Mathematics (MEI)

Advanced GCE

Unit 4762: Mechanics 2

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Q 1		mark	notes
(a) (i)	$\begin{aligned} & 13 T=10(4.75-(-1.75)) \\ & \text { so } T=5 . \text { So } 5 \mathrm{~s} . \\ & \text { OR: } 13=10 a \\ & T=\frac{4.75-(-1.75)}{1.3}=5 \end{aligned}$	M1 A1 A1 B1 M1 A1 3	Use of $I=F t$. Allow sign errors Signs correct on RHS cao N2L Use of suvat cao
(ii)	PCLM: $10 \times 4.75-15 \times 0.5=25 v_{\mathrm{P}+\mathrm{Q}}$ $v_{\mathrm{P}+\mathrm{Q}}=1.6$ so $1.6 \mathrm{~m} \mathrm{~s}^{-1}$ in +ve direction	$\begin{array}{r} \mathrm{M} 1 \\ \mathrm{~A} 1 \\ 2 \\ \hline \end{array}$	PCLM with combined mass. Allow sign errors No need for reference to direction
(iii)	PCLM: $10 \times 4.75-15 \times 0.5=10 \times 1+15 v_{Q}$ Hence $v_{\mathrm{Q}}=2$ and Q has velocity $2 \mathrm{~m} \mathrm{~s}^{-1}$ NEL: $\frac{v_{\mathrm{Q}}-1}{-0.5-4.75}=-e$ so $e=0.19047 \ldots$ so 0.190 (3 s. f.)	$\begin{array}{r} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { M1 } \\ \\ \text { A1 } \\ \text { A1 } \\ \hline \end{array}$	PCLM with all correct terms. Allow sign errors Any form Accept no direct reference to direction NEL. Accept their v_{Q} and any sign errors. Fraction must be correct way up Any form. FT their v_{Q}. cao accept $0.19,4 / 21$ accept 0.2 only if 0.19 seen earlier

(b)	Initial vert cpt is $14 \sin 30=7$ $1^{\text {st }}$ hits ground at v given by $\begin{aligned} & v^{2}=7^{2}+2 \times 9.8 \times 3.125 \\ & v=10.5 \end{aligned}$ Vert cpt after $2^{\text {nd }}$ bounce 10.5×0.6^{2} Horiz cpt is unchanged throughout ($14 \cos 30$) Angle is $\arctan \left(\frac{10.5 \times 0.6^{2}}{14 \cos 30}\right)=17.31586 \ldots$ so 17.3° (3 s. f.)	B1 M1 A1 M1 B1 B1 M1 A1 8	Appropriate suvat. Allow ± 9.8 etc Condone $u=14$ their 10.5×0.6^{n} for $n=1$, 2 or 3 Condone use of their initial vertical component. Do not award if horiz component is also multiplied by 0.6 use of $\times 0.6^{2}$ or attempt at two bounces with 0.6 used each time Award even if value wrong or not given FT their horiz and vert components. oe. Fraction must be for correct angle. cao SC answer of 11.7 will usually earn $5 / 8$
		19	

Q 2		mark	notes
(i)	cw moments about A Let force be S $600 \times 0.8-S \times 2=0$ $S=240 \text { so } 240 \text { N vertically upwards }$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$ 3	Penalise answers to fewer than 4sf only once Moments. All forces. No extras Need statement of direction or diagram
(ii)	cw moments about A Let tension be T $600 \times 0.8-T \sin 50 \times 0.3=0$ $\begin{aligned} & T=2088.65 \ldots \quad\left(\frac{1600}{\sin 50}\right) \\ & \text { so } 2089 \mathrm{~N}(4 \text { s. f. }) \end{aligned}$	M1 M1 A1 A1 A1 5	Moments. All forces. No extras. Attempt at moment of T (need not be resolved) Note that mmts about B needs forces at hinge. Correct method for moment of T. Allow length errors and $s \leftrightarrow c$ Moment of T correct (allow sign error) All correct cao
(iii)	Resolve $\rightarrow X-T \cos 50=0$ so $X=1342.55 \ldots$. $=1343$ (4 s. f.) Resolve $\downarrow Y-T \sin 50+600=0$ so $Y=1000$ Method for either R or α $\begin{aligned} & R=\sqrt{1600^{2} \cot ^{2} 50+1000^{2}}=1674.05 \text {.. } \\ & \text { so } 1674(4 \text { s. f. }) \\ & \alpha=\arctan \frac{1000}{1600 \cot 50} \\ & \alpha=36.6804 \ldots \text { so } 36.68^{\circ}(4 \text { s. f. }) \end{aligned}$	M1 F1 M1 F1 M1 F1 F1 7	Resolving horiz. Allow sign error. T must be resolved, allow $s \leftrightarrow c$ FT their T only. Allow $1600 \cot 50$ NB other methods possible FT their T only M dependent on attempts at X and Y using moments/resolution FT their X and Y Numerical value only FT their X and Y Numerical value only Accept 36.67
(iv)	Angle GAP is α above so 36.68° (4 s. f.) Weight, T and R are the only forces acting on the beam which is in equilibrium. Hence they are concurrent. Or geometrical calculation	B1 E1 2	Must be clear
		17	

