m g \cos 20^{\circ}, m g \sin 20^{\circ}$. All correct (Accept words for labels and weight as $W, m g, 147$ (N)) No extra or duplicate forces. Do not allow force and its components unless components are clearly distinguished, eg by broken lines.
(ii)	Either Up the plane $P \cos 20-15 \times 9.8 \times \sin 20=0$ $P=53.50362 \ldots \text { so } 53.5 \text { (3 s. f.) }$	M1 A1 A1 3	Attempt to resolve at least one force up plane. Accept mass not weight. No extra forces. If other directions used, all forces must be present but see below for resolving vertically and horizontally. Accept only error as consistent $\mathrm{s} \leftrightarrow \mathrm{c}$. Cao
	Or Vertically and horizontally $R \cos 20^{\circ}=15 \mathrm{~g}, \quad R \sin 20^{\circ}=P$ Eliminate R $\begin{aligned} & P=\frac{15 \mathrm{~g}}{\cos 20^{\circ}} \times \sin 20^{\circ} \\ & P=53.5 \text { (3.s.f.) } \end{aligned}$	M1 A1 A1 3	Attempt to resolve all forces both horizontally and vertically and attempt to combine into a single equation. No extra forces. Accept $s \leftrightarrow c$. Accept mass not weight. Accept only error as consistents $\leftrightarrow c$. Cao
	Or Triangle of forces Triangle drawn and labelled $\begin{aligned} & \frac{P}{15 g}=\tan 20^{\circ} \\ & P=53.5 \text { (3.s.f.) } \end{aligned}$	M1 A1 A1 3	All sides must be labelled and in correct orientation; three forces only; condone no arrows Oe Cao
		5	

Q 5		mark	notes
	Usual notation either consider height: Attempt to substitute for u and a in $s=u t+\frac{1}{2} a t^{2}$ $y=30 \sin 35 t-4.9 t^{2}$ Need $y=0$ for time of flight T giving $T=\frac{30 \sin 35}{4.9}(=3.511692 \ldots)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	Accept: g as $g, \pm 9.8, \pm 9.81, \pm 10 ; u=30 ; \mathrm{s} \leftrightarrow \mathrm{c}$. Derivation need not be shown cao. Any form. May not be explicit.
	Or Consider time to top Attempt to substitute for u and a in $v=u+a t$ $v=30 \sin 35-9.8 t$ Need $v=0$ and to double for time of flight T giving $T=\frac{30 \sin 35}{4.9}(=3.511692 \ldots)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	Accept: g as $g, \pm 9.8, \pm 9.81, \pm 10 ; u=30 ; \mathrm{s} \leftrightarrow \mathrm{c}$. Derivation need not be shown cao. Any form. May not be explicit.
	then $\begin{aligned} & x=30 \cos 35 T \\ & \text { so } x=30 \cos 35 \times \frac{30 \sin 35}{4.9}(=86.29830 \ldots) \end{aligned}$ Required time for sound is $x / 343$ Total time is $3.511692 \ldots+0.251598 \ldots=$ $\text { 3.76329... so } 3.76 \text { s (3 s. f.) }$	M1 F1 M1 A1	Accept $\mathrm{s} \leftrightarrow \mathrm{c}$ if consistent with above FT for their time Condone consistent $\mathrm{s} \leftrightarrow \mathrm{c}$ error (which could lead to correct answer here). FT from their x cao following fully correct working throughout question.
		8	

