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• Write your name, centre number and candidate number in the spaces provided on the
answer booklet. Please write clearly and in capital letters.

• Use black ink. Pencil may be used for graphs and diagrams only.
• Read each question carefully. Make sure you know what you have to do before starting

your answer.
• Answer all the questions.
• Do not write in the bar codes.
• Give non-exact numerical answers correct to 3 significant figures unless a different degree

of accuracy is specified in the question or is clearly appropriate.
• You are permitted to use a scientific or graphical calculator in this paper.
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• The number of marks is given in brackets [ ] at the end of each question or part question.
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• This document consists of 4 pages. Any blank pages are indicated.
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1 A line l has equation
x − 1

5
=

y − 6

6
=

ß + 3

−7
and a plane p has equation x + 2y − ß = 40.

(i) Find the acute angle between l and p. [4]

(ii) Find the perpendicular distance from the point (1, 6, −3) to p. [2]

2 It is given that ß = eiθ , where 0 < θ < 2π, and w =
1 + ß

1 − ß
.

(i) Prove that w = i cot 1
2
θ. [3]

(ii) Sketch separate Argand diagrams to show the locus of ß and the locus of w. You should show

the direction in which each locus is described when θ increases in the interval 0 < θ < 2π. [3]

3 The variables x and y satisfy the differential equation

dy

dx
+ 4y = 5 cos 3x.

(i) Find the complementary function. [2]

(ii) Hence, or otherwise, find the general solution. [7]

(iii) Find the approximate range of values of y when x is large and positive. [2]

4 A group G, of order 8, is generated by the elements a, b, c. G has the properties

a2 = b2 = c2 = e, ab = ba, bc = cb, ca = ac,

where e is the identity.

(i) Using these properties and basic group properties as necessary, prove that abc = cba. [2]

The operation table for G is shown below.

e a b c bc ca ab abc

e e a b c bc ca ab abc

a a e ab ca abc c b bc

b b ab e bc c abc a ca

c c ca bc e b a abc ab

bc bc abc c b e ab ca a

ca ca c abc a ab e bc b

ab ab b a abc ca bc e c

abc abc bc ca ab a b c e

(ii) List all the subgroups of order 2. [2]

(iii) List five subgroups of order 4. [3]

(iv) Determine whether all the subgroups of G which are of order 4 are isomorphic. [2]
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5 The substitution y = uk, where k is an integer, is to be used to solve the differential equation

x
dy

dx
+ 3y = x2y2 (A)

by changing it into an equation (B) in the variables u and x.

(i) Show that equation (B) may be written in the form

du

dx
+

3

kx
u =

1

k
xuk+1. [4]

(ii) Write down the value of k for which the integrating factor method may be used to solve

equation (B). [1]

(iii) Using this value of k, solve equation (B) and hence find the general solution of equation (A),

giving your answer in the form y = f(x). [4]

6 (a) The set of polynomials {ax + b}, where a, b ∈ >, is denoted by P. Assuming that the associativity

property holds, prove that P, under addition, is a group. [4]

(b) The set of polynomials {ax + b}, where a, b ∈ {0, 1, 2}, is denoted by Q. It is given that Q,

under addition modulo 3, is a group, denoted by (Q, +(mod3)).

(i) State the order of the group. [1]

(ii) Write down the inverse of the element 2x + 1. [1]

(iii) q(x) = ax + b is any element of Q other than the identity. Find the order of q(x) and hence

determine whether (Q, +(mod3)) is a cyclic group. [4]

7 (In this question, the notation ∆ABC denotes the area of the triangle ABC.)

The points P, Q and R have position vectors pi, qj and rk respectively, relative to the origin O, where

p, q and r are positive. The points O, P, Q and R are joined to form a tetrahedron.

(i) Draw a sketch of the tetrahedron and write down the values of ∆OPQ, ∆OQR and ∆ORP. [3]

(ii) Use the definition of the vector product to show that 1
2
∣
∣
−−→
RP ×

−−→
RQ ∣

∣ = ∆PQR. [1]

(iii) Show that (∆OPQ)2 + (∆OQR)2 + (∆ORP)2 = (∆PQR)2. [6]

8 (i) Use de Moivre’s theorem to express cos 4θ as a polynomial in cos θ. [4]

(ii) Hence prove that cos 4θ cos 2θ ≡ 16 cos6
θ − 24 cos4

θ + 10 cos2
θ − 1. [1]

(iii) Use part (ii) to show that the only roots of the equation cos 4θ cos 2θ = 1 are θ = nπ, where n is

an integer. [3]

(iv) Show that cos 4θ cos 2θ = −1 only when cos θ = 0. [3]
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