Q 3		mark	notes
(i)	$10\binom{\bar{x}}{\bar{y}}=4\binom{-\frac{1}{2}}{2}+2\binom{\frac{1}{2}}{3}+\binom{1 \frac{1}{2}}{3 \frac{1}{2}}+3\binom{2 \frac{1}{2}}{2 \frac{1}{2}}$ $=\binom{-2+1+1 \frac{1}{2}+7 \frac{1}{2}}{8+6+3 \frac{1}{2}+7 \frac{1}{2}}=\binom{8}{25}$ so $\binom{\bar{x}}{\bar{y}}=\binom{0.8}{2.5}$ and c.m. is $(0.8,2.5)$	M1 B1 E1 E1	Correct method clearly indicated for x or y component. If 2D method, at least 1 mass +cm correct for a region. If separate cpts, at least 2 mass +cm correct for one of the cpts Working shown. Either expression shown oe Both
(ii)	c.w. moments about J $3.2 \times 1.8-T_{\mathrm{H}} \times 4=0$ so $T_{\mathrm{H}}=1.44$ and the force at H is 1.44 N Resolving \uparrow force at J is $3.2-1.44=1.76 \mathrm{~N}$	B1 M1 A1 M1 F1 5	Use of 1.8 oe A moments equation with all relevant forces. Allow use of 10 instead of 3.2 Or moments again Only FT if positive final answer
(iii)	below		

(iii)	$10\left(\begin{array}{l} \bar{x} \\ \bar{y} \\ \bar{z} \end{array}\right)=4\left(\begin{array}{l} 0 \\ 2 \\ \frac{1}{2} \end{array}\right)+2\left(\begin{array}{l} \frac{1}{2} \\ 3 \\ 0 \end{array}\right)+2\left(\begin{array}{c} 2 \\ 3 \frac{1}{2} \\ 0 \end{array}\right)+2\left(\begin{array}{c} 2 \frac{1}{2} \\ 3 \\ -1 \end{array}\right)$ $=\left(\begin{array}{l} 0+1+4+5 \\ 8+6+7+6 \\ 2+0+0-2 \end{array}\right)=\left(\begin{array}{c} 10 \\ 27 \\ 0 \end{array}\right)$ so $\left(\begin{array}{l}\bar{x} \\ \bar{y} \\ \bar{z}\end{array}\right)=\left(\begin{array}{c}1 \\ 2.7 \\ 0\end{array}\right)$ and c.m. is $(1,2.7,0)$	M1 B1 B1 E1 E1 5	Dealing with 3D Dealing correctly with one folded part Dealing with the other folded part Working shown. Either expression shown oe All three components
(iv)	Let angle IOG be θ $\tan \theta=\frac{1}{2.7}$ so angle is $20.323 \ldots$ so 20.3° (3 s . f.)	B1 B1 M1 A1 4	Recognising that cm is vertically below O (may be implied) Correctly identifying the angle Accept $\tan \theta=\frac{2.7}{1}$ oe Do NOT isw
		18	

Q 4		mark	notes
(a)	$\begin{aligned} & \frac{1}{2} \times 80 \times\left(6^{2}-V^{2}\right) \\ & =80 \times 9.8 \times 1600-1300000 \end{aligned}$ so $V=34.29285 \ldots$ so $34.3 \mathrm{~m} \mathrm{~s}^{-1}$, (3 s. f.)	M1 B1 B1 A1 A1 5	WE equation. Allow GPE OR init KE term omitted or wrong. Allow sign errors. There must be 3 terms one of which is the WD term KE terms correct (accept $40 \times\left(V^{2}-6^{2}\right)$) GPE term. Allow sign error All terms present. Accept only sign errors, but not the 1300000 and $80 \times 9.8 \times 1600$ terms with same sign Cao accept $14 \sqrt{6}$
(b) (i)	N2L up the slope. Driving force is $S \mathrm{~N}$ $S-1150-800 \times 9.8 \times 0.1=800 \times 0.25$ $S=2134$ Power is 2134×8 $\text { = } 17072 \text { so } 17.1 \text { kW (3 s. f.) }$	M1 B1 M1 A1 E1 M1 A1	N2L. Allow either resistance or weight cpt omitted. Allow weight not resolved and sign errors. RHS correct Attempt at weight cpt ($800 \mathrm{~g} \sin \theta$ is sufficient) Allow missing \boldsymbol{g} Weight cpt correct (numerical) May be implied Use of $P=F v$
(ii)	Let resistance on sledge be $F \mathrm{~N}$ N2L up slope for sledge $\begin{aligned} & 900-F-300 \times 9.8 \times 0.1=300 \times 0.25 \\ & \text { so } F=531 \end{aligned}$ normal reaction is $300 \mathrm{gcos} \theta$ Use $\cos \theta=\sqrt{0.99}$ or $\cos 5.7$ $\begin{aligned} & \mu=\frac{531}{300 \times 9.8 \times \sqrt{0.99}} \\ & =0.181522 \ldots \text { so } 0.182(3 \text { s. f. }) \end{aligned}$	M1 A1 B1 B1 M1 A1 6	Need non-zero accn, correct mass and 900. Allow weight missing or unresolved and allow sign errors. Do not award if 2134 included In context Use of $F=\mu R \quad$ for any F and R but not $\mathrm{F}=900$ cao
		18	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

