

Mark Scheme (Results)

June 2011

GCE Mechanics M4 (6680) Paper 1

ALWAYS LEARNING

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025 or visit our website at <u>www.edexcel.com</u>.

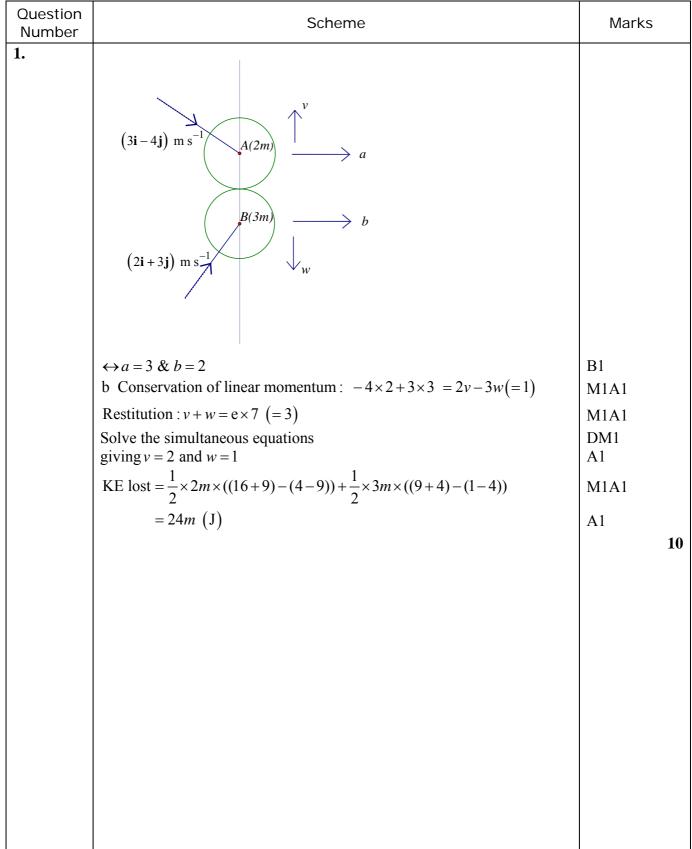
If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011 Publications Code UA028446 All the material in this publication is copyright © Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking


- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- L The second mark is dependent on gaining the first mark

June 2011 6680 Mechanics M4 Mark Scheme

Question Number	Scheme	Marks
2.	$ \begin{array}{c} 5 \text{ m} \\ 5-x X x C \\ 4 \text{ m} \\ B \\ \end{array} $ $ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	M1 4 1
	At X: $\leftrightarrow u \sin \alpha = v \sin \beta$ $\downarrow v \cos \beta = eu \cos \alpha$ $4v \cos \beta = 3u \cos \alpha$	M1A1 M1A1
	Eliminate $u \And v$ by dividing: $\frac{\tan \alpha}{3} = \frac{\tan \beta}{4}$ Substitute for the trig ratios: $\frac{5-x}{3\times 4} = \frac{x}{4\times 7.5}$ Solve for x : $37.5 - 7.5x = 3x$ $x = 3.57$ (m) or better, $\frac{25}{7}$	M1 DM1A1 DM1 A1 9
3. (a)	Velocity of C relative to $S = (8\mathbf{i} + u\mathbf{j}) - (12\mathbf{i} + 16\mathbf{j})$ = $(-4\mathbf{i} + (u - 16)\mathbf{j})(\mathbf{m s}^{-1})$	M1 A1 (2)
(b) (i)	C intercepts S \Rightarrow relative velocity is parallel to i . $\Rightarrow u - 16 = 0, u = 16$	M1A1 (2)
(ii)	10 km at 4 km h^{-1} takes 2.5 hours, so 2.30pm	M1A1 (2)

Question Number	Scheme	Marks
(c)	$u = 8$, relative velocity $= -4\mathbf{i} - 8\mathbf{j}$. $s \xrightarrow{A} 10 \xrightarrow{C} 0$ $d \xrightarrow{-4\mathbf{i} - 8\mathbf{j} \text{ m s}^{-1}}$	B1
	Correct distance identified Using velocity: $\tan \theta = \frac{8}{4} = 2 \Rightarrow \sin \theta = \frac{2}{\sqrt{5}}$	B1
	Using distance: $\sin \theta = \frac{d}{10} = \frac{2}{\sqrt{5}}$,	M1A1
	$d = \frac{20}{\sqrt{5}} = 4\sqrt{5} = 8.9 \text{ (km)}$	A1 (5)

Question Number	Scheme	Marks	
4. (a)	$W rel H$ 25° 40° 5 25° H 40° 5 H 40° 5 H 40°		
	2 vector triangles with a common side correct and drawn on a single diagram Wind is from bearing 025°, (N 25° E)	M1 A1 A1	(3)
(b)	$\frac{5}{\sin 25^\circ} = \frac{W}{\sin 40^\circ}$ (ft on their 25°)	M1A1ft	
	$W = \frac{5 \times \sin 40^{\circ}}{\sin 25^{\circ}} = 7.6 \left(\text{km h}^{-1} \right)$	M1A1	
			(4)

