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Question Answer Marks Guidance 
1 (i)  

vectors in plane: two of 
4 0 0 4

4 , 6 2 3 , 2
1 4 2 3

−       
       =       
       
       

 M1 Differences between two pairs Any multiple 

   1 0 4
6 3 2
2 2 3

λ µ
     
     = + +     
     
     

r  A1 Aef of parametric equation Must have “r = ...” 

    [2]   
1 (ii)  0 4 5

3 2 8
2 3 12

     
     × =     
     −     

 M1 
A1 

Calculate vector product 
or multiple 

M1 can be awarded where vector 
product has method shown or only 
one term wrong 

   1 5
6 8 0
2 12

    
    − =    

     −    

r .  M1  Or Cartesian form = d with attempt 
to compute d 

   5 8 12 29x y z+ − =  A1 Aef of cartesian equation, isw.  
    

 [4]   

   Alternate method    
     

 
M1 
A1 

 
M1A1 

 
 
 

M1 
A1 

 
M1 A1 

 
EITHER 
x, y, z in parametric form 
both parameters in terms of e.g. 
x, y 
substitute into parametric form 
of z 
 
OR 
x, y, z in parametric form 
2 equations in x, y, z and one 
parameter 
eliminate parameter  
 

 



4727 Mark Scheme June 2013 

2 

Question Answer Marks Guidance 
2 (i)   1 3 5 7 

1 1 3 5 7 
3 3 1 7 5 
5 5 7 1 3 
7 7 5 3 1 

 

B2 –1 each error  

   From table clearly closed B1  Must be clear they are referring to 
tabulated results 

   1 is identity B1   
   1 1 13 3, 5 5, 7 7 (mod8)− − −≡ ≡ ≡  B1  Or “1 appears in every row” 
    [5] Superfluous fact/s gets –1  
2 (ii)  1 has order 1 and 3, 5, 7 all have order 2 B1   
    [1]   
2 (iii)  {1, 3}, {1, 5}, {1, 7}  (and {1}) B1 All correct, no extras Allow {1} included or omitted 
    [1]   
2 (iv)  in H 23 9 (mod10)≡ so 3 not order 2 M1 Shows and states that 3 or that 

7 is not order 2 (or is order 4)  

   no element of order > 2 in G so not isomorphic A1 Completely correct reasoning  
     

[2] 
Or, if zero, then SC1 for 
merely stating comparable 
orders and then saying that 
“orders don’t correspond, so 
not isomorphic" 
Or 
table for H with saying “not all 
elements self inverse, so not 
isomorphic” 
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Question Answer Marks Guidance 
3   3 2d d3

d d
u yu y y
x x

= ⇒ =  M1  Or 
2
3d 1 d

d 3 d
y uu
x x

−
=  

   
in DE gives  d cos2

d
u xx u
x x
+ =  A1   

   
2

d 2 cos
d
u xu
x x x
+ =  B1 Divide Both sides 

   ( ) 2 ln2exp d e x
xI x= =∫  M1 Correctly integrates Must have form d f ( ) g( )

d
u x u x
x
+ =  

   2x=  A1  Can be implied by subsequent work 
   2 d 2 cos

d
ux xu x
x
+ =     

   ( )2d cos
d

x u x
x

=     

   2 sin ( )x u x A= +  M1 Integrate  
   

2
sin x Au

x
+

=  A1 Or gives GS in implicit form Must include constant at this stage 

   1
3

2
sin x Ay

x
+ =  

 
 A1   

    [8] 
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Question Answer Marks Guidance 
4 (i)  Sketch 

B1  

Must have axes, A shown 3 across 
and either scale (or co-ordinates) 
with B in rough position, or angle 
and distance on argand diagram. No 
inconsistencies 

   1
3 i3 3, 3e 3OA OB π= = = =     

   and 1
3BOA π∠ =   M1 Can be seen on diagram Alt. Attempts AB or second angle 

   hence OAB∆  equilateral A1   
    [3]   
4 (ii)  1

3 i3e π−   

M1A1 

Or 
5
3 i3e π . Isw 

M1 for evidence they are 
considering BA, or for 
3 3
2 2 3 i−  

For full marks can use CiS form, or 
clear polar co-ordinates, in radians.  
Not C-iS 

    [2]   
4 (iii)  ( ) 51

3 3
5i i53 3e 3 eπ π−− =  M1 For mod5 and arg × 5 “Hence” so must use ‘their 

1
3 i3e π− ’ 

   ( )5 5
3 3243 cos isinπ π= −  A1ft aef  

   243 243
2 2 3 i= +  B1  Condone use of “121.5”. 

 
    [3] 
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Question Answer Marks Guidance 
5 
 

  AE:  2 2 5 0λ λ+ + =  M1   

   1 2iλ = − ±  A1   
   CF:  ( )e cos2 sin 2x A x B x− +  A1ft  Or e cos(2 )xA x α− + Must be in real 

form 
   PI:  e xy a −=  

B1  
If PI e xy ax −= ,then max of 
M1,A1,A1,   B0,M1,A0,A0 (since 
cannot be consistent)  M1, M1, A1. 

   e 2 e 5 e ex x x xa a a− − − −− + =  M1 Differentiate & substitute Must have a constant in “their PI” 
   4 1a =   
   1

4a =  A1   
   GS:  ( )1

4e cos2 sin 2xy A x B x−= + +  A1ft  Must have “y =” 
       
   ( )

( )