Q6		mark	notes
(i)	Either using suvat: Use of $\mathbf{v}=\mathbf{u}+t \mathbf{a}$ $\mathbf{v}=4 \mathbf{i}-2 \mathbf{t} \mathbf{j}$ Use of $\mathbf{r}=\left(\mathbf{r}_{0}+\right) t \mathbf{u}+1 / 2 t^{2} \mathbf{a}$ $+3 \mathbf{j}$ $\mathbf{r}=4 t \mathbf{i}+\left(3-t^{2}\right) \mathbf{j}$	M1 A1 M1 B1 A1 5	Column vectors may be used throughout; lose 1 mark once if \mathbf{j} components put at top or if fraction line included. . Notation used must be clear. substitution required. Must be vectors. substitution required. \mathbf{r}_{0} not required. Must be vectors. May be seen on either side of a meaningful equation for \mathbf{r} Accept $\mathbf{r}=3 \mathbf{j}+4 t \mathbf{i}-1 / 2 \times 2 \times t^{2} \mathbf{j}$ oe written in a correct notation. Isw, providing not reduced to scalar: (see 12 c in marking instructions)
	Or using integration: $\begin{aligned} & \mathbf{v}=\int \mathbf{a} d t \\ & \mathbf{v}=4 \mathbf{i}-2 t \mathbf{j} \\ & \mathbf{r}=\int \mathbf{v} d t \\ & +3 \mathbf{j} \\ & \mathbf{r}=44 \mathbf{i}+\left(3-t^{2}\right) \mathbf{j} \end{aligned}$	M1 A1 M1 B1 A1 5	Attempt at integration. Condone no ' $+\mathbf{c}$ '. Must be vectors. cao Integrate their \mathbf{v} but must contain 2 components. Must be vectors. May be seen on either side of a meaningful equation for \mathbf{r} Accept $\mathbf{r}=3 \mathbf{j}+4 t \mathbf{i}-1 / 2 \times 2 \times t^{2} \mathbf{j}$ oe written in a correct notation. Isw, providing not reduced to scalar: (see 12e in marking instructions)
		5	
(ii)	$\begin{aligned} & \mathbf{v}(2.5)=4 \mathbf{i}-5 \mathbf{j} \\ & \text { Angle is }(90+) \arctan \frac{5}{4} \\ & =141.34019 \ldots \text { so } 141^{\circ}(3 \text { s. f. }) \end{aligned}$	B1 M1 A1 3	FT their \mathbf{v} Award for arctan attempted oe. FT their values. Allow argument to be \pm (their $\mathbf{i} \mathrm{cpt}) /($ their $\mathbf{j} \mathrm{cpt})$ or \pm (their $\mathbf{j} \mathbf{c p t}) /($ their $\mathbf{i} \mathrm{cpt})$. Allow this mark if bearing of position vector attempted. cao
		8	

Q7		mark	notes
(i)	$\begin{aligned} & \frac{-20}{2}=-10 \\ & -10 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	M1 A1 2	Use of a suitable triangle to attempt at $\Delta v / \Delta t$ for suitable interval. Accept wrong sign. cao. Allow both marks if correct answer seen.
(ii) (A)	Signed area under graph $\frac{1}{2} \times 2 \times 20=20$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Using the relevant area or other complete method
	either using areas Signed area $2 \leq t \leq 5$ is $\frac{1}{2} \times((5-2)+(4.5-2.4)) \times(-4)=-10.2$ Signed area $5 \leq t \leq 6$ is $\frac{1}{2} \times 1 \times 8=4$ Total displacement is 13.8 m	B1 B1 B1	Allow + 10.2. cao but FT from their 20 in part (A)
	or using suvat From $t=0$ to $t=2.4$: 19.2 From $t=4.5$ to $t=6: 3.0$ From $t=2.4$ to $t=4.5:-8.4$ Total : 13.8	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Both required and both must be correct.
		5	
(iii)	$\begin{aligned} & a=4 t-14 \\ & a(0.5)=-12 \text { so }-12 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } \\ \text { A1 } \\ & \\ \hline \end{array}$	Differentiate. Do not award for division by t.
(iv)	Model A gives - $4 \mathrm{~m} \mathrm{~s}^{-1}$ For model B we need v when $a=0$ $v\left(\frac{7}{2}\right)=-4.5$ so model B is $0.5 \mathrm{~m} \mathrm{~s}^{-1}$ less	B1 M1 A1 F1 4	May be implied by other working Using (iii) or an argument based on symmetry or sketch graph that $a=0$ when $t=3.5$ Accept values without more or less

(v)			Do not penalise poor notation
	Displacement is $\int_{0}^{6}\left(2 t^{2}-14 t+20\right) \mathrm{d} t$	M1	Limits not required.
	$=\left[\frac{2 t^{3}}{3}-7 t^{2}+20 t\right]_{0}^{6}$	A1	Limits not required. Accept 2 terms correct.
	$=12$ so 12 m.	M1	Substitute limits cao. Accept bottom limit not substituted.
		4	

Q 8		mark	notes
(i)	25 N	$\begin{array}{ll} \text { B1 } & \\ & 1 \\ \hline \hline \end{array}$	Condone no units. Do not accept -25 N.
(ii)	$\begin{aligned} & 50 \cos 25 \\ & =45.31538 \ldots \text { so } 45.3 \mathrm{~N}(3 \mathrm{~s} . \mathrm{f} .) \end{aligned}$	M1 A1 2	Attempt to resolve 50 N . Accept $\mathrm{s} \leftrightarrow \mathrm{c}$. No extra forces. cao but accept - 45.3.
(iii)	Resolving vertically $\begin{aligned} & R+50 \sin 25-8 \times 9.8=0 \\ & R=57.26908 \ldots \text { so } 57.3 \mathrm{~N}(3 \text { s. f. }) \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } \\ \text { A1 } & \\ & 3 \\ \hline \hline \end{array}$	All relevant forces with resolution of 50 N . No extras. Accept $\mathrm{s} \leftrightarrow \mathrm{c}$. All correct.
(iv)	Newton's $2^{\text {nd }}$ Law in direction DC $\begin{aligned} & 50 \cos 25-20=18 a \\ & a=1.4064105 \ldots \text { so } 1.41 \mathrm{~m} \mathrm{~s}^{-2}(3 \mathrm{s.f.}) \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ & \\ \text { A1 } \\ \text { A1 } & \\ & 3 \\ \hline \end{array}$	Newton's 2nd Law with $m=18$. Accept $F=m g a$. Attempt at resolving 50 N . Allow 20 N omitted and $\mathrm{s} \leftrightarrow \mathrm{c}$. No extra forces. Allow only sign error and $s \leftrightarrow c$. cao
Q8 (v)	continued Resolution of weight down the slope	B1	$m g \sin 5^{\circ}$ where $m=8$ or 10 or 18 , wherever first seen
	either Newton's ${ }^{\text {nd }}$ Law down slope overall $18 \times 9.8 \times \sin 5-20=18 a$ $a=-0.2569 \ldots$ Newton's $2^{\text {nd }}$ Law down slope. Force in rod can be taken as tension or thrust. Taking it as tension T gives For D: $10 \times 9.8 \times \sin 5-15-T=10 a$ (For C: $8 \times 9.8 \times \sin 5-5+T=8 a$) $T=-3.888 \ldots=-3.89 \mathrm{~N} \text { (3 s. f.) }$ The force is a thrust	M1 A1 M1 F1 A1 A1	$F=m a$. Must have 20 N and $m=18$. Allow weight not resolved and use of mass. Accept $\mathrm{s} \leftrightarrow \mathrm{c}$ and sign errors (including inconsistency between the 15 N and the 5 N). cao $F=m a$. Must consider the motion of either C or D and include: component of weight, resistance and T. No extra forces. Condone sign errors and $\mathrm{s} \leftrightarrow \mathrm{c}$. Do not condone inconsistent value of mass. FT only applies to a, and only if direction is consistent. ' $+T$ ' if T taken as a thrust ' $-T$ ' if T taken as a thrust If T taken as thrust, then $T=+3.89$. Dependent on T correct

or Newton's $2^{\text {nd }}$ Law down slope. Force in rod can be taken as tension or thrust. Taking it as tension T gives For C: $8 \times 9.8 \times \sin 5-5+T=8 a$ For D: $10 \times 9.8 \times \sin 5-15-T=10 a$ $a=-0.2569 \ldots T=-3.888 \ldots=-3.89 \mathrm{~N} \text { (3s.f.) }$ The force is a thrust	M1 M1 A1 A1 F1 A1	$F=m a$. Must consider the motion of C and include: component of weight, resistance and T. No extra forces. Condone sign errors and $\mathrm{s} \leftrightarrow \mathrm{c}$. Do not condone inconsistent value of mass. $F=m a$. Must consider the motion of D and include: component of weight, resistance and T. No extra forces. Condone sign errors and $\mathrm{s} \leftrightarrow \mathrm{c}$. Do not condone inconsistent value of mass. Award for either the equation for C or the equation for D correct. ' $-T$ ' if T taken as a thrust ' $+T$ ' if T taken as a thrust First of a and T found is correct. If T taken as thrust, then $T=+3.89$. The second of a and T found is FT Dependent on T correct
then After 2 s : $v=3+2 \times a$ $v=2.4860303$.. so $2.49 \mathrm{~m} \mathrm{~s}^{-1}$ (3 s. f.)	$\begin{aligned} & \text { M1 } \\ & \text { F1 } \end{aligned}$ 9	Allow sign of a not followed. FT their value of a. Allow change to correct sign of a at this stage. FT from magnitude of their a but must be consistent with its direction.
	18	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