Question Number	Scheme	Marks
5. (a)	Need an equation linking speed and displacement, so $mv \frac{dv}{dx} = -(a+bv^2)$ Separating the variables: $\int \frac{6v}{a+bv^2} dv = \int -1dx$ Integrating : $\frac{3}{b} \ln(a+bv^2) = -x + (C)$ $X = \frac{3}{b} \left[\ln(a+bU^2) - \ln(a) \right] = \frac{3}{b} \ln \left[1 + \frac{bU^2}{a} \right]$ ** as required	M1A1 M1 A1 M1A1 (6)
(b)	Equation connecting v and t: $6\frac{dv}{dt} = -(12+3v^2)$ Separate the variables: $\int \frac{-6}{12+3v^2} dv = \int 1 dt$ $\int_U^0 \frac{-2}{4+v^2} dv = \int_0^U \frac{2}{4+v^2} dv = T$ $T = \frac{2}{2} \tan^{-1} \frac{U}{2} = \tan^{-1} \frac{U}{2} (s)$	M1 M1, A1 M1 A1 (5) 11

Question Number	Scheme	Marks	
6. (a)	Using F = ma: $4\frac{d^2x}{dt^2} = -9x - 12v$ = $-9x - 12\frac{dx}{dt}$ Hence $4\frac{d^2x}{dt^2} + 12\frac{dx}{dt} + 9x = 0$ **	M1A1 M1 A1	
			(4)
(b)	Auxiliary eqn : $4m^2 + 12m + 9 = 0$, $(2m+3)^2 = 0, m = -3/2, \ \lambda = 3/2$ $t = 0, x = 4 \Longrightarrow B = 4$ $t = 0, \ \dot{x} = e^{-\lambda t} \left(-\lambda \left(At + B \right) + A \right) = 0 \Longrightarrow -6 + A = 0, \ A = 6$	B1 B1 B1 B1	
			(4)
(c)	$\dot{x} = e^{-\frac{3}{2}t} \left(-\frac{3}{2}(6t+4)+6\right) = -9te^{-\frac{3}{2}t}$ $\ddot{x} = e^{-\frac{3}{2}t} \left(-9 - (-9t) \times \frac{3}{2}\right),$	M1A1 M1	
	so acceleration = 0 when $t = 2/3$ at which time, $v = -6e^{-1}$, so max speed = $6/e \approx 2.21 \text{ m s}^{-1}(3\text{ sf})$	A1, A1	(5) 13

Question	Scheme	Marks	
Number 7.			
(a)	$\begin{array}{c} B \\ \theta \\ 2\theta \\ 2\theta \\ 2mg \\$		
	R $2a$ A		
	$BR = 2 \times 2a \cos \theta = 4a \cos \theta$	B1	
	$EPE = 3mg \frac{(4a\cos\theta)^2}{2 \times 2a}$	M1	
	$= 12mga\cos^2\theta = 6mga + 6mga\cos 2\theta$	A1	
	GPE: taking AR as the level of zero GPE, GPE = GPE of AB + GPE of BC $= 4mg \times a \sin 2\theta + 2mg (2a \sin 2\theta - a / 2 \cos 2\theta)$ $= 8mga \sin 2\theta - mga \cos 2\theta$	M1+M1 A1	
	$\Rightarrow \text{Total } V = 8mga \sin 2\theta + 5mga \cos 2\theta + \text{constant, as required. **}$	A1	(7)
(b)	$\frac{dV}{d\theta} = 16mga\cos 2\theta - 10mga\sin 2\theta$	M1 A1	
	$\frac{dV}{d\theta} = 0 \Longrightarrow 10\sin 2\theta = 16\cos 2\theta$	M1	
	$\Rightarrow \tan 2\theta = \frac{8}{5} \Rightarrow \theta = 0.51 \text{ radians } (29.0^\circ)$	A1	
	0		(4)
	Or: $8mga\sin 2\theta + 5mga\cos 2\theta = \sqrt{89}mga\cos(2\theta - \alpha)$, $\tan \alpha = \frac{8}{5}$	M1A1	
	t. pts when $2\theta - \alpha = n\pi \Rightarrow \theta = 0.51$ rads.	M1A1	
(c)	$\frac{d^2 V}{d\theta^2} = -32mga\sin 2\theta - 20mga\cos 2\theta$	M1	
	$d\theta^2$ $\theta = 0.51 \Rightarrow \frac{d^2 V}{d\theta^2} < 0$, equilibrium is unstable. cso	M1A1	
			(3) 14
	Or: $2\theta - \alpha = 0 \implies \cos(2\theta - \alpha) = 1$		
	Max value \Rightarrow equilibrium is unstable		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email publication.orders@edexcel.com Order Code UA028446 June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/guals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

