Centre No.					Pape	er Refer	ence			Surname	Initial(s)
Candidate No.			6	6	8	1	/	0	1	Signature	

Paper Reference(s)

6681/01

Edexcel GCE

Mechanics M5

Advanced/Advanced Subsidiary

Friday 24 June 2011 – Afternoon

Time: 1 hour 30 minutes

Materials required for examination	Items included with question paper
Mathematical Formulae (Pink)	Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer to each question in the space following the question.

Whenever a numerical value of g is required, take $g = 9.8 \text{ m s}^{-2}$.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 8 questions in this question paper. The total mark for this paper is 75.

There are 24 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance wite Edexcel Limited copyright policy.

©2011 Edexcel Limited.

Printer's Log. No. P35416A W850/R6681/57570 5/5/5/3/3

Examiner's use only

Team Leader's use only

Turn over

Total

4 advancing learning, changing lives

(4)
(4)

	A particle P moves in the x - y plane so that its position vector \mathbf{r} metres at time t seconds satisfies the differential equation						
	$\frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2} - 4\mathbf{r} = -3\mathrm{e}^t\mathbf{j}$						
	When $t = 0$, the particle is at the origin and is moving with velocity $(2\mathbf{i} + \mathbf{j}) \text{ m s}^{-1}$.						
	Find \mathbf{r} in terms of t .	(10)					
_							
_							
_							
_							

	Leave
	blank
Question 2 continued	
	1

(Total 10 marks)

opposite	on. Assuming that there a	ive to the rocket, in a direction are no external forces, find the (7)
		(1)

4.	Two forces $\mathbf{F}_1 = (3\mathbf{j} + \mathbf{k})$ N and $\mathbf{F}_2 = (4\mathbf{i} + \mathbf{j} - \mathbf{k})$ N act on a rigid body. The force \mathbf{F}_1 acts at the point with position vector $(2\mathbf{i} - \mathbf{j} + 3\mathbf{k})$ m and the force \mathbf{F}_2 acts at the point with position vector $(-3\mathbf{i} + 2\mathbf{k})$ m. The two forces are equivalent to a single force \mathbf{R} acting at the point with position vector $(\mathbf{i} + 2\mathbf{j} + \mathbf{k})$ m together with a couple of moment \mathbf{G} .
	Find,
	(a) R , (2)
	(b) G. (4)
	A third force \mathbf{F}_3 is now added to the system. The force \mathbf{F}_3 acts at the point with position vector $(2\mathbf{i} - \mathbf{k})$ m and the three forces \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 are equivalent to a couple.
	(c) Find the magnitude of the couple. (6)

5.	A uniform rod PQ , of mass m and length $2a$, is made to rotate in a vertical plane with constant angular speed $\sqrt{\left(\frac{g}{a}\right)}$ about a fixed smooth horizontal axis through the end P of the rod.
	Show that, when the rod is inclined at an angle θ to the downward vertical, the magnitude of the force exerted on the axis by the rod is $2mg \left \cos(\frac{1}{2}\theta)\right $.
	(8)

6.	A uniform rod AB of mass $4m$ is free to rotate in a vertical plane about a fixed smooth horizontal axis, L , through A . The rod is hanging vertically at rest when it is struck at its end B by a particle of mass m . The particle is moving with speed u , in a direction which is horizontal and perpendicular to L , and after striking the rod it rebounds in the opposite direction with speed v . The coefficient of restitution between the particle and the rod is 1.					
	Show that $u = 7v$.					
	(7)					

7.	Prove, using integration, that the moment of inertia of a uniform solid right circular cone,
	of mass M and base radius a, about its axis is $\frac{3}{10}Ma^2$.
	[You may assume, without proof, that the moment of inertia of a uniform circular disc, of mass m and radius r , about an axis through its centre and perpendicular to its plane is
	$\frac{1}{2}mr^2$.]
	2 (10)

(5)

- 8. A pendulum consists of a uniform rod PQ, of mass 3m and length 2a, which is rigidly fixed at its end Q to the centre of a uniform circular disc of mass m and radius a. The rod is perpendicular to the plane of the disc. The pendulum is free to rotate about a fixed smooth horizontal axis L which passes through the end P of the rod and is perpendicular to the rod.
 - (a) Show that the moment of inertia of the pendulum about L is $\frac{33}{4}ma^2$.

The pendulum is released from rest in the position where PQ makes an angle α with the downward vertical. At time t, PQ makes an angle θ with the downward vertical.

(b) Show that the angular speed, $\dot{\theta}$, of the pendulum satisfies

$$\dot{\theta}^2 = \frac{40g(\cos\theta - \cos\alpha)}{33a} \tag{4}$$

(c) Hence, or otherwise, find the angular acceleration of the pendulum. (3)

Given that $\alpha = \frac{\pi}{20}$ and that PQ has length $\frac{8}{33}$ m,

(d) find, to 3 significant figures, an approximate value for the angular speed of the pendulum 0.2 s after it has been released from rest.

lestion 8 continued		
		_
		_
		_
		I .
		_
		_
		_
		_
		Q
	(Total 17 marl	(S)
	TOTAL FOR PAPER: 75 MAR	