1
4

d e cos2 sin 2
d

e 2 sin 2 2 cos2

x

x

y A x B x
x

A x B x

−

−

= − + +

+ − +
 

M1* 

 
Differentiate their GS of form 

( )e cos sinxy P A nx B nx−= + +   
where P is constant or linear 
term, n not 0 or 1 

Allow one error 

   ( )1
4

d0, 0 2 0
d
yx A B
x

= = ⇒ − + + =  

1
40, 0 0x y A= = ⇒ + =  

*M1 Use conditions But M0 if leads to solution of y = 0 

   1
4 , 0A B= − =  A1ft From their GS  

   ( )1
4 e 1 cos2xy x−= −  A1  Must have ‘y =’ and be in real form 

    [11]   
6 (i)  2 1, 5 1, 2x t y t z t= + = − = +  B1 Parameterise or B1 for  y and z correctly in terms 

of x  e.g. 2y = 5x – 7,   2z = x + 3 
   ( ) ( ) ( )2 1 2 5 1 2 2 5t t t+ + − − + =   Substitute into plane Then M1 for full simultaneous 

equations method. 
   10 10 1t t⇒ = ⇒ =  M1 Solve  
   Intersect at (3, 4, 3) A1 cao Accept vector form 
    [3]   
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Question Answer Marks Guidance 
6 (ii)  

( )1
2

2 1
5 2
1 2 10cos
2 1 3 30
5 2
1 2

π θ

   
   
   
   −   − = =
   
   
   
   −   



 M1A1  Attempt to find angle or its 
complement 

   0.654θ =  A1 or 37.5°  
    [3]   
6 (iii)  If P is point of intersection and Q is required point, 

2
5
1

PQ λ
 
 =  
 
 



 so  2 2sin
30PQ

θ
λ

= =  M1* or ˆ 2= ±PQ


.n  where 
1
2
2

 
 =  
 − 

n  
Use PQ



 with right angled triangle or 
consider component of PQ



 in 
direction of normal vector.  

   10 2
3 30 30λ

=  M1  Valid method to set up equation in 
λ alone. 

   3
5

λ = ±  A1  (May work from general point on 
original equation) 

   
points have position vectors 

3 2
34 5
5

3 1

   
   ±   
   
   

 *M1 Dep on 1st M1  

   points at (1.8, 1, 2.4) and (4.2, 7, 3.6) 
 
 

A1 cao 
 

   Alternative:    
   

Distance 
2 2 2

2 1 2(5 1) 2( 2) 5
2

1 2 2

t t t+ + − − + −
= =

+ +
 M1* 

A1  
Zero if formula used without 
substitution in of parametric form. 

    *M1 Solve  
   0.4 or 1.6t⇒ =  A1 At least one value found  
   (1.8, 1, 2.4) and (4.2, 7, 3.6) A1   
    [5]   
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Question Answer Marks Guidance 
7 (i)  6 6 6( ) ...ab abab ab a b= =  as commutative M1 Must give reason Some demonstration that they 

understand commutativity 
   ( ) ( )3 22 3 3 2a b e e e= = =  A1 Using orders of a and b  

   So ab has order 1, 2, 3, or 6    
   ( 2b a ab a ab e≠ ⇒ ≠ ⇒ ≠  so ab not order 1)   Condone absence of this line 
   2 2 2 2 2( )ab a b eb b= = =  and b not order 2,  

so ab not order 2 
M1 Consider other cases Insufficient to merely have 

simplified all (ab)n 
   3 3 3 2( )ab a b aa e aee a e= = = = ≠ , so ab not order 3    
   (So must be order 6) A1 AG Complete argument  
    [4]   
7 (ii)  ac has order 18 B1  Or abc or generator 
   18 is LCM of 2 and 9 , (so we can use a similar argument 

to part (i)) M1 or explicit consideration of 
other cases  

   So as G has an element of order 18 it must be cyclic. 
 

A1 
 AG Complete argument  

    [3]   
8 (i)  ( )5cos5 isin5 cos isinθ θ θ θ+ = +  B1 

Or 

( )5cos5 { cos isin }reθ θ θ= +   

   5 4 3 2 2 3 4 55i 10 10i 5 ic c s c s c s cs s= + − − + +  M1  No more than 1 error, can be 
unsimplified 

   5 3 2 4cos5 10 5c c s csθ = − +  M1 Take real parts  
   ( ) ( )25 3 2 210 1 5 1c c c c c= − − + −  

5 3 5 3 510 10 5 10 5c c c c c c= − + + − +  
M1   

   cos 5θ 5 316 20 5c c c= − +  A1 AG  
    [5]   
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Question Answer Marks Guidance 
8 (ii)  Multiplying by x gives 5 316 20 5 0x x x− + =    Hence, so no marks for using 

quadratic at this stage. 
   letting cosx α= gives cos5 0α =  M1   
   hence 3 5 7 91

2 2 2 2 25 , , , ,α π π π π π=  A1   
   3 5 7 91

10 10 10 10 10, , , ,α π π π π π=     
   5

10cos 0π =  which is not a root A1   
   so roots 3 7 91

10 10 10 10cos , cos ,cos ,cosx π π π π=  A1   
    [4]   
8 (iii)  4 2 2 20 8016 20 5 0

32
x x x ±

− + = ⇔ =  B1 
 

Can be gained if seen in (ii) 

   cos decreases between 0 and π so 1
10cos π is    

   greatest root M1   
   

so 1
10

20 80 5 5cos
32 8

π + +
= =  A1 Dep on full marks in (ii)  

    [3]   